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Abstract: Optical Character Recognition (OCR) is an indispensable tool for technology users nowadays,
as our natural language is presented through text. We live under the need of having information at
hand in every circumstance and, at the same time, having machines understand visual content and
thus enable the user to be able to search through large quantities of text. To detect textual information
and page layout in an image page, the latter must be properly oriented. This is the problem of the
so-called document deskew, i.e., finding the skew angle and rotating by its opposite. This paper
presents an original approach which combines various algorithms that solve the skew detection
problem, with the purpose of always having at least one to compensate for the others’ shortcomings,
so that any type of input document can be processed with good precision and solid confidence in the
output result. The tests performed proved that the proposed solution is very robust and accurate,
thus being suitable for large scale digitization projects.

Keywords: deskew; skew angle detection; automatic document orientation; computer vision; OCR
preprocessing; image document analysis

1. Introduction

Whenever documents are manually scanned, a human-made orientation error almost always
occurs, preventing the Optical Character Recognition (OCR) engine from properly detecting the scanned
content. Thus, we can say that almost all documents that are manually scanned are also skewed.

The problem of skew detection and correction is not a new one [1]. In order to ensure a correct
layout analysis of image documents, or to have a high accuracy in the OCR process output, the input
images must be skew free, otherwise the rows and columns (in the case of multi-column documents)
might not be detected properly [2].

There have been numerous attempts to solve the deskew [3] problem, occasionally accompanied
by text orientation detection [4,5]. The proposed approaches range from projection profiling [6],
neighborhood clustering [7,8], Hough transform applied on different selected key-points [9–11],
Fast Fourier Transform (FFT) [12], Principal Component Analysis (PCA) [13], Radon transform [14],
vertical projections [15], morphology [16], machine learning approaches [17], etc. They obtain robust
and accurate results in most cases considering that the elements and properties they try to detect and
measure are present in the input image. However, this is not always the case. Projection profiling
and neighborhood clustering need consistent lines of paragraph-like text, the former working best
in single-column layouts. They do not work well if significant chunks of text are not available.
Hough transform may well detect table-like structures and baseline dominant text orientation. If tables
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or line-like separators are not present and the available text is not bottom-aligned, this method will fail
or, even worse, will return erroneous results. FFT may assist in obtaining a dominant alignment angle
in the input image, no matter what the content of the image is, but its uptime is no better than the
aforementioned methods. The main idea that derives from here is that one can develop a voting scheme
using multiple experts’ decisions and confidence values [18–20], thus compensating the shortcomings
or erroneous decisions of one approach with the benefits of another.

The current paper aims to offer an application-oriented, practical solution with a robust real-world
behavior and not just a general framework, theoretically-oriented, based on multiple experts’ decision,
alternative for classical approaches. Three skew detection algorithms were chosen to cover all the
facets of the skew-related problems: the difficulty of finding the text orientation due to the shortage of
aligned texts, the difficulty in finding lines and tables which may guide in finding the correct skew,
the difficulty in understanding the image at all (thus the need to analyze it in the frequency domain
instead of the value domain) and not just to exemplify the superiority of a voting-based decision
mechanism over an independent decision.

This paper presents an approach to deskewing documents, designed for general purpose use,
for generic documents that contain different text or geometrical features that may be used in finding a
correct orientation. We combine the outputs of three different algorithms, each one also outputting a
confidence measure in its work. The confidence is used to characterize the candidate for the voting,
the skew angle result computed by each algorithm. The effect of having algorithms of various classes
which operate on different aspects of the input image is that the winner algorithm compensates for the
shortcomings of the other two. An aggregate confidence of the entire solution is also provided, so that
it may be fully integrated into a real-world, mass production digital content producer application.

We will consider that the absolute value of the skew angle will never exceed 10◦, or else the
document is skewed on purpose. It can be any value, as we do not need this limitation in order for the
algorithms to work, but doing this considerably saves execution time. So, we will refer the Skew Angle
Search Space (SASS) to be the interval [−10◦, 10◦].

2. Skew Detection Algorithms

We present three approaches to detect skew, first making use of the frequency domain, and the
other two using spatial domain exclusively.

2.1. Frequency Domain

2.1.1. Mechanism

For tilted pages, near-vertical and near-horizontal lines occur in the frequency domain, due to the
definition of the Fourier Transform and because text documents are composed of mostly vertical and
horizontal sinusoids.

For an image which contains stripes, the Fast Fourier Transform (FFT) [21] yields points which
align in a straight line, passing through the center of the FFT image and perpendicular to the stripes,
as shown in Figure 1.
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Lines in the frequency domain emerge from the patterns of parallel lines of text and horizontal/vertical
separators, including whitespace. The angles of these lines lead to the document skew angle.

The FFT image is binarized with Otsu [22] and then the Hough transform [23] is applied to detect
the dominant lines. Only lines that pass through the center of the FFT image are of interest. The skew
angle is calculated as the angle between each dominant line and the closest axis. A weighted sum
of these lines is then returned. The vertical line represents horizontal stripes in the input image,
which is the information of the text rows, and the horizontal line represents vertical separators,
including whitespace.

2.1.2. Improvements

The FFT image presents the challenge of detecting the dominant lines which represent the
document orientation. It is noisy because of the high-frequency signals generated by text, small
symbols spread across the whole document, images, etc. The FFT image also lacks contrast. These two
shortcomings make it difficult for the Hough transform to identify the dominant lines which give the
document orientation.

We solved these issues by stretching the contrast of the FFT image and then equalizing its histogram,
before Otsu binarization and then feeding it to the Hough transform procedure. These operations help
the binarization to emphasize dominant lines.

We have experimented with various methods of emphasizing the correct dominant lines by
processing both the input image and the FFT image. Empirically, we have come to the conclusion that
there is no need to process the input image in the spatial domain, as its FFT already contains all the
orientation information, visually. Altering it only decays the dominant lines in the frequency domain.
So, we only processed the FFT image.

Due to the noise in the FFT image, despite losing information in the input image, we initially
tried blurring in the spatial domain in order to filter out high frequencies, but quickly discarded it
as it produces fainter dominant lines in the frequency domain. Dilation [24] of the page content also
produces incomplete lines on the FFT. These make the binarization produce gaps in the dominant lines
and make it impossible to detect them using Hough transform.

Then we experimented with blurs in the frequency domain (namely Gaussian blur, box blur,
bilateral filter, and median filter [25]), before binarization, and they partially worked, but none turned
out to be nearly as feasible as contrast stretching followed by histogram equalization, and even when
used together with these two, blurs do not improve accuracy.

In Figure 2, we present the result of contrast stretching and histogram equalization.
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2.1.3. Confidence

We define a confidence metric (Equation (1)), which depends on the detected dominant lines’
strength in an FFT image I. The absolute value of the difference between two parameters: the mean
color of all pixels L within some fixed distance range from the dominant line, and the mean color of
the rest of the image, I\L, the complement of L. We consider black to be zero and white to be one,
so the confidence is also between zero and one. The obtained measure is fine-tuned by being raised to
some positive exponent τ1, since a balance between all algorithms’ confidences will be enforced by
employing a power–law relation, and their corresponding τi will be chosen to ensure equal average
success confidence (i.e., excluding confidence in failure cases).

Con f idence =

∣∣∣∣∣∣∣
∑
{L}i pixelVali
|{L}|

−

∑
{I\L} j pixelVal j

|{I\L}|

∣∣∣∣∣∣∣
τ1

(1)

2.1.4. Projection Profiling Variant

Instead of doing line detection with the Hough transform on the FFT image, we found the skew
angle via the maximization of the variance in the projection space, as described in Section 2.2. We are
interested in the variance with respect to both axes, centered in the middle of the FFT image. This is
shown in Figure 3 with blue.
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Figure 3. Two examples of frequency domain projection profiling, deskewing by variance maximization
for each axis, i.e., finding the angle Θdeskew = argmaxΘ(σ2(H|(Θ)) + σ2(H–(Θ)).

This alternative to the Hough line detection proves to be more stable, though the accuracy is
approximately the same. Therefore, for both benchmarks and the fine-tuning exponent search, we
used projection profiling in the frequency domain.

2.2. Projection Profiling Row Align

2.2.1. Mechanism

The projection profiling method [26] computes histograms on the vertical axis of the document,
accumulating horizontal scanline black pixel count, assuming the text is black on white background.
The algorithm swipes a scanline from the top to the bottom of the document, which writes the number
of black pixels it contains in a buffer, at an index proportional to its current vertical position in
the document.

We refer to this buffer as the histogram or the scanline pixel count buffer. Its size is fixed, is set by
the user and is referred to as the histogram resolution.

The histogram will present the maximum variance when the text is skew-free, because of scanlines
containing complete horizontal slices of lines of text (above the mean), and scanlines completely
containing whitespace (completely below the mean). In other words, the skew angle is computed as
the angle in the SASS which produces maximal scanline variance. The process is illustrated in Figure 4.
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Variance σ2 of the histogram H of size N is given by the equation:

σ2(H(θ)) =
1
N

N∑
k=1

(
Hk − H̃

)2
(2)

where Hk is cycling through all connected components axis-aligned bounding boxes (AABBs),
the number of top or bottom points that lie on the same horizontal scanline at a document height
correspondent to position k in the histogram. As the resolution of H is fixed, k is not equal to the y
coordinate of the points in document space. H̃ is the mean of H and θ is the angle by which the points
are rotated.

2.2.2. Improvements

First, the image is binarized via standard bimodal Otsu thresholding.
Then, we find the connected components in the image and compute their axis-aligned bounding

boxes (AABBs) [27]. The purpose is that we only try to align points of interest into horizontal rows,
landmarks of connected components which represent text symbols.

The top and bottom midpoints of the AABBs’ sides are the only points we need to rotate in order
to find the skew angle. We illustrate the mechanism in Figure 5.
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To avoid computation with elements that are not text symbols, we compute the average width and
height of the AABBs. If an AABB of a connected component is considerably larger than this average,
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we discard it from the rotation phase, as it does not represent a text symbol, or does not belong to a
block of text.

With a small step, such as a tenth of a degree, we compute the variance of the document’s bottom
and top histograms for all angles in the SASS and pick the winner skew angle as the one which gives
the greatest sum of the aforementioned variances.

It is unknown where the global maximum is for the document’s scanline variance as a function of
an angle, so it is safest to search the whole SASS, rather than using some fast convergence heuristic like
a binary search or gradient descent. Unlike them, the brute force search guarantees to find the global
maximum. The search space contains 200 or 300 angle candidates, and the scanline variance for one
angle is computed in less than 100 microseconds, which is due to the fact that we only rotate at most a
couple of thousand points per iteration. Therefore, the brute force search is the most recommended
approach here.

However, by sampling the variance for all angles in SASS, we are able to define a confidence
metric, as described in Section 2.2.3.

2.2.3. Confidence

Let σσ2 be the standard deviation of the variance function σ2(H(θ)) as discussed in Section 2.2.1.
Let σ̃2 be the mean of the histogram variances for all θ ∈ SASS. If θskew ∈ SASS is the angle which
produces the maximum value of σ2, namely σ2(H(θskew)), then we can define the confidence measure
as follows:

Con f idence =

1−
σσ2

σ2(H(θskew)) − σ̃2

τ2

(3)

As the denominator term represents the variance deviation for the found skew angle, we can see
that as it increases, the confidence also increases. This is measuring how much of a difference the shift
in the angle space has made for the variance when θskew maximized it. τ2 is a positive exponent used
for fine-tuning the confidence in the voting process to match the capabilities of the other algorithms.

2.3. Spatial Domain Lines

2.3.1. Mechanism

This method uses horizontal and vertical lines in the document detected via the Hough
transform [28] to compute the skew angle. We look for both vertical and especially for horizontal lines,
which are most likely to be detected within lines of text. The skew angle is computed as a weighted
sum of angles given by the detected lines. For the summation, these angles are weighted by properties
of the lines. The algorithm performs best when there are long lines in the document, such as tables
and separators.

First, the Sobel [29] edge detection filter is applied, in order to empty the interior of the connected
components. This prepares the image for the line detection procedure, eliminating shape filling pixels
from being accounted in the line search procedure.

After we apply the probabilistic Hough transform, we are left with a set of line segments, each
one representing some vertical or horizontal separator, some line of a table, some line in an image,
a line of text, or some line emerging at a random angle from within the placement of the symbols,
randomly cutting through a block of text. The former must have discarded, as it does not represent the
orientation of the document. Thus, we must sort the obtained segments by some criteria. Lines outside
SASS are discarded.

We take all pairs of segments and build an adjacency matrix which contains one in the cell [i,j] if
line i and line j may be considered parallel and zero otherwise. Two lines are considered parallel if the
absolute value of the dot product of their support unit vectors is greater than one minus some small
threshold ε. The computed dot products are also saved in a matrix for later use.
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We partition all segments into disjoint sets, each set containing lines claimed to be parallel, i.e.,
for any pair of lines within a set, the adjacency matrix has a value of 1. For this step, an optimized
disjoint sets union-find data structure is used, with path compression for the find operation and union
by size heuristics. For every resulting set of parallels, we compute an average line, referred to as the
set representative, which gives the orientation of the set.

If all line segments are in one set, then the returned skew angle is equal to the angle between the
representative line of the set and the closest primary axis.

If there is more than one set, we sort the sets descending by the sum of their segments’ length
and pick the first three or four sets (or two, if there are only two sets) as candidates for the horizontal
and vertical axes of the document. If two of the sets have representatives that can be considered
perpendicular, then the representatives will be picked as the document’s horizontal and vertical axes
and the skew angle is computed as a weighted sum of the angles each representative makes with
the closest primary axis. If there are no perpendicular representatives, then the first set in the sorted
candidates is picked as the horizontal or vertical axis of the document, depending on the angle it makes
with the primary axes.

In Figure 6, document orientation axes are shown passing through the center of processed images
(black background), and for some images (e.g., the three rightmost images) only one axis was detected.
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2.3.2. Confidence

The confidence for this algorithm, Equation (4), is computed as a product of one or multiple
accuracy indicators, depending on which case we are in.

For any set of parallel lines, we can compute the average absolute dot-product ãbsDot, of the
support vectors for all possible line pairs within the set. The closer this average is to one, the more
parallel we can consider the lines, so the greater the algorithm’s confidence should be.

If we only have one set A, whose representative
→

A is pronounced as one of the document’s axes,

then only the first factor (ãbsDotA) is returned as the method’s confidence.

For two sets of segments, A and B, whose representatives
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The third factor is responsible for a contribution equal to the ratio between the sum of lengths of
all segments in A and B, which we write as ||A|| and ||B||, respectively, and the sum of lengths of all
segments in all sets, including A and B. This is performed in order to encourage the contribution of
the longer segments in the final confidence formula because longer segments are both more reliably
detected and their support angle is also more accurate.

Con f idence =


(
ãbsDotA·ãbsDotB

)1−

∣∣∣∣∣arccos
(
1−

∣∣∣∣∣→A·→B ∣∣∣∣∣)∣∣∣∣∣
π
2


 ||A||+||B||∑nSets

i=1

∣∣∣∣∣∣Seti
∣∣∣∣∣∣


τ3

(4)

Again, τ3 is a positive exponent used for fine-tuning the confidence to achieve balance and
accuracy in the voting process.

3. Voting

In Section 2, we described three algorithms to compute the skew angle of a document and an
expression for each algorithm to define a confidence level in the work it has done, as a number ranging
between zero and one. In this section, we describe mechanisms that use the result and confidence of
each algorithm to accurately determine the skew angle.

Besides the skew angle, is also offered in the end an aggregate confidence measure of the entire
system. A user of a real-world document image processing application may use this measure to select
only low-confidence (if any) image candidates and inspect them visually. The aggregate confidence
is obtained as analogous to the skew angle for each of the following three voting methods and, as a
result, it will not be further detailed.

3.1. Best First Voting

This method is the most basic, as it picks the result of the algorithm which returned the greatest
confidence measure, completely discarding the others. It performs as expected, masking faults of
algorithms in various situations, but not combining any results if confidences are close.

Another version of this policy is returning a weighted (by confidence) sum (or simply a mean) of
the first two candidates, descending by confidence, while completely discarding the third.

3.2. Weighted Voting

This policy returns a weighted sum of the results returned by the algorithms, where the weights
employed in the voting process are exactly the confidences returned by every skew detection method.
This has the advantage of combining the results to increase the tolerance to errors. However, there must
be a confidence threshold, below which a candidate is discarded. Otherwise, candidates with
low confidence, i.e., an inaccurate result, would hijack the candidates who performed successfully.
The low/high-confidence threshold is empirically set at 50%.

3.3. Unanimous Voting

All candidates are associated with equal weights for the voting process, except the low-confidence
ones (those below a threshold empirically set at 50%), in which case their weight in the voting process
becomes null, as described in Section 3.2.

4. Tests and Results

Our test dataset contains over 300 images representing both documents scanned by hand and
digital documents converted into images. By introducing a random skew angle on each, we were able
to correctly determine the accuracy of the system, knowing a priori what it should return.
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In Table 1, we show a benchmark performed on our digital dataset with introduced skew.
The test dataset contains a large diversity of document formats: from illustrated textbooks to scientific
papers, poetry books, working sheets, art magazines, newspapers, CAD parts and more. It has been
carefully selected such that there is diversity in structure, fonts, content (images/text) and abundance
of orientation information. This dataset has been processed by applying random skew angles to each
image and repeatedly fed to all three algorithms and the voting process while measuring accuracy and
performance for each step. The results shown in Table 1 contain the following:

• execution time on a 64-bit Windows 7 system, i7-8550U CPU, using CPU-only OpenCV 4.01
routines, Microsoft Visual Studio 2017, with full compiler optimization for speed;

• average error, computed as the average absolute value of the difference between the known
introduced skew angle and the skew angle detected by our system, for success cases, i.e., if the
confidence is greater than some threshold (empirically chosen 50%);

• average confidence, taking into account both success and failure cases;
• uptime: the ratio between the number of success cases and the number of total cases.

Table 1. Test results for the proposed skew detection system.

Skew Detection Method Execution
Time

Average
Error

Average
Confidence Uptime

Frequency Domain (FFT-based)* 1451ms 0.218◦ 77% 95%
Projection Profiling Row Align* 1640ms 0.553◦ 77% 94%

Spatial Domain Lines (Hough-based)* 794ms 0.128◦ 82 % 86%
PCA-based** 2224ms 0.396◦ N/A N/A

Radon Transform** 800ms 0.290◦ N/A N/A
Nearest-Neighbor Clustering** 1822ms 0.484◦ N/A N/A

Vertical Projections** 3343ms 0.272◦ N/A N/A
Morphology-based** 2020ms 0.402◦ N/A N/A

Best First Voting* 3908ms 0.111◦ 94% 99%
Weighted Voting* 3908ms 0.266◦ 89% 99%

Unanimous Voting* 3908ms 0.372◦ 75% 99%

Notes: a) The execution times marked with * were obtained using the article’s demonstrator application. b)
The execution times (and the subsequent deskewed images) marked with ** were obtained using the CCS’s
DocWorks 6.8 commercial solution for creating digital libraries [30]. As a result, they should be used only
qualitatively. Also, since the confidence measures are not defined in this case and they were also considered when
measuring the uptime, in these cases no uptime can be provided for comparison.

For fine-tuning the exponent parameters of each algorithm’s confidence, we used the brute force
search method, that is: for every triplet of exponents (τ1, τ2, τ3) ∈ [1−ϕ, 1 + ϕ]3, discrete interval,
we compute the average error for the entire dataset for every voting process. We picked ϕ = 0.8 and
the step between elements in the interval ε = 0.025.

The brute-force search results in the (τ1, τ2, τ3) space are presented in Table 2. Anyway, the system
is not extremely sensitive regarding τ1, τ2, τ3 values, delivering robust results for most combinations
as long as τ1 < τ2 < τ3.

Table 2. Brute-force fine-tuning exponent search results.

Voting Method Frequency Domain (τ1) Projection Profiling
Row Align (τ2)

Spatial Domain
Lines (τ3)

Best First 0.25 1.05 1.21
Weighted 0.26 1.02 1.17

Unanimous 0.28 0.98 1.09

The Section Supplementary Materials contains a reference to the source code and the benchmarking
dataset for this project.
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5. Conclusions

The algorithms backed up for each other in failure cases, resulting in almost 100% uptime.
The failure cases were, in fact, splash pages containing images, with almost no visual orientation
information, such as lines aligned with the document’s primary axes.

The Best First voting method turned out to give the best results.
The average uptime for this voting policy is 99.5%, as only two images, which arguably

do not contain any orientation information, were not deskewed correctly—both images contain
organic paintings.

Having many algorithms attempting to solve the same problem, each performing on a different
aspect of the problem, while being able to estimate a confidence measure of their work, is an optimal
case for running all algorithms and returning a result determined by vote, which is closer to the ground
truth than any of the candidate algorithms.

By fine-tuning the confidences of the candidate algorithms, we obtained a better uptime and
overall accuracy.

The technology presented in this paper was developed and employed in the “Lib2Life- Revitalizing
Libraries and Cultural Heritage through Advanced Technologies” project [31] aimed at both researching
document image techniques suitable for automatic content creation and building of a large repository
consisting from millions of pages of books, newspapers and journals with diverse content and spread
across multiple time periods. Due to the large variations and unpredictability in the processing input,
a strong need for algorithms that do not require user supervision emerged.

The voting-based deskew method was validated on a very demanding dataset, encompassing
all kinds of complex layouts, tables, alignments and illustrations. Moreover, it was successfully
used until now in the first part of the document image processing in the aforementioned project, on
a little more than half a million pages and the results were visually examined by dense sampling.
Very encouragingly, no erroneous rotations of the pages were reported, thus one can easily conclude
that the proposed approach is indeed a very robust one, ideally suited for the mass production of
digital content.

Supplementary Materials: The source code and the benchmarking dataset for this project may be found at the
following link: https://gitlab.com/adix64/document-deskewer.
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