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Featured Application: We conducted this study to characterize reflectance spectra of peanut leaves
and develop models for chlorophyll detection in peanuts. A new normalized difference spectral
indices (NDSI), ratio spectral index (RSI), difference spectral index (DSI) and soil-adjusted
spectral index (SASI) based on the original spectral at leaf level were calculated with the range
of 350–2500 nm. These sensitive spectral indices and regression equations can be used to predict
the chlorophyll content of peanut leaves.

Abstract: The purpose of this study is to determine a method for quickly and accurately estimating the
chlorophyll content of peanut plants at different plant densities. This was explored using leaf spectral
reflectance to monitor peanut chlorophyll content to detect sensitive spectral bands and the optimum
spectral indicators to establish a quantitative model. Peanut plants under different plant density
conditions were monitored during three consecutive growth periods; single-photon avalanche diode
(SPAD) and hyperspectral data derived from the leaves under the different plant density conditions
were recorded. By combining arbitrary bands, indices were constructed across the full spectral range
(350–2500 nm) based on blade spectra: the normalized difference spectral index (NDSI), ratio spectral
index (RSI), difference spectral index (DSI) and soil-adjusted spectral index (SASI). This enabled
the best vegetation index reflecting peanut-leaf SPAD values to be screened out by quantifying
correlations with chlorophyll content, and the peanut leaf SPAD estimation models established by
regression analysis to be compared and analyzed. The results showed that the chlorophyll content
of peanut leaves decreased when plant density was either too high or too low, and that it reached
its maximum at the appropriate plant density. In addition, differences in the spectral reflectance of
peanut leaves under different chlorophyll content levels were highly obvious. Without considering
the influence of cell structure as chlorophyll content increased, leaf spectral reflectance in the visible
(350–700 nm): near-infrared (700–1300 nm) ranges also increased. The spectral bands sensitive to
chlorophyll content were mainly observed in the visible and near-infrared ranges. The study results
showed that the best spectral indicators for determining peanut chlorophyll content were NDSI (R520,
R528), RSI (R748, R561), DSI (R758, R602) and SASI (R753, R624). Testing of these regression models
showed that coefficient of determination values based on the NDSI, RSI, DSI and SASI estimation
models were all greater than 0.65, while root mean square error values were all lower than 2.04.
Therefore, the regression model established according to the above spectral indicators was a valid
predictor of the chlorophyll content of peanut leaves.
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1. Introduction

Chlorophyll is the primary substance used by green plants to absorb, transform and transmit light
energy via photosynthesis and is associated with processes related to plant growth and senescence,
photosynthetic capacity, disease, nutrition and environmental stress [1]. Therefore, the evaluation
of chlorophyll content is of great significance in the study of plant physiology and ecology, as it
is a measure of photosynthetic capacity, nitrogen levels and developmental status. The nitrogen
(N) status of plant leaves is closely related to chlorophyll content; studies show that when plant N
levels are high, plant growth tends to be strong and chlorophyll content increases [2]. Chlorophyll
absorption provides the necessary link between remote sensing observations and canopy state variables,
so canopy state variables are used as indicators of plant N status and photosynthesis [3]. The main
methods used in determining chlorophyll content are ultraviolet spectrophotometry, fluorescence
analysis and chlorophyll in vivo, all of which are not only time-consuming but may also damage the
studied vegetation. In contrast, hyperspectral technology, now a developed and mature technology
that is increasingly being widely used in crop monitoring, carries advantages of low consumption,
velocity and no vegetation damage, it therefore provides new opportunities to obtain plant physiological
information [4–6]. Hyperspectral spectrometry predicts chlorophyll content by measuring the
reflectance of plant leaves. The response of leaf and canopy spectral reflectance or transmittance
to photosynthetic pigments can be used as a powerful means to monitor crop growth, regulate
fertilizer application and estimate expected yield. The hyperspectral inversion model is established
by processing the emissivity by applying spectral differentiation technology and statistical analysis
technology; exploring the relationship between hyperspectral reflectance and its various variations
and peanut chlorophyll by curve fitting analysis. Hyperspectral inversion of chlorophyll content was
first carried out at the leaf scale and then developed at the canopy scale. Two methods are generally
employed for estimating vegetation physiological parameters using hyperspectral data: (i) Optical
radiation transmission model [7,8]; and (ii) determining the empirical relationship between vegetation
physiological parameters and spectral vegetation indices [9].

The spectral index method is beneficial to extract crop physiological and ecological information
from remote sensing data [10], it is also important in analyzing imaging spectrometer data. Its main
purpose is to enhance information contained in the spectral reflectance data by extracting changes
caused by vegetation characteristics (e.g., chlorophyll and the leaf area index) while minimizing the
geometric effects of soil, atmosphere and solar sensors [11], as well as to improve the utilization
of spectral information and accuracy of the estimation model [12]. Spectral vegetation indices are
mathematical combination of different spectral bands, mainly distributed in the visible (VIS) and
near-infrared (NIR) regions of the electromagnetic spectrum [1]. It is often used to evaluate various
plant leaf properties, such as the leaf area index (LAI), biomass, chlorophyll content or N content.
Most current spectral indices are calculated using a ratio of two or three bands, or the normalized
difference; of these, the normalized difference vegetation index (NDVI) and ratio vegetation index
(RVI) are widely used in the analysis of multispectral information derived from crops, due to their
simple structure and convenient calculation methodology [13,14]. In addition, Broge and Leblanc
(2001) have shown that RVI is the best method for estimating the low-density vegetation leaf area
index (LAI) and canopy chlorophyll density (CCD); they propose a triangular vegetation index (TVI)
sensitive to both chlorophyll content and LAI, based on the area of the triangle with vertices of green,
red and NIR wavelengths. Haboudane et al. (2008) established a triangular chlorophyll index (TCI)
based on the green, red and red-edge bands to estimate the crop leaf chlorophyll content, which is
a modified version of the triangular vegetation index (TVI) because it makes TVI more sensitive to
chlorophyll effects. Hunt et al. (2013) proposed the establishment of a triangular greenness index (TGI)
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based on the red, green and blue bands. This index estimates the chlorophyll concentration in leaves
and the canopy based on the area of the triangle. TGI is indicated to be sensitive to canopy chlorophyll
content and relatively insensitive to LAI [15].

Peanut is a widely cultivated cash crop worldwide and is important in global agricultural
production and trade [16]. Appropriate density and planting methods are the basis for improving the
utilization rate of light energy. Therefore, it is one of the effective ways to increase peanut yield by
selecting appropriate planting methods and density to increase peanut yield. In this study, peanut
was used as research objects, allocated to seven different density treatments. Data for peanut leaves
were determined by field experiments using single-photon avalanche diode (SPAD) and hyperspectral
analysis. A novel method was used to systematically explore and identify sensitive bands, develop
simpler spectral indicators and use hyperspectral sensing information to establish a peanut chlorophyll
estimation model of greater accuracy than other models. Therefore, the aims of this study were as
follows: (i) to explore the effect of planting density on chlorophyll content during the peanut growth
period; (ii) to analyze the spectral characteristics of peanut canopies under different chlorophyll levels;
and (iii) to identify the sensitive spectral bands of peanut chlorophyll and adjust the chlorophyll
spectral estimation model according to different vegetation indices.

2. Materials and Methods

2.1. Test Design

Field experiments were conducted in 2019 at the Zengcheng Teaching and Research Base of
South China Agricultural University (113◦63′23” E, 23◦23′94” N), which is located in a tropical
monsoon climate zone, with annual sunshine of 1945 h, annual average temperature of 20–22 ◦C and
annual precipitation of 1623.6–1899.8 mm. A commercial peanut cultivar (Huayu 25) was used in
the experiment.

Seven treatments, incorporating single, double and triangular seeding at different plant spacings,
were established: single seeding at 8 cm, 10 cm and 12 cm (S1, S2 and S3, respectively); double seeding
at 16 cm, 20 cm and 24 cm (D1, D2 and D3, respectively); and triangular seeding at 20 cm (T).
A randomized complete block design with three replications was used (Figure 1). Each plot consisted
of five rows with row length and in-row spacing of 20 m and 35 cm, respectively. The crops were not
stressed and were grown under the recommended fertilization and irrigation conditions.

2.2. Leaf Spectral Data Collection and Determination of Chlorophyll Content

Spectral data for the peanut leaves were collected using a spectroradiometer (ASD Field
Spec4; Analytical Spectral Devices, Inc., Boulder, CO, Colorado, USA). This device is a full-band
geosynchronous spectrometer with a band range of 350–2500 nm and a sampling interval of 1.4 nm at
350–1000 nm and 2 nm at 1000–2500 nm. Sample sites with no pests and diseases were selected in the
test area at the flowering (April 29), pod-bearing (May 18) and mature (June 15) stages. Leaf spectral
data were collected separately. Two to three samples of peanut plants in each plot were collected and
been brought back to the laboratory for leaf hyperspectral data collection. A whiteboard was used for
calibration before each measurement was taken. Vegetation radiance measurements were made at
five sample sites on each plot, with each result determined from averaging 10 scans at an optimized
integration time. The saved spectrum file contained continuous spectral reflectance in 1-nm steps over
the 350–2500 nm bandwidth region. The spectral reflectance difference of each sample was determined
using ViewSpec Pro software (Analytical Spectral Devices, Inc., Boulder, CO, Colorado, USA) and the
average of the 10 data measured at each sample was used as its spectral reflectance.

Corresponding to the leaf spectrum position, after measuring the spectral reflectance of the selected
peanut plants, the chlorophyll content of their leaves was determined using a portable chlorophyll
meter (SPAD-502 Plus; Minolta Camera Co. Ltd., Osaka, Japan). Two peanut plants were randomly
selected from each density treatment cell. The chlorophyll content of three leaves for each plant was
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randomly determined and the average of each set of six results was taken to be the chlorophyll content
of the related density plot.Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 15 
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2.3. Data Processing

2.3.1. Spectral Data Processing

ViewSpec Pro software was used to convert the original digital number (DN) values recorded
in the spectral data into spectral reflectance values [17]. During the spectral measurement process,
the original spectrum was affected by factors relating to the environment, human influence and
instruments. The spectral curve was collinear and nonlinear, with evidence of data redundancy and
other issues. Practice has shown that if the frequency of the noise is high and its magnitude is not large,
it can be reduced by the smoothing method to a certain extent. In this study, the original spectrum
was smoothed using a five-point weighted average. Practice has proved that this method has a good
smoothing effect and has no effect on the original spectral characteristics.

ri = 0.1Ri−2 + 0.2Ri−1 + 0.4Ri + 0.2Ri+1 + 0.1Ri+2

where Ri(i = 3, 4, . . . , N) is the reflectance of the original spectral curve measurement point and
ri(i = 3, 4, . . . , N) is the reflectance of the five-point smoothed spectral curve measurement point.

2.3.2. Peanut SPAD

The peanut SPAD values were processed according to measurement time and abnormal data
were removed, so that the obtained peanut SPAD values were within a range of 40–70. The data were
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preliminarily processed in Excel (Microsoft Office 365) and the average value of each observation
sample was calculated.

2.3.3. Vegetation Index Selection

We analyzed the vegetation indices used to invert crop chlorophyll in other research [18–23] and
used this information to select four widely used spectral indices: the normalized difference spectral
index (NDSI), ratio spectral index (RSI), difference spectral index (DSI) and soil-adjusted spectral index
(SASI) (Table 1). Across the whole 350–2500 nm spectrum, a vegetation index based on the original
spectrum was constructed by combining two arbitrary bands. The correlation between the vegetation
index and SPAD was analyzed and the contour of the coefficient of determination of the vegetation
index and SPAD was obtained. The band corresponding to the largest decision coefficient was selected
and its combination was substituted into the newly constructed vegetation indices.

Table 1. Names and algorithms of the spectra indices used in this paper.

Hyperspectral Index Formula

Normalized difference spectral index
(NDSI)

Rλ1−Rλ2
Rλ1+Rλ2

Ratio spectral index
(RSI)

Rλ1
Rλ2

Difference spectral index
(DSI) Rλ1 −Rλ2

Soil adjust spectral index
(SASI)

Rλ1−Rλ2
Rλ1+Rλ2+L (1+L)

Rλ1 and Rλ2 refer to the canopy spectral reflectance of 2 wavelengths, L is the soil correction parameter and L = 0.5
is selected in this paper.

2.3.4. Model Construction and Accuracy Test

The regression analysis method was used to construct the model for estimating chlorophyll content
in the peanut leaves. Root mean square error (RMSE), coefficient of determination (R2) and slope values
were used to evaluate goodness of fit between the predicted and observed values. Statistical analysis
and contour mapping of R2 and standard error (SE) values were processed using a self-programming
software (Mathworks, 2000) script. The smaller the RMSE, the higher the model accuracy. The RMSE
calculation formula used is as follows:

RMSE =

√√√√
1
M

M∑
j = 1

(
Y j −X j

)2

where Yj and Xj are the predicted and observed values, respectively and M is the number of samples.

3. Results and Analysis

3.1. Descriptive Statistics of Peanut SPAD Data

A total of 40 sample data were obtained. The cross-validation method was used to randomly
divide the data into two groups, of which 32 were used as training samples for analysis and modeling
and 8 were used as verification samples to verify the accuracy of the model. SPAD values of the
training sample were between 35 and 49.35 (Table 2), including the minimum and maximum values
for the whole sample. The interval distribution was reasonable and degree of variation relatively
large, which is guaranteed in a certain sense the applicable scope of the constructed peanut leaf SPAD
estimation model. The descriptive statistics of the verification sample and training sample were similar,
therefore verifying the reliability of the established model.



Appl. Sci. 2020, 10, 2259 6 of 14

Table 2. Descriptive statistics of peanut canopy single-photon avalanche diode (SPAD).

Sample Number Min Max Mean SD CV

Training sample 32 35 49.35 44.62 3.38 0.0758
Verification sample 8 36.1 43.3 40.1125 2.87 0.7155

Overall sample 40 35 49.35 43.57 3.69 0.0843

3.2. Relationship between Chlorophyll and Spectral Reflectance of the Peanut Leaves

The spectral reflectance curve for peanut leaves chlorophyll is shown in Figure 2. The reflectivity
of peanut leaves is lower in the blue (400–500 nm) and red (650–690 nm) spectral regions. A wide
reflection peak was observed in the green wavelength region, concentrated around 550 nm; the
minimum reflectance at red wavelengths was concentrated around 680 nm. Reflectivity increased
sharply at 680 nm and 750 nm; reflectance reached its maximum value between 750 and 900 nm. In
the red-edge region at 680–750 nm, chlorophyll absorption increased at wavelengths above 700 nm;
reflectance increased at NIR wavelengths, resulting in a sharp rise in reflectance in the red region.Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 15 
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3.3. Relationship between Chlorophyll and Spectral Reflectance in Peanut at Different Densities

3.3.1. Effect of Planting Density on Chlorophyll Content in Peanut Growth Period

Figure 3 shows that, under different peanut seeding densities, chlorophyll content of peanut leaves
during the flowering stage is obviously lower than in the other two growth stages and the peanut leaf
had the highest chlorophyll content in the pod bearing stage, followed by the mature stage. As an
example, for treatment D1 (double grain, 16 cm) measured on May 18, peanut chlorophyll content first
increased and then decreased during the growth period, reaching its maximum in the pod bearing
stage, mainly because peanut plants flourished, the number of leaves increased and leaf area increased
during this stage. As plants reached the mature stage when leaves and stems gradually age and turn
yellow, photosynthesis weakened and chlorophyll content declined.
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For the three single-seeding density treatments (S1, single grain, 8 cm; S2, single grain, 10 cm;
S3, single grain, 12 cm), chlorophyll content in the peanut leaves first increased and then decreased
with decreasing seeding density (Figure 3). Chlorophyll content of peanut under density treatment S2
was the highest, reaching 47.68. Similarly, for the three double-seeding densities (D1, double grain,
16 cm; D2, double grain, 20 cm; D3, double grain, 24 cm), chlorophyll content in the peanut leaves
first increased and then decreased with decreasing seeding density. Peanut chlorophyll content under
density treatment D2 was the highest, reaching 47.76 (Figure 3). These results showed that chlorophyll
content in peanut leaves is affected by too high and too low seeding densities. In the present study,
a single-seeding density of 10 cm and double-seeding density of 20 cm provided the optimal seeding
density and the maximum chlorophyll content. Therefore, employing an appropriate seeding density
is beneficial to the rational regulation of the relationship between individual plants and populations,
the construction of a reasonable population structure and full exploitation of the high yield potential
of crops. When comparing the three different sowing treatments (single-grain, double-grain and
three-point), differences in chlorophyll content between S1 and D1, S2 and D2, S3 and D3, T and D1
were not obvious, because the plot densities were similar. In addition, the similar density of S1 and D1
can better explain the difference between S and D.

3.3.2. Spectral Characteristics of the Peanut Leaves at Different Chlorophyll Levels

There were significant changes in the peanut leaf spectral reflectance at different chlorophyll
levels. As shown in Figure 4, a high correlation was observed between the chlorophyll content and the
original spectrum. Generally, leaf spectral reflectance decreased in the VIS due to the strong absorption
of chlorophyll but increased significantly in the NIR region due to the influence of blade structure
and moisture.
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According to the above results, the leaf chlorophyll content was the highest in S2 when compared
with the other two single-grained treatments (Figure 4). For double-grained treatments, the leaf
chlorophyll content was the highest in D2 (Figure 5). When combined with the original spectral
reflectance curve of the peanut leaves, it was observed that differences in chlorophyll content had a
greater effect on the spectral response of peanut leaves in different bands. The leaf spectrum showed
different trends in different bands with increasing chlorophyll content. The higher the chlorophyll
content of the peanut leaves in the VIS (350–700 nm) and NIR (700–1300 nm) bands, the greater
the reflectivity.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 15 

 

Figure 4. Spectral reflectance curves of peanuts of different plant densities under single seeding 
conditions. 

 Figure 5. Spectral reflectance curves of peanuts of different plant densities under double
seeding conditions.



Appl. Sci. 2020, 10, 2259 9 of 14

3.4. Spectral Indicators and Estimation Models Based on the Original Spectrum

3.4.1. Identification of Sensitive Bands and Construction of Vegetation Indices

The reduced sampling method was adopted for the systematic quantification of all possible
two-band combinations of hyperspectral indices within the full wavelength range (350–2500 nm) [24].
This enabled us to evaluate the relationships between chlorophyll and NDSI, RSI, DSI and SASI
from 350 nm to 2500 nm at 10 nm intervals. According to changing values of R2, we obtained the
contour map for the R2 values of chlorophyll and NDSI, RSI, DSI and SASI across the full wavelength
region, based on the original spectral reflectance. The contour map was then used to identify the
sensitive spectral range with a relatively greater R2. The "hotspots" of high correlation coefficients
between chlorophyll and NDSI, RSI, DSI and SASI were found to be located in the VIS and NIR bands.
The full-wavelength R2 contour map showed the sensitive wavelength ranges for chlorophyll based
on the different indices: NDSI, 515–525 nm and 525–530 nm; RSI, 730–760 nm and 550–590 nm; DSI,
720–780 nm and 570–640 nm; and SASI, 680–780 nm and 560–660 nm. After linear regression analysis,
R2 values were mostly greater than 0.65 and the values for RMSE based on the NDSI, RSI, DSI and SASI
estimation models were all lower than 2.04 in the two spectral ranges of VIS and NIR; this indicated
that the vegetation index constructed by these bands had a good correlation with the chlorophyll value
for peanut.

In addition, accurate sampling of these sensitive spectral regions yielded more detailed contour
maps of R2 values for chlorophyll and either NDSI, RSI, DSI or SASI at 1 nm intervals. The optimum
vegetation indices were obtained from the R2 and RMSE values: NDSI group, NDSI (R520, R528)
(R2 = 0.66); RSI group, RSI (R748, R561) (R2 = 0.65); DSI group, DSI (R758, R602) (R2 = 0.68); SASI group,
SASI (R753, R624) (R2 = 0.69) (Figure 6).Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 15 
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3.4.2. Model Construction and Accuracy Test

Using the determined vegetation index as an independent variable, the peanut leaf SPAD values
were linearly regressed to construct an estimation model for the leaf chlorophyll (Figure 7). The linear
regression models based on the different indices were as follows: NDSI (R520, R528), R2 (0.66), RMSE
(2.002); RSI (R748, R561), R2 (0.65), RMSE (2.032); DSI (R758, R602), R2 (0.68), RMSE (1.94); SASI (R753,
R624), R2 (0.68), RMSE (1.88). These results showed that the linear model can achieve good prediction
accuracy (R2>0.65, RMSE<2.04). By comparing R2 and RMSE, the optimal single variable estimation
model for each vegetation index was obtained.
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4. Discussion

Peanut is an important cash crop, with an important role in ensuring food supply and security.
How to improve its yield per unit area has been a constant focus of peanut research. Traditional
cultivation methods aiming to ensure peanut production and emergence rates have set excessive
seeding densities, resulting in decreases in peanut yield. Seeding density is not only related to
the physiological form of the plant, but also affects crop yield. Some studies have suggested that
low-density peanut planting facilitates good growth and chlorophyll content, while high-density
planting results in poor growth and a decrease in the overall photosynthetic performance of leaves [25].
In contrast, a low planting density creates a large light-receiving area per individual plant, which is
conducive to photosynthesis, but the lower number of groups leads to greater light leakage, which is
not conducive to use of light energy.

Leaf chlorophyll content is an important indicator of plant nitrogen status. Changes in leaf
chlorophyll lead to broad band differences in leaf reflectance and transmission spectra. However,
the transition from the leaf to canopy spectrum is complex; canopy spectral reflectance is strongly
affected by changes in chlorophyll concentration and by other factors (e.g., canopy architecture,
soil background and LAI), making chlorophyll retrieval at the canopy level complicated and challenging.
Hyperspectral data provide a large number of adjacent narrow-band leaf reflectivity. However, the lack
of an effective means for analyzing hyperspectral information makes it difficult to conduct systematic
quantitative analysis of hyperspectral indices on all possible two-band combinations (from 350 nm to
2500 nm), precise feature bands indicating biochemical components in plants might therefore not be
fully explored and utilized [26]. Therefore, the development and optimization of techniques such as a
spectral vegetation index that requires only limited data is of great significance and practical value
in monitoring the physiological and ecological parameters of plants [27]. Studies have shown that
the paired spectral vegetation index, a method that minimizes interference from LAI and background
reflectance, can be used to estimate leaf chlorophyll concentrations [28]. Chlorophyll absorbs intense
radiation in the VIS spectrum (400 nm to 700 nm) and is most obvious in chlorophyll a at wavelengths
of 430 (B) and 660 (R) nm and chlorophyll b at wavelengths of 450 (B) and 650 (R) nm. In contrast,
plants have higher reflectivity in the NIR region (700 nm to 1300 nm) due to the effects of leaf density
and canopy structure. This sharp contrast between red and NIR reflectance behaviors in the spectrum
is the motivation for developing spectral indices based on the ratio of reflectance values in the VIS and
NIR regions [29]. The spectral vegetation index uses the characteristic shape of the green vegetation
spectrum by combining the low reflectance in the VIS spectrum with the high reflectivity in the NIR
spectrum. These combinations can be ratios of two or more bands, slopes or ratios of other formulae
that minimize the effects of changes due to external factors and maximize sensitivity to variables of
interest [30]. Therefore, the main purpose of the spectral vegetation index is to enhance information
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contained in the spectral reflectance data by extracting changes caused by vegetation characteristics
(such as LAI, vegetation coverage) and to minimize the effects of soil, atmosphere and solar sensors [1].

Our objectives were to investigate the spectral behavior of the relationship between reflectance
and chlorophyll content and to develop a technique for non-destructive estimation of chlorophyll
in leaves with a wide range of pigment content and composition, using reflectance in a few broad
spectral bands [19]. The selection and exploration of new key bands is an important technology
in the field of vegetation remote sensing and has been applied in several cases [31]. We selected
several widely used vegetation indices covering the whole wavelength range, established a correlation
model between leaf chlorophyll and spectra and determined that the VIS and NIR bands provide the
best sensitivity in identifying chlorophyll. Based on this optimal sensitivity range, we refined the
sampling interval and constructed the spectral vegetation index most sensitive to peanut chlorophyll.
Finally, the regression model was established, and the accuracy evaluated. The results confirmed that
the vegetation index constructed in this paper is a good predictor of chlorophyll. Non-destructive
monitoring of physiological parameters, such as chlorophyll, in peanut plants is of great significance
for monitoring crop growth in agricultural production systems and in the accurate diagnosis and
management of nutrient indicators, such as nitrogen.

5. Conclusions

In this study, four new sets of sensitive spectral indices were identified: NDSI (R520, R528),
RSI (R748, R561), DSI (R758, R602) and SASI (R753, R624); these generated corresponding regression
models (y = −78.33x + 17.6, y = −17.29x + 69.8, y = −160.5x + 57.1, y = −132.6x + 56.5). Some research
results show that the non-destructive estimation of leaf chlorophyll content in the green and red-edge
spectral range is optimal [32,33], which is consistent with the results of our study. At the same time,
the model established in our study is simple and practical and can be used to estimate the chlorophyll
content of the peanut leaves. However, it is worth noting that since our study was only carried out in
one ecological region, further experimental verification using plant species in different geographical
and climatic regions and under different measurement conditions is necessary if these spectral indices
are to be developed as a universal tool for vegetation remote sensing [34]. This will increase their
value in the non-destructive monitoring and accurate diagnosis of crop chlorophyll content during
peanut growth.
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