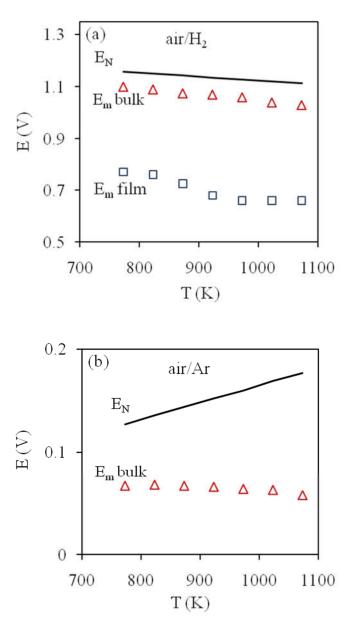
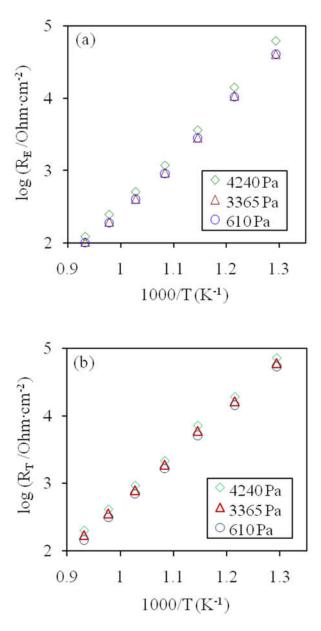

Supplementary Data

Transport Properties of Film and Bulk Sr_{0.98}Zr_{0.95}Y_{0.05}O₃₋₈ membranes


Adelya Khaliullina¹, Liliya Dunyushkina^{1,*} and Alexander Pankratov¹

- ^{1.} Institute of High Temperature Electrochemistry, Ekaterinburg, 620137, Russia; adelia01@mail.ru (A. K.); A.Pankratov@ihte.uran.ru (A. P.)
- * Correspondence: lidung@list.ru



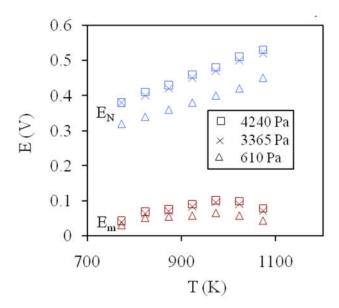

Figure S1. The area-specific values of R_E (a) and R_T (b) as functions of inverse temperature for the gas concentration cells air/ H_2 and air/ A_T with the bulk and film SZY membranes.

Figure S2. Temperature dependences of E_m and E_N for the gas concentration cells: (a) air/ H_2 , (b) air/Ar.

Figure S3. The area-specific values of R_E (a) and R_T (b) as functions of inverse temperature for the gas concentration cells pH_2O' , Pt/SZY/Pt, pH_2O' in air at $pH_2O' = 40$ Pa and $pH_2O'' = 4240$, 3365 and 610 Pa.

Figure S4. Temperature dependences of E_N and E_m for the gas concentration cell pH_2O' , Pt/SZY/Pt, pH_2O'' in air at $pH_2O' = 40$ Pa and $pH_2O'' = 4240$, 3365 and 610 Pa.