
applied  
sciences

Article

Multi-Scale and Multi-Dimensional Time Series
InSAR Characterizing of Surface Deformation over
Shandong Peninsula, China

Mimi Peng 1 , Chaoying Zhao 1,2,*, Qin Zhang 1,2, Zhong Lu 3, Lin Bai 1 and Weiming Bai 4

1 School of Geology Engineering and Geomatics, Chang’an University, Xi’an 710054, China;
2018026013@chd.edu.cn (M.P.); dczhangq@chd.edu.cn (Q.Z.); bailin@chd.edu.cn (L.B.)

2 State Key Laboratory of Geo-Information Engineering, Xi’an 710054, China
3 Roy M. Huffington Department of Earth Sciences, Southern Methodist University, Dallas, TX 75275, USA;

zhonglu@mail.smu.edu
4 Qingdao Institute of Marine Geology, Qingdao 266071, China; qdbwm@163.com
* Correspondence: cyzhao@chd.edu.cn; Tel.: +86-29-82339251

Received: 11 February 2020; Accepted: 19 March 2020; Published: 27 March 2020
����������
�������

Abstract: Shandong peninsula, the largest peninsula of China, is prone to severe land subsidence
hazards along the coastline. In this paper, we provide, for the first time, multi-scale and
multi-dimensional time series deformation measurements of the entire Shandong peninsula with
advanced time series Interferometric Synthetic Aperture Radar (InSAR) techniques. We derive
the spatiotemporal evolutions of the land subsidence by integrating multi-track Sentinel-1A/B
and RADARSAT-2 satellite images. InSAR measurements are cross validated by the independent
deformation rate results generated from different SAR tracks, reaching a precision of less than
1.3 cm/a. Two-dimensional time series over the Yellow River Delta (YRD) from 2017 to 2019 are
revealed by integrating time series InSAR measurements from both descending and ascending
tracks. Land subsidence zones are mainly concentrated on the YRD. In total, twelve typical localized
subsidence zones are identified in the cities of Dongying (up to 290 mm/a; brine and groundwater
exploitation for industrial usage), Weifang (up to 170 mm/a; brine exploitation for industrial usage),
Qingdao (up to 70 mm/a; aquaculture and land reclamation), Yantai (up to 50 mm/a; land reclamation)
and Rizhao (up to 60 mm/a; land reclamation). The causal factors of localized ground deformation
are discussed, encompassing groundwater and brine exploitation, aquaculture and land reclamation.
Multi-scale surveys of spatiotemporal deformation evolution and mechanism analysis are critical to
make decisions on underground fluid exploitation and land reclamation.

Keywords: InSAR; Shandong peninsula; surface deformation; sentinel-1A/B; two-dimensional
deformation; MSBAS

1. Introduction

Land subsidence caused by either natural or anthropogenic factors has become one of the serious
environmental problems around the world regarding population expansion and economic growth,
among which the coastal subsidence phenomenon is reported frequently in many countries, such as in
Shenzhen and Xiamen (China), Urayasu (Japan), Sibari and Venice (Italy), Houston and New Orleans
(USA) [1–8]. Land subsidence makes coastal areas more vulnerable to coastal flooding, saltwater
intrusion, shoreline erosion and infrastructure damage. Therefore, accurate measurements and detailed
analyses are critical for natural hazard assessment and risk evaluation in the coastal regions.

Shandong peninsula (36◦12′–38◦12′N, 119◦30′–122◦43′ E), the largest peninsula in China, is located
in the east of Shandong province. The peninsula is surrounded by the Bohai Sea to the north and the
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Yellow Sea to the east, occupying an area of 34,000 km2. The Shandong peninsula consists of several
cities with large populations and prosperous economies, including Binzhou, Dongying, Weifang,
Yantai, Weihai, Qingdao and Rizhao (Figure 1). The Yellow River Delta (YRD), located between Laizhou
Bay and Bohai gulf on the northern coast of Shandong peninsula, is the second largest river delta
in China. However, due to the rapid urbanization, industrialization and economy growth, serious
long-term subsidence of different magnitudes has occurred in this area. Firstly, overexploitation of
natural groundwater resources, including fresh water and brine, has led to severe land subsidence for
decades [9–12]. Abundant natural brine deposits occur in the coastal zones where many salt factories
were built along the coastline of Laizhou Bay and Jiaozhou Bay. Coastlines are dominated by numerous
aquaculture factories created in the bays. Subsidence in the salt and aquaculture fields may intensify
storm surges and river flooding, salinate groundwater, destabilize infrastructure, and accelerate
shoreline retreat. Secondly, the YRD possesses the second largest oilfield in China, Shengli oilfield,
where hydrocarbon exploitation since the 1970s [13] has resulted in severe land subsidence near oil
exploitation centers [13,14]. Thirdly, there are 31 bays with an area larger than 5 km2 along the coast of
the peninsula. Land reclamation activities over these bays caused new land subsidence, which has
raised great public concerns for the safety of structures such as harbors, highways, airport runways,
and underground facilities [2,15,16].
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Peninsula in China. 
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distribution, magnitude, and temporal changes of the earth’s surface deformation over the past two 
decades [17,18]. Multi-temporal InSAR techniques, such as Persistent Scatterers InSAR (PSInSAR), 
Small Baseline Subset (SBAS) InSAR and SqueeSAR, have been developed to map land surface 
displacements by minimizing temporal/spatial decorrelation and the artifacts inherent in 

Figure 1. Study area and coverage of radar data tracks superimposed on the Shuttle Radar Topography
Mission (SRTM) Digital Elevation Model (DEM) shaded topography map over Shandong peninsula,
China. Black and blue rectangles indicate the Sentinel-1 coverage and the orange rectangle represents
RADARSAT-2 coverage. Different colored lines represent different types of coastal zones alone the
coastline. The right-bottom inset is the approximate location of Shandong Peninsula in China.

Interferometric Synthetic Aperture Radar (InSAR) measures various surface displacements by
differentiating the phase observations between two complex radar images with a centimeter to
millimeter accuracy over large area. It has been an excellent technique for investigating the distribution,
magnitude, and temporal changes of the earth’s surface deformation over the past two decades [17,18].
Multi-temporal InSAR techniques, such as Persistent Scatterers InSAR (PSInSAR), Small Baseline
Subset (SBAS) InSAR and SqueeSAR, have been developed to map land surface displacements by
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minimizing temporal/spatial decorrelation and the artifacts inherent in conventional InSAR [19,20].
The advanced time series InSAR techniques have facilitated coastal land subsidence monitoring in
many regions [1–5,21]. Moreover, the InSAR technique shows its potential in large-scale deformation
monitoring, e.g., on a regional scale or national scale with the increased availability of free-of-charge
and commercial SAR datasets [22–24]. Although the conventional ground-based methods including
global positioning systems (GPS) and leveling can provide precise measurements, the lack of such
measurements makes it difficult to verify the InSAR measurements.

Numerous studies have been carried out for the land subsidence monitoring over YRD in recent
years [9–14,25,26]. However, a comprehensive and multi-dimensional surface deformation mapping
over the YRD has not been done and the causal factors of the geohazards have not been fully explored.
Moreover, there is a lack of knowledge of the spatial extent, magnitude, and temporal evolution of
land subsidence and the causal factor analysis in the entire Shandong peninsula, which impedes the
governments in making precise decisions concerning hazard prevention and mitigation.

In this study, comprehensive and detailed surface deformation measurements over the entire
Shandong peninsula are conducted. A time series InSAR technique with multi-satellite and multi-track
SAR datasets from 2016 to 2019 is employed. Two-dimensional (2-D) ground deformation in YRD
is retrieved by the Multidimensional SBAS (MSBAS) technique. The temporal evolution of land
subsidence and spatial deformation distribution of localized subsidence zones are also revealed.
Finally, the causal factors associated with the localized subsidence are discussed.

2. Study Area and Geological Settings

Shandong Province has a warm, semi-humid monsoon climate with an average annual temperature
of around 12 ◦C, which is significantly impacted by the ocean surrounding it. The average annual
precipitation is 731 mm, and 70%–80% of it is concentrated in the flood season from July to September,
gradually increasing from west to east. The average annual evaporation is 1648.1 mm, and 50% of the
total annual evaporation is concentrated from March to June [27].

Shandong Peninsula is surrounded by the seas on three sides. There are seven coastal
prefecture-level cities in the peninsula from north to south, namely Binzhou, Dongying, Weifang,
Yantai, Weihai, Qingdao and Rizhao. The coastline is ~3300 km in length from the estuary of the Dakou
River in the north to the estuary of Xiuzhen in the south (Figure 1), which accounts for one-sixth of the
national coastline in length. The inshore area of Shandong province is 170,000 km2, accounting for 37%
of the total area of the Bohai Sea and the Yellow Sea. Most of the coasts in Shandong peninsula are
formed by the rise of the crustal fault or the marine accumulation. The shoreline at the Yellow River
estuary is formed by the impact of the sediment carried by the Yellow River. This area is mud flat and
forms a delta with a tortuous and interstitial sandy shoreline. The ability of the river to transport sand
has a significant effect on the coastal zone, and the Yellow River has the largest capacity for sediment
transport [28].

Based on geological structure, river sediment transport and marine transgression, six different
coastal segments (Segment 1O–Segment 6O), marked with different colored lines in Figure 1, are formed
from the north to the south coastline of Shandong peninsula, according to the types of the coast and
their suitability for land reclamation [29]: (1) Segment 1O is a silt mud coast with a great amount of
sediment input from the Yellow River for land progradation and is the best area for land reclamation;
(2) Segment 2O is also a silt mud coast with shallow water offshore that is suitable for large scale land
reclamation; (3) Segment 3O is mainly a sandy coast with shallow or medium depth of water offshore
and is suitable for land reclamation on a medium scale; (4) Segment 4O is mainly a sandy, gravely
and partly rocky coast, with medium to deeper water offshore and is suitable for smaller scale land
reclamation; (5) Segment 5O is dominated by a rocky coast with sand and gravel only in the bays;
land reclamation is only suitable in the bays; (6) Segment 6O is characterized by a sandy coast with
some rocky areas, and is also only suitable for small scale land reclamation.
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3. Data and Methods

3.1. Data

We combine the Sentinel-1A/B and RADARSAT-2 satellite imageries with different geometries to
study the spatiotemporal characteristics of surface deformation over the entire Shandong peninsula.
Sentinel-1A/B images with five tracks are all considered, including three descending tracks and two
ascending tracks. The descending tracks include Path 76 (frame 467 and 472) and Path 3 and ascending
tracks include Path 98 and Path 69. A set of 137 descending Sentinel-1B scenes from Path 76 and Paths
3 and a set of 122 ascending Sentinel-1A scenes from Path 98 and Path 69 are utilized to identify the
distribution of surface deformation and to derive its evolution over the entire peninsula from 2016
to 2019. To monitor the surface deformation over YRD, ascending Sentinel-1 imagery (Path 69) is
utilized, which is also combined with descending data to decompose the vertical and horizontal surface
deformation. To this end, a total of 66 scenes of ascending and 33 scenes of descending Sentinel-1
imagery are used. Lastly, 12 scenes of descending RADARSAT-2 images from April 2012 to June 2016
are also involved to restore the historical deformation over YRD.

One-arc-second (~30 m) SRTM DEM is used as an external DEM to remove the topographic phase
from the interferograms [30]. Detailed SAR parameters are shown in Table 1.

Table 1. Imaging parameters of Synthetic Aperture Radar (SAR) datasets.

Satellite Orbit
Direction Path/Track Frame Scene

Numbers
Time

Interval
Incidence

Angle

Sentinel-1A/B
(C-Band)

Ascending 98 118 56 2017/04–2019/03 33.75
69 118 66 2017/03–2019/05 33.73

Descending
3 470 50 2017/04–2019/03 34.08
76 468 33 2016/10–2019/02 33.91
76 472 54 2016/10–2017/04 33.95

RADARSAT-2
(C-Band) Descending / / 12 2012/04–2016/06 26.23

3.2. Methods

3.2.1. 1-D Surface Deformation Derived from SBAS Technique

The SBAS technique is applied to derive deformation rate and time series in a one-dimensional
(1-D) line-of-sight (LOS) direction from a set of highly coherent interferograms generated with small
temporal and spatial baselines [20,31]. The SBAS technique is applied to each ascending and descending
track individually to derive the deformation results based on GAMMA software [32].

Multilook average processing of ten pixels in the range and two pixels in azimuth directions for
Sentinel-1 data, as well as one pixel in the range and five pixels in azimuth directions for RADARSAT-2
data, is adopted to reduce the phase noise and to obtain large scale deformation results. All Sentinel-1
interferograms are generated by setting the temporal and spatial baseline thresholds as 100 days and 200
m, respectively. Then, the differential interferograms are calculated, filtered, unwrapped and geocoded
and resampled to the common grid. Differential interferograms are filtered using the adaptive filtering
method based on the local fringe spectrum [33] and unwrapped by the general minimum cost flow
(MCF) approach [32]. A 2-D quadratic model is used to remove the baseline residual error and to
mitigate the long-wavelength artifacts of atmospheric disturbance. Then, deformation rates at highly
coherent pixels in the LOS direction are derived by the stacking technique [32].

3.2.2. Multidimensional Small Baseline Subset (MSBAS) Technique

The MSBAS technique is an extension of the SBAS technique, which can simultaneously process
both ascending and descending D-InSAR interferograms and produce 2-D deformation time series
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with dense temporal sampling and low noise, once SAR datasets cover the same region and have an
overlap in the time domain [34–37]. After removing topographic phase from every interferogram and
unwrapping the phase, the MSBAS method is employed to estimate the vertical and the east–west
deformation time series. As space-borne SAR satellites operate in a near-polar sun-synchronous orbit,
the deformation in the north–south direction can be hardly retrieved. Therefore, the multidimensional
time series model can be expressed in the following equation [34].(

−
4π
λ Acosαsinθ 4π

λ Acosθ
βI

)(
VE

VU

)
=

(
Φ
0

)
(1)

where λ, α and θ are the radar wavelength, the azimuth angle, and the incidence angle, respectively, A is
a matrix constructed from the time interval between consecutive SAR acquisitions, β is a regularization
parameter, which can be determined by using the L-curve method, and I is an identity matrix. VE and
VU represent the east–west and vertical components (unit: m/a) of the ground deformation rate vector
during each time interval, Φ is the unwrapped interferometric phase (unit: radian) from both ascending
and descending tracks. The unknown parameters VE and VU are estimated by solving the design
matrix of Equation (1) via singular value decomposition (SVD) [20].

Finally, the 2-D cumulative deformation time series at the ith acquisition is reconstructed from the
deformation rates in the following manner:

di
E =

∑n

i=1
Vi

E∆ti, di
U =

∑n

i=1
Vi

U∆ti (2)

where n = 1, 2, 3 · · · , 2(
∑K

k=1 Nk − 1) di
E and di

U are the cumulative horizontal east–west and vertical
deformations, respectively, Nk is the number of SAR acquisition dates from kth SAR datasets, K is the
number of different sensors, here K = 2.

4. Results

4.1. Surface Deformation over The Entire Peninsula

The LOS deformation rates of four different paths (Path 76, Path 69, Path 98 and Path 3) Sentinel-1
SAR data are firstly calculated independently. Then, all the deformation maps are transferred to the
same coordinate system according to the external DEM. Finally, the annual land subsidence rate map
over the entire peninsula from 2016 to 2019 is generated by mosaicking all four deformation rates
shown in Figure 2. All the background images on which the InSAR-derived deformation maps are
superimposed are from Google Earth. The accuracy of the InSAR measurements will be cross validated
with independent InSAR observations from different tracks in Section 4.2.

The surface deformation characteristics of six cities seated in the peninsula have been explored,
that is Dongying, Weifang, Yantai, Weihai, Qingdao and Rizhao from north to south. We detected
land subsidence in a total of twelve regions, eleven of which occur in or near the coastal areas defined
by red rectangles from Region A to Region K (Figure 2). The remaining one is the subsidence over
inland Guangrao, occupying an area as large as 110 by 35 km (green rectangle in Figure 2). On the
whole, land subsidence is mainly concentrated in the northern Shandong peninsula (i.e., YRD), and the
southern and southeastern areas are relatively stable. There is no large scale ground subsidence zone,
except some scattered coastal zones, with the subsidence rate varying from 10 mm/a to 60 mm/a,
which can be explained by the different coastal geological settings (i.e., YRD is mainly a silt mud
coastline, and the south and southeast areas are mainly bedrock coastline). The most remarkable
subsidence is located in Region C with a subsidence rate as large as 260 mm/a. The GPS results show
that the vertical ground movement gradually changes from subsidence to slight uplift along the north
to the south of Shandong peninsula during the period of 2010 to 2015 [38]. Although the observation
periods between GPS and InSAR are different, the overall deformation trends are consistent. Detailed
analysis of the main regional subsidence in Figure 2 will be given in the following Section 5.



Appl. Sci. 2020, 10, 2294 6 of 19
Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 20 

 
Figure 2. Vertical deformation velocity of the whole Shandong peninsula derived from Sentinel-1 
datasets with different tracks and acquisition geometries (ascending and descending). The red 
rectangles labeled from A to K indicate the deformation areas along the coastline. The green rectangle 
box shows the Guangrao subsidence area. 

The surface deformation characteristics of six cities seated in the peninsula have been explored, 
that is Dongying, Weifang, Yantai, Weihai, Qingdao and Rizhao from north to south. We detected 
land subsidence in a total of twelve regions, eleven of which occur in or near the coastal areas defined 
by red rectangles from Region A to Region K (Figure 2). The remaining one is the subsidence over 
inland Guangrao, occupying an area as large as 110 by 35 km (green rectangle in Figure 2). On the 
whole, land subsidence is mainly concentrated in the northern Shandong peninsula (i.e., YRD), and 
the southern and southeastern areas are relatively stable. There is no large scale ground subsidence 
zone, except some scattered coastal zones, with the subsidence rate varying from 10 mm/a to 60 
mm/a, which can be explained by the different coastal geological settings (i.e., YRD is mainly a silt 
mud coastline, and the south and southeast areas are mainly bedrock coastline). The most remarkable 
subsidence is located in Region C with a subsidence rate as large as 260 mm/a. The GPS results show 
that the vertical ground movement gradually changes from subsidence to slight uplift along the north 
to the south of Shandong peninsula during the period of 2010 to 2015 [38]. Although the observation 
periods between GPS and InSAR are different, the overall deformation trends are consistent. Detailed 
analysis of the main regional subsidence in Figure 2 will be given in the following Section 5. 

4.2. Accuracy Assessment of The InSAR Measurements 

In order to assess the uncertainty of InSAR measurements, independent InSAR observations 
from the Sentinel-1 satellite images covering the same area and during the same time interval are 
utilized. As the overlapped region is stable, the horizontal displacements are not considered in this 
step. Four InSAR deformation rates in LOS direction from 2016 to 2019 are all projected in the vertical 
direction with respect to their corresponding incidence angles at each pixel. Please note that an 
identical DEM is applied for the geocoding of every SAR measurement, which guarantees that the 
cross validation is taken under the same ground coordinate system. 
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the Guangrao subsidence area.

4.2. Accuracy Assessment of The InSAR Measurements

In order to assess the uncertainty of InSAR measurements, independent InSAR observations
from the Sentinel-1 satellite images covering the same area and during the same time interval are
utilized. As the overlapped region is stable, the horizontal displacements are not considered in this
step. Four InSAR deformation rates in LOS direction from 2016 to 2019 are all projected in the vertical
direction with respect to their corresponding incidence angles at each pixel. Please note that an
identical DEM is applied for the geocoding of every SAR measurement, which guarantees that the
cross validation is taken under the same ground coordinate system.

Histograms of the differences in deformation rate between different measurements are shown
in Figure 3, where Figure 3a is the difference between descending Sentinel-1 Path 3 Frame 470 and
ascending Sentinel Path 98 Frame 118, and Figure 3b is the difference between descending Sentinel-1
Path 3 Frame 470 and Path 76 Frame 467. The standard deviations for two differences are about 0.9 and
1.3 cm/a, respectively.

4.3. Deformation Results in The YRD

Yellow River Delta (YRD), including Regions A–F and Guangrao city, has been undergoing the
most severe land subsidence over the Shandong peninsula, so the SBAS technique was applied to
both ascending and descending datasets individually to retrieve the annual deformation rate and
deformation time series along the LOS direction (Figure 4).
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Figure 4a,b show the LOS annual deformation rate maps from March 2017 to June 2019 acquired
from ascending and descending datasets, respectively. The two maps show similar deformation patterns
with the maximum LOS deformation rate as large as 260 mm/a in Region C. Slightly different patterns
and magnitudes can also be seen in some regions, which were caused by the different LOS imaging
geometries of the ascending and descending tracks. Compared to the previous studies [10,11,14],
there are two notable spatial changes: (1) before 2016, the subsidence mainly occurred in the Shengli
oilfield and Gudong oilfield, located in the Xicheng district and the southeast of Region C, respectively.
However, our measurements did not show any obvious deformation, as the two oilfields mentioned
above had been closed since 2016; (2) Regions A, B, C and D are the newly detected deformation centers
from this research.
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2-D Deformation Result

To estimate the 2-D deformation time series, i.e., vertical and east–west deformation components
over the YRD, InSAR measurements from the ascending Path 69 and the descending Path 76 are
calculated with the MSBAS technique. The north–south deformation component is negligible due
to the low sensitivity of near-polar orbiting sensors. In this case, the satellite parameters for the
heading angles of ascending and descending Sentinel-1 track are −13.2◦ and −166.8◦, respectively,
and the average incidence angles of ascending and descending track are 33.7◦ and 33.9◦, respectively.
The vertical and east–west deformation rate maps of the overlapped areas of ascending and descending
SAR images are shown in Figure 5a,b, respectively.
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Nine typical feature points (a–i), located in the subsidence centers (Figure 5a), are selected to
analyze the time series deformation from March 2017 to March 2019, which are shown in Figure 6.
It can be found from Figures 5 and 6 that the vertical deformations are much larger than the east–west
deformations, which confirms that the vertical movements dominate the deformation fields in the
YRD. Points a and b are located in the subsidence center in Region B, points c and d are in Region C,
points e, f and g are in Region D, and points h and i are in Region E. The 2-D deformation time series
measurements show a moderate linear deformation during the two years. The maximum cumulative
deformation reached −450 mm in the vertical direction at point e and reached 100 mm in the east–west
direction at point b during the observation interval (Figure 6). According to the time series deformation
evolution at points a and b for Region B (Figure 6a,b), it should be noted that land deformation was not
detected before December 2017, and then the point underwent severe subsidence with the maximum
cumulative deformation by more than −400 mm, which can be explained by the fact that the land
type had been changed from aquaculture to salt fields after 2017; since then, the large volume of
underground brine was withdrawn.
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5. Discussion

Land deformation in Shandong peninsula can be induced by one or more different anthropogenic
activities. Although each localized subsidence site is unique over the whole Shandong peninsula,
it may reflect unique local geological and hydrological conditions and some similar causal factors can
be summarized. Land subsidence disasters in Shandong peninsula are mainly caused by the fluid
overexploitation of underground resources, such as brine, oil and groundwater, and the reclamation
of new artificial land along the coastline. As extensive land subsidence along the coastline may
induce the occurrence of inundation, damage of infrastructure, pipelines and roads, and the loss of the
wetland habitat, the analysis of the spatiotemporal evolution of land subsidence and the deformation
mechanism can better guide the prevention of localized geohazards.

In this section, multiple localized geohazards in Shandong peninsula have been revealed and
summarized in Table 2. The causes of regional land subsidence in terms of brine withdrawal, aquaculture
farm, land reclamation and local faults will be discussed in detail.

5.1. Correlation between Land Subsidence and Faults

Fault-related subsidence has been recorded worldwide, such as in some regions of China,
and Houston, USA [6,7,39–41]. The faults in YRD are composed of the Yishu fault (NNE 10◦–30◦) and
its secondary faults, including the Shangwujing fault and Yidu fault (Figure 7a). The Yishu fault zone
is conjugated spatially with its secondary faults, where earthquakes mostly occurred [42,43]. Figure 7a
demonstrates a strong correlation between the land subsidence and fault distribution in the YRD
region, which indicates that land subsidence in YRD was affected by the localized faults significantly.
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Table 2. List of localized land subsidence and causes.

City Location Lat/Lon Corresponding
Region Period

Maximum
Magnitude

(cm/a)

Size
(km2)

(>2cm/a)
Cause

Dongying,
Weifang

YRD
(coastal

area)
/ A, B, C, D, E, F 201204–201907 29 522 Brine

withdrawal

Yantai,
Qingdao

Dingzi Bay,
Jiaozhou

Bay

N36.6E120.8
/N36.2E120.1 H, I 201610–201904 7 166 Aquaculture

Yantai,
Qingdao,
Rizhao

/
N37.6E120.2/
N35.6E119.7/
N35.3E119.5

G, J, K 201610–201904 6 15

Land
reclamation,

Sediment
consolidation

Dongying Guangrao N37.05E118.4 / 201610–201907 14 730
groundwater
withdrawal,

fault
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Figure 7. Land subsidence rate map over YRD and the deformation results along three profiles.
(a) Land subsidence rate map, where black lines indicate the surface projections of faults. Graphs (b),
(c) and (d) the deformation rates along the profiles aa’, bb’ and cc’, whose positions are labeled on (a),
respectively. The locations of the faults are adopted from [44].
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Three profiles, perpendicular to the faults, are chosen to analyze the spatial correlation between
land subsidence and faults, where profile aa’ is located in Region F, crossing the Yishu fault, and profiles
bb’ and cc’ are located in Guangrao, crossing the Yidu fault and Shangwujing fault, respectively.
Deformation rates along three profiles are shown in Figure 7b–d, from which it can be seen that different
displacements are observed across three faults. Based on the InSAR measurements, the differences
between the mean deformation rates on two sides of the faults from 2016 to 2019 are 40 mm/a for the
Yishu fault, 110 mm/a for the Yidu fault and 70 mm/a for the Shangwujing fault.

In general, the fault constrains the flow of groundwater, the extraction of groundwater can cause a
decline in pore stress within the groundwater reservoir and alters the stress state near the fault section,
which therefore aggravates the localized subsidence [6,41].

5.2. Land Subsidence in Guangrao Due to Over-Exploitation of Groundwater

Guangrao County, indicated by the green rectangle in Figure 2, is the exclusive inland subsidence
in the Shandong peninsula and has been suffering subsidence for decades [10,11,14]. Figure 8a,b show
the average deformation rates derived from RADARSAT-2 datasets from 2012 to 2016 and Sentinel-1A
datasets from 2016 to 2018, from which the land subsidence evolution during two periods can be
clearly seen. All the deformation measurements have been projected in the vertical direction. The land
subsidence cones remained the same, while the land subsidence area and intensity had changed
significantly. Quantitatively, the maximum deformation rate increased from 80 mm/a to 130 mm/a in
the Gruangrao subsidence center, and the deformed areas with deformation rates greater than 10 mm/a
increased from about 240 km2 to about 460 km2 (Figure 8).
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To better analyze the temporal characteristics of the observed deformation, deformation time
series at three feature points (Figure 8a) are extracted during two observation periods shown in
Figure 9, where quasi-linear deformation during two periods are revealed. The annual subsidence
rates during these two observation periods varied from 88 mm/a to 126 mm/a at Guangrao subsidence
cones, from 88 mm/a to 126 mm/a at Dawang subsidence cones and from 43 mm/a to 87 mm/a at
Xingfu subsidence cones. Cumulative deformation time series at points a, b and c reached 708, 620 and
398 mm, respectively.

The primary source of the land subsidence in this area is mainly attributed to the long-term
overexploitation of deep confined aquifer groundwater, which was mainly used for farmland irrigation,
industrial and commercial water supply [10,11,14,25,26].
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5.3. Land Subsidence in Salt Field

An abundant natural brine deposit is reserved in the Laizhou Bay, especially in Dongying and
Weifang city [12,27,45,46]. As shown in Figure 4, the high correlation between the distribution of salt
fields and the land subsidence suggests that the exploitation of underground brine resource is the main
cause of the land subsidence. All subsidence in Regions A, B, C, D, E and F (Figure 2) is due to the
extraction of underground brine.

In Laizhou Bay, the formation of natural brine is the result of the comprehensive action of
geological structure, geographical environment and marine geology [45,46]. A growing number of
chemical factories in this area require the overexploitation of underground brine for salt production.
There are more than 5000 wells for extraction of underground brine resources in Shandong province
and all the exploitation is concentrated on the shallow ground brine at the depth less than 100 m [27].
The over pumping in the brine area significantly decreases the brine salinity and deepens the brine
water depth. Therefore, overexploitation of brine declines the groundwater level and undermines the
stratigraphic structure, forming severe subsidence zones in YRD.

5.4. Land Subsidence in Aquaculture Farm

In Shandong peninsula, the coastal aquaculture is one of the crucial national economic industries.
Recently, fish and shrimp ponds have become the boundary between land and sea in YRD and some
other bays. Subsidence in these areas is a potential threat to aquaculture fields [9].

Figure 10a,c show the surface deformation maps in Dingzi Bay and Jiaozhou Bay, which
corresponds to Region H and I in Figure 2. Black solid lines indicate aquaculture units. The distribution
of the large deformation zone and the aquaculture fields is highly consistent. Land subsidence rate in
Dingzi Bay ranges from 0 to 50 mm/a and, in Jiaozhou Bay, it ranges from 0 to 70 mm/a. Figure 10b–d
show the deformation time series at the selected feature points in Figure 10a,c, respectively. Linear
function is used to fit the time series plots, where the deformation rates in Figure 10b,d are 18.6 mm/a
and 53.5 mm/y, respectively. The cumulative deformation at the feature point in Dingzi Bay reaches
60 mm from July 2017 to March 2019, and at the feature point in Jiaozhou Bay reaches to 140 mm from
September 2016 to May 2019. Aquaculture fields are vulnerable to land subsidence due to exploitation
of groundwater. According to the literature [9,26], to ensure that shrimp live in the water with moderate
salinity, farmers often continuously extract groundwater to dilute the brackish water in the pond in
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order to increase the seafood production. Furthermore, groundwater with a higher temperature is
extracted to keep the seafood safe in the winter when the temperature is low.
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Figure 10. Deformation rate and time series at the selected feature points. The black solid lines mark
the aquaculture fields. The white polygons in (c) indicate the subsidence regions caused by land
reclamation. (b,d) The time series deformation measurements at two locations are shown in (a–c).

5.5. Land Subsidence Caused by Land Reclamation

Laizhou Bay and southeast coastal of Shandong peninsula is suitable for land reclamation for
its sandy and bedrock composition. According to the InSAR measurements in Figures 2, 10 and 11,
several remarkable subsidence regions associated with land reclamation are successfully detected in
Longkou Port, Jiaozhou Bay and several south coastal areas such as Regions G, J, K and the subsidence
zones marked by white rectangles in Figure 10c. To reveal the deformation patterns and temporal
evolution, some typical deformation regions (Regions G, J and K) of land reclamation are chosen and
shown enlarged as Figures 11–13.

Longkou Port (i.e., Region G), located in the south of Longkou Bay with an area of 50.41 km2,
is mainly composed of seven small islands, which will be the first large artificial islands in China.
Figure 11a shows the deformation rate map in the LOS direction in Longkou city from October 2016 to
July 2019. To study the temporal deformation evolution, four feature points over this area are extracted
and given in Figure 11b. Land subsidence in Regions G-1 and G-2 is mainly associated with land
reclamation and Region G-3 is associated with farm irrigation. Two groups of Google Earth images
over Regions G-1 and G-2 (Figure 11c–f), acquired in January 2016 and September 2019, respectively,
show the detailed changes in the reclamation process. Compared with Figure 11a,c,f, deformation
coverage in Regions G-1 and G-2 is highly consistent with the surface reclamation. The cumulative
deformation in p1 and p2 reached around 50 mm, and slowed down in July 2018, finally turning
into a relatively mild subsidence pattern. Maximum cumulative deformations were observed at
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p3 and p4, with a magnitude of about 100 mm, while the time series of p3 also turned into a mild
subsidence trend from September 2018, which suggested that the reclaimed land entered a long-term
slow compression stage. Land subsidence at p4 presents a linear land subsidence tendency with the
cumulative deformation in the LOS direction larger than 100 mm.
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Additionally, regions J and K (Figure 2) are also detected as showing land subsidence caused by
soil compaction over reclaimed land. The enlarged land subsidence maps are shown in Figures 12
and 13, respectively. Compared with the Google Earth images, acquired in January 2015 and September
2019, respectively (Figure 12b,c and Figure 13b,c), the land subsidence areas in Figures 12a and 13a
highly correspond to the regions with reclamation activities. In order to further investigate the temporal
evolution of land subsidence after reclamation, three typical points for Region J and two for Region K
(Figures 12a and 13a), are selected and shown in Figures 12d–f and 13d,e. Time series deformation
measurements at three feature points in Region J present nonlinear deformation characteristics. We used
cubic polynomial function (y = a0 + a1 ∗ x + a2 ∗ x2 + a3 ∗ x3) to fit the time series at feature points.
The subsidence at p2 slowed down in April 2018 and then turned into a relatively mild subsidence
pattern with an average deformation rate varying from 17.2 mm/a to 2.8 mm/a. The average subsidence
rates at p1 and p3 were approximately 27.6 and 11.4 mm/a, respectively, and then gradually slowed
down in January 2019. Different from the deformation evolution in Region J, the time series deformation
in Region K presented an approximate linear trend, where the deformation rates in Figure 13d,e were
31.0 mm/a and 22.3 mm/y, respectively.

Land subsidence associated with land reclamation mainly experiences two consolidation processes:
primary consolidation and long-term secondary compression, as recorded in [1,2,16,25,47]. The primary
stage is governed by the dissipation of pore pressure and the secondary stage is creep under constant
effective stress. Coastal soft soils are characterized by clear secondary consolidation. After the
completion of primary consolidation, in turn, the pore pressure dissipates and a long-term compression
process occurs [25]. The subsidence in the primary stage is faster than that in the secondary stage.
The compression magnitude and velocity of land subsidence after land reclamation activities largely
depend on the type and thickness of geotechnical parameters. Such a subsidence process can be
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explained by the well-known Terzaghi theory of consolidation [47], a typical time–subsidence prediction
curve for both primary consolidation and secondary compaction. We explain the temporal evolution
of surface deformation in Regions G, J and K using the Terzaghi theory of consolidation. Therefore,
we can infer from the graph of the deformation time series that, before the SAR observed period,
the reclamation project in Region J was basically completed; therefore, it suffered primary consolidation
and then entered the secondary stage, which evidently presents a typical time–subsidence prediction
curve under the reclamation, especially for Figure 12c. However, Regions G and K are the new
reclamation areas and are currently still in the primary consolidation stage with an approximate linear
deformation and larger deformation rate. Accordingly, significant land subsidence will continue for
some time and finally enter a long-term slow compression stage. InSAR-derived results account
for only a small part compared to the entire compaction process due to the short-term observation
period. By integrating the geotechnical parameters of reclamation materials, the whole subsidence will
be forecasted.

6. Conclusions

In this study, time series InSAR and MSBAS techniques are utilized to investigate the multi-scale
and multi-dimensional surface deformation of Shandong peninsula. Sentinel-1A/B SAR imagery from
five tracks acquired from October 2016 to July 2019, as well as descending RADARSAT-2 images
acquired from April 2012 to June 2016, are all considered.

The spatial pattern and temporal evolution over the entire peninsula are investigated with
the SBAS algorithm. The precision of our measurements is 1.3 cm/a based on independent InSAR
measurements for the same regions. On the whole, most of the deformation areas occurred along
the northern coastline of the peninsula (i.e., YRD) and the maximum subsidence velocity reached
290 mm/a.

Two-dimensional deformation rates and time series for both the vertical and east–west directions
over Dongying city are calculated using MSBAS algorithm. The results show that there is not only
vertical land subsidence, but also eastward deformation, which enriches the previous research results.

In total, twelve regional areas with land subsidence are identified over the whole Shandong
peninsula and the detailed resuts is summarized. The localized land subsidence areas are associated
with overexploitation of brine and underground water, aquaculture and land reclamation, and fault
activity. The maximum land subsidence occurred in inland Guangrao with the annual rate being
105 mm/a due to the overexploitation of groundwater. In addition, several faults in Guangrao
and Weifang affected the local subsidence due to the heterogeneous strata across the fault. Lastly,
land reclamation suffers from land subsidence significantly. InSAR time series results reveal the
different temporal evolutions, which obey the Terzaghi theory of consolidation very well.

Our research into the characteristics of spatiotemporal evolution and the mechanisms of land
subsidence can be referred to local underground fluid exploitation and land reclamation.
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