

  applsci-10-02223




applsci-10-02223







Appl. Sci. 2020, 10(7), 2223; doi:10.3390/app10072223




Article



Shape Design Optimization of a Robot Arm Using a Surrogate-Based Evolutionary Approach



J. C. Hsiao 1,2,*[image: Orcid], Kumar Shivam 2, C. L. Chou 2 and T. Y. Kam 1





1



Department of Mechanical Engineering, National Chiao Tung University, No. 1001, University Road, Hsinchu 30010, Taiwan






2



Precision Machinery Research & Development Centre (PMC), No. 27, 37th Road, Taichung Industrial Park, Taichung 40768, Taiwan









*



Correspondence: jchsiao.me01g@nctu.edu.tw







Received: 19 January 2020 / Accepted: 17 March 2020 / Published: 25 March 2020



Abstract

:

In the design optimization of robot arms, the use of simulation technologies for modeling and optimizing the objective functions is still challenging. The difficulty is not only associated with the large computational cost of high-fidelity structural simulations but also linked to the reasonable compromise between the multiple conflicting objectives of robot arms. In this paper we propose a surrogate-based evolutionary optimization (SBEO) method via a global optimization approach, which incorporates the response surface method (RSM) and multi-objective evolutionary algorithm by decomposition (the differential evolution (DE ) variant) (MOEA/D-DE) to tackle the shape design optimization problem of robot arms for achieving high speed performance. The computer-aided engineering (CAE) tools such as CAE solvers, computer-aided design (CAD) Inventor, and finite element method (FEM) ANSYS are first used to produce the design and assess the performance of the robot arm. The surrogate model constructed on the basis of Box–Behnken design is then used in the MOEA/D-DE, which includes the process of selection, recombination, and mutation, to optimize the robot arm. The performance of the optimized robot arm is compared with the baseline one to validate the correctness and effectiveness of the proposed method. The results obtained for the adopted example show that the proposed method can not only significantly improve the robot arm performance and save computational cost but may also be deployed to solve other complex design optimization problems.
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1. Introduction


Nowadays, facing the megatrend for smart factories of the future, industrial robots play a greatly important role not only in traditional pick-and-place tasks but also in many of the precision applications such as assembly, welding, and machining. These robots, in order to satisfy the requirements of new applications, must be designed to meet high end/performance requirements, i.e., high accuracy and high efficiency. The design process of an industrial robot arm with high speed performance is still challenging due to the interconnecting roles of adjacent joints, which may significantly impact the efficiency and stability of the robot arm. For example, the deformation and residual vibration of the robot arm will cause its positioning accuracy to decrease, and the robot arm mass and moment of inertia will affect its dynamic behavior, such as controllability and efficiency; moreover, these factors generally are in conflict with each other. Therefore, design optimization of robot arms is becoming increasingly important.



With the advance of digital twins in smart factories, the use of simulation technologies to address computation-expensive and multi-objective optimization issues has become an important research topic. Design optimization is the process of establishing the right combination of product parameters that satisfy project requirements [1]. Structural optimization can be separated into three main categories: size, shape, and topology optimization [2]. In a structural design process, a topology optimization is first performed to obtain an initial sketch of the optimal configuration of the structure; the suggested configuration is interpreted to draw an engineering design, and this design is then optimized using detailed sizing and shape optimization methods together with realistic design constraints. These methods are not only able to optimize the robot arm but can also be extended to the design of the whole robot system. For the purpose of improving the performance of industrial robots, a number of research works have been carried out with respect to the related topics in recent years. Some works focused on the selection criteria of the servo motor and gearbox for optimizing the servo drive system [3,4]. A few reports studied new control algorithms to obtain high speed performance, such as residual vibration suppression [5]. Certain researchers used the finite element method (FEM) to optimize robot structure. Roy et al. used the finite element method to design a high-performance robot arm and reported experimental structural data to support the design of the robot arm [6]. Park and Asada studied the design optimization of the mechanical structure and control of a two-link robot for which the weight and inertia of the robot arm were minimized to attain high-speed positioning [7]. Sahu and Choudhury used the FEM of the ANSYS workbench to optimize the performance of a six-axis industrial robot via stress, modal, and dynamic behavior analyses [8,9,10]. Pupăză et al. also used an FEM-based optimization technique to study the influence of the static and dynamic behaviors on the positioning accuracy of robots [11]. Chen et al. analyzed the static strength and stiffness of a two-link robot and then used a topology optimization method to design the structure for quality improvement [12]. In the above studies, it was revealed that CAE together with FEM-based design optimization can be an important tool for attaining structural performance improvement in real-world engineering applications. However, for cases with large design space or the requirement of attaining numerous design samples, the high computational effort of analysis may hinder the implementation of the conventional FEM-based design optimization methods in the design optimization process. On the other hand, only a few researchers have studied the multi-objective and computational inefficiency problems related to the design optimization of industrial robots.



The response surface method (RSM), also known as the surrogate model or approximation model, can be used to improve the design efficiency. In RSM, a set of sample data (obtained by running the computer code/simulation) are used to build the surrogate model, which are sufficient to predict the output at untried points within the design space. Because the predictions obtained from a surrogate model are generally much more efficient than those from numerical analysis code, the computational cost associated with each search in RSM is therefore negligible. Surrogate-model-based optimizations are of particular interest for engineering design when coupled with high-fidelity and expensive analysis codes, such as computation fluid dynamics (CFD) and computational structural dynamics (CSD) [13]. In many studies, RSM together with design of experiment (DOE) was used to construct the surrogate models and find the best-fitting solutions [14,15,16,17]. Some researchers applied the adaptive RSM to search for the global optima of complex mechanical systems [18,19,20]. However, in these cases, they did not consider the situation of multi-objective functions with conflicting properties [21] which may lead to being trapped into a local optimum solution during the design optimization process.



In this paper, the shape design optimization of robot arms for high speed performance via the surrogate-based evolutionary approach is investigated. First, based on the CAD model of a robot arm, the design variables, constraints, and objective functions of the optimization problem are defined. Next, a quadratic RSM together with Box–Behnken design (BBD) and FEM is used to construct the surrogate model. In solving the optimization problem, the multi-objective evolutionary algorithm by decomposition (DE variant) (MOEA/D-DE) technique which includes evolutionary operators of selection, recombination, and mutation is employed to address the multiple objective functions with conflicting features and search for the Pareto-optimal sets of global optimization. The weighted sum method is finally used to determine the best candidate among the generated population samples through fitness checking. The proposed paper is able to make two significant contributions: one is to provide a surrogate-based evolutionary optimization approach to deploy in the robot arm design optimization process to obtain higher performance and efficiency, as well as to reduce computational cost; the other one is to solve the shape design optimization problem of robot arms considering multiple, conflicting objectives for higher accuracy and controllability simultaneously.



The rest of the paper is organized as follows. The techniques for robot arm analysis and design, which involve the target performance to be achieved and the framework of the proposed surrogate-based evolutionary optimization (SBEO) method, are described in Section 2. The procedure for the optimal shape design of a specific robot arm is given in Section 3. Some optimal-design-related simulation results, such as Pareto front history, improvement of performance, computational efficiency, and sensitivity analysis, are given in Section 4. Section 5 presents a discussion on the advantages, limitations, and future works of the proposed method.




2. Techniques for Robot Arm Analysis and Design


2.1. Architecture of the Industrial Robot


The PMC6VA030 robot, the six-axis vertical articulated industrial manipulator shown in Figure 1, is fabricated by PMC, Taiwan. The maximum payload and reach of the robot are 30 kg and 1800 mm, respectively. The architecture of the robot is composed of six revolute joints and six robot arms. Each robot arm is driven by a joint module which consists of a servo motor, reduction gear, and encoder.




2.2. Problem Description of the Robot Arm


The accuracy, controllability, and efficiency are important performance aspects of a high-speed industrial robot. Due to the robot arms playing roles of interconnection between the adjacent joints, their characteristics are able to influence the system performance very well. When the power capacities of the joint modules are fixed, the shape dimensions of the robot arms are able to significantly affect the robot performance. Therefore, shape design optimization of the robot arms to obtain the minimum weight, maximum stiffness, and minimum deformation must be accomplished [22]. Figure 2a is a detailed engineering drawing of the baseline 2nd robot arm which includes all of the shape dimensions in it. A schematic view of the proposed 2nd robot arm with the chosen design variables is shown in Figure 2b. The unspecified dimensions on this sketch are all the same as those in Figure 2a and will not be optimized in this article under real engineering consideration.



2.2.1. Objective Functions


In this paper, the weight (W), moment of inertia (J), and deformation (D) of the 2nd robot arm were chosen as tri-objective functions. The mathematical model of the multi-objective optimization problem is as follows [23]:


   minimize       F   ( X )  =    (  W  ( X )  ,    J   ( X )  , D  ( X )   )   T   



(1)






     subject   to       h   i   ( X )  = 0        i  = 1 , 2 , … , p  



(2)






       g   j   ( X )  ≤ 0        j  = 1 , 2 , … , q  



(3)






     x L  ≤ X ≤  x U         X  =    (   x 1  ,  x 2  , … ,  x n   )   T   



(4)




where F(X), h(X), and g(X) are, respectively, the objective functions and the equality and inequality constraint functions; X ∈ Rn is a vector of n design variables; p and q are the numbers of constraint functions.



The multi-objective optimization problem can be expressed as a single equation via weighted sum and normalization:


     minimize       F   j   ( X )  =  w 1  ×    Min   W     W j    +  w 2  ×    Min   J     J j    +  w 3  ×    Min   D     D j     



(5)




where j = 1, 2, 3, …., ps, and ps is the population size. w1, w2, and w3 are weighted factors for preference criteria.




2.2.2. Design Variables


Several independent geometric parameters of the 2nd robot arm, including shape dimension initial point Hi, position of inflection point Hm and Vm, radius of opening Rh, and arm thickness Ta, were chosen as the design variables. The ranges of the design variables in the evolutionary models are shown in Table 1.



For statistical calculations, Xi is related to xi via the following equation:


    X  i  =    x i  −  x 0     (   x  iU   −  x  iL    )  / 2      i  = 1 , 2 , 3  



(6)




where Xi is the coded value of a dimensionless design variable which can be easily calculated; xi is the actual value of a design variable; x0 is the actual value of a design variable at the center point; and xiU and xiL are the upper and lower bounds of a design variable.




2.2.3. Design Constraints


The above objective functions are subject to design constraints which are related to the geometry and mechanical behavior of the robot arm.




	
The first set of constraints is the limitation of the feasible design region for design variables based on Table 1.


   x  iL   <  x i  <  x  iU    



(7)







	
The second set of constraints considers the relationship between the radius Rc of the circumcircle and design variables Hi, Hm, and Vm. According to the formulation of the circumcircle, the coordinates (x, y) of the circumcenter of a triangle and its radius Rc can be obtained as follows.


  x =    |       H i 2  +   155  2      155    1       H m 2  +  V m 2       V m     1        770  2  +   125  2      125    1     |    2 ×  |       H i      155    1       H m       V m     1      770     125    1     |        mm    ,       y  =    |       H i       H i 2  +   155  2     1       H m       H m 2  +  V m 2     1      770       770  2  +   125  2     1     |    2 ×  |       H i      155    1       H m       V m     1      770     125    1     |       mm    



(8)






   R c  =      (  x −  H i   )   2  +    (  y − 155  )   2         mm   



(9)




Hence, the constraint involving y should be


   g 1   ( x )  =  R c  − y + 80 < 0     mm .  



(10)







	
One constraint is related to the weight-to-stiffness ratio (W2SR), which is a measure of material mass efficiency used to provide unit resistance to elastic deformation. An improved W2SR enables the realization of longer spans without incurring a significant cost penalty, which is expressed in terms of material usage and deflections due to weight [24]. The W2SR computed from the weight and stiffness of a robot arm can be expressed as


  W 2 SR = f  (  W , D ,  F y   )  =    (  W × D  )     F y         (  u m  )   



(11)




where Fy is the applied force at the distal-end joint.



	
Another constraint is related to the weight-to-moment-of-inertia ratio (W2JR), a measure of a structural property. A higher W2JR will push resonance and anti-resonance peaks to lower frequencies, shrinking the operating bandwidth of the machine. The measure of W2JR in this paper is obtained as


  W 2 JR = f  (  W , J  )  =  W J  (  m 2  ) .  



(12)












The above two measures of W2SR and W2JR are both “the smaller the better” when the design optimization of robot arms is targeting higher accuracy and controllability. Two additional constraints imposed on the objective functions are as follows:


   g 2   ( x )  = W 2 SR − 12 < 0 ,  



(13)






   g 3   ( x )  = W 2 JR − 8 < 0 .  



(14)









2.3. Performance Analysis Using a CAE Solver


The performance of the robot arm was analyzed using a CAE solver in this paper. The model of an industrial robot built using Autodesk Inventor 3D CAD software was imported into the ANSYS MechanicalANSYS Parametric Design Language (APDL )FEM solver in the “*.STP” format. The material of the robot arm is aluminum 6061 with modulus of elasticity E = 69 GPa, density ρ = 2700 kg/m3, and Poisson’s ratio ν = 0.3, applied force at the distal-end joint FY = 1300 N, moment MX = 277 Nm, and MZ = 512 Nm.



The 2nd robot arm, together with the subsequent arms and distal-end joint, is shown in Figure 3a. All the subsequent arms are treated as point masses (also known as remote forces) which are used to transfer the force at the distal-end joint (right side) to the 2nd robot arm. Consequently, a resultant force FY and two resultant moments MX and MZ are applied to the 2nd robot arm as shown in Figure 3b.



The FEM mesh of the 2nd robot arm is shown in Figure 4a, and the supporting boundary is placed at the proximal end (left side) of the robot arm with the harmonic reducer treated as a fixed connection as shown in Figure 4b. The FEA results are shown in Figure 5.




2.4. The Proposed SBEO Approach


2.4.1. The Framework and Procedure


In this paper we propose a surrogate-based evolutionary optimization (SBEO) method which integrates surrogate models with the multi-objective evolutionary algorithm based on decomposition (MOEA/D-DE). A conceptual sketch is shown in Figure 6. The evolutionary optimization is carried out in the Python programming language using the “PyGMO” open-source optimization library. Herein, we will only give a brief introduction, and the reader can refer to [25,26] for more details.



The procedure of the proposed SBEO method is outlined in the following steps:




	(1)

	
First, a DOE plan is built based on the Box–Behnken design, and initial sample points are chosen according to the plan matrix. The objective (performance) functions are then analyzed and evaluated using the ANSYS solver following the baseline design CAD model of the robot arm.




	(2)

	
A quadratic polynomial regression model is defined as the surrogate model for the objective functions based on the sampled dataset. The model parameters are then solved by inverse matrix transformation using Python’s numpy library’s “Polynomial.fit” function.




	(3)

	
The surrogate model is used to search for the optimal solution of the objective subjected to the constraint functions in the design space using the MOEA/D-DE algorithm.




	(4)

	
The weighted sum method, in which each weighting factor is chosen according to the importance or preference of each objective, is then used to determine the best candidate among the generated population samples. These candidates are used to evaluate the fitness with the termination conditions given in Equations (15)–(17). The reduced design space is thereby found to update the surrogate model.




	(5)

	
Steps 3 and 4 are repeated until one of the termination conditions is satisfied.










2.4.2. Criteria of Model Renewal and Termination


The first termination condition is about the distance between samples and difference of their objective responses:


   ‖  x  new   −  x  best   ‖  /  ‖  x  best   ‖  ≤  ε 1  ,  



(15)






   ‖  y  new    −  y  best   ‖ /  ‖  y  best   ‖  ≤  ε 2  .  



(16)







The second one is about the maximum number of affordable expensive function evaluations:


  N ≤  N  max   .  



(17)







In general, if one of the preceding conditions is reached, the optimization is terminated [27].



According to the main effect analysis of DOE in obtaining the sensitivity of design variables, a selected reduced design space is used to renew the RS models. When one of the termination criteria given in Equations (15)–(17) is satisfied, the iterations for model renewing will stop.






3. Shape Design Optimization of the 2nd Robot Arm


3.1. Design Procedure of RSM with BBD


The design procedure of the response surface method in association with Box–Behnken design is as follows:




	(1)

	
Identify the definition and the value of each variable;




	(2)

	
Create a Box–Behnken design matrix;




	(3)

	
Define a polynomial regression model;




	(4)

	
Set up the X-Table in design of experiment (DOE);




	(5)

	
Convert X to physical values x = mean of x + X × standard deviation of x (σx);




	(6)

	
Assess y using FEA and the CAD model;




	(7)

	
Compute the approximations of mean of y and range of y for scaling Y;




	(8)

	
Convert y to scaled Y: Y = (y−mean of y)/(range of y/2);




	(9)

	
Solve beta coefficients;




	(10)

	
Compare model y = [x] × {beta Coefficient} with analytical (“exact”) y for validation.










3.2. Construction of the BBD Matrix


Box–Behnken design is a rotatable second-order design based on three-level incomplete factorial designs, which can decrease the number of experiments to reduce laboratory work. A detailed description of the method can be found in [28]. Herein, a three-factor and three-level Box–Behnken design matrix with 46 runs was chosen as the basic form of the RSM. The Model-3 case is shown in Table 2.




3.3. Formulation of the RS Regression Model


The response surface method is used to construct a suitable approximation of the true functional relationship between a dependent variable (the response) and a vector of independent variables. The response is generally evaluated experimentally or analyzed using numerical simulation [29].



A quadratic regressive equation was chosen to be the model of the robot arm, as shown below:


  Y =  β 0  +   ∑   i = 1  n   β i   x i  +   ∑   i = 1   n − 1     ∑   j = i + 1  n   β  i j    x i   x j  +   ∑   i = 1  n   β  i i    x i 2  + ε  



(18)




where Y is the response or performance function, xi, xj are the decision variables, βo is the offset term, βi represents the linear term, βii denotes the quadratic term, βij denotes the interactive term, and ε is the statistical error. The relationship between the coded and real variables is described in Equation (8). The values of β are obtained from Equation (19) using inverse matrix transformation by Python’s numpy library’s “Polynomial.fit” function as below:


  β =    (   X T  ∗ X  )    − 1   ∗  X T  ∗ Y .  



(19)








3.4. Calculation of the Coefficients of the RS Model


The coefficients of different surrogate models obtained via Equation (18) and the real variables obtained by the transformation of the coded variables are shown in Table 3.




3.5. Validation of the RS Model


In statistical analysis, the coefficient determination of R2 [30] is a measure used to assess how well a model can explain and predict outcomes. It is also commonly known as “R-squared”, to be used as a guideline for measuring the accuracy of the model. It ranges from 0 to 1 and will be closer to 1 when the model is more precise. Joglekar and May [31] suggested that the value of R2 for the best-fitting model should be at least 0.8. According to each DOE matrix, the obtained model is able to produce a predicted response (called Y_Model). The analyzed response produced by the CAE solver is called Y Exact. If these two values are equal, the red points in Figure 7 will lie on the diagonal line. The R2 values of W, J, and D models being, respectively, 0.9875, 0.9865, and 0.9229 mean that the surrogate models evaluated in this study can be used to explain the W, J, and D very well.




3.6. Multi-objective Evolutionary Optimization


The use of MOEA/D-DE algorithm for solving multi-objective optimization in robot arm design allows us to find the Pareto front and the corresponding optimal parameter sets. The surrogate models in Table 2 were substituted into the MOEA, MOEA/D-DE operators with the adoption of the following parameters:




	(1)

	
Generations = 300;




	(2)

	
Weight generation = grid → method to generate the weights;




	(3)

	
Decomposition method = Tchebycheff → method used to decompose the objectives;




	(4)

	
Neighbor = 20 → size of weights neighborhood;




	(5)

	
Crossover parameter = 0.9;




	(6)

	
Differential evolution parameter = 0.5;




	(7)

	
Distribution index = 20 → used for polynomial mutation;




	(8)

	
Real b = 0.9 → chance that the neighborhood is considered at each generation, rather than the whole population (part of the diversity preservation mechanism);




	(9)

	
Limit = 2 → number of copies reinserted in the population (part of the diversity preservation mechanism);




	(10)

	
Preserve diversity = True → diversity preservation mechanisms.









We also set the preference criteria shown in Equation (5) as w1 = 0.4, w2 = 0.35, w3 = 0.25 and in Equations (15) and (16) as ε1 = ε2 = 5%. A flowchart of the MOEA/D-DE algorithm for multi-objective optimization is shown in Figure 8.





4. Simulation Results


The optimization problem stated in Equations (1)–(4) for the optimal shape design of the 2nd robot arm was solved using the proposed method. The results related to the optimal design are given in the following to illustrate the effectiveness and feasibility of the proposed method.



4.1. Pareto Front History


In solving a multi-objective optimization problem, a solution that has one or several objective functions that are impossible to further optimize while other objective functions are not deteriorating is called “Pareto optimal” [32]. In this case, the Pareto front history of MOEA is plotted in Figure 9, and it is obvious that the solution started to converge at the 10th generation of MOEA.




4.2. Weighted Sum History


The multi-objective optimization problem of Equation (5) was evaluated to obtain the weighted sum result. The objectives and design variables in different models and generations according to the preference criteria on the optimal candidate in each generation of MOEA are shown in Figure 10a and Figure 10b. Optimal values for W of 33.02 kg, J of 6.3328 kg.m2, and D of 0.0491 mm were obtained for Hi = 198.81 mm, Hm = 549.99 mm, Vm = 100.07 mm, Rh = 60.00 mm, and Ta = 90.13 mm.




4.3. The Improvement of Performance


The predicted optimal parameter sets for the models of the 2nd robot arm obtained in the SBEO process were analyzed using ANSYS to obtain the responses of the selected objectives, which were then compared with those of the baseline design. The results of different models are shown in Table 4 for comparison. According to the data, the first design (Model-1) greatly improved the deformation objective, but showed no significant improvements for the other objectives. In the renewal design Model-3, the objective W was decreased by 16.1%, J was decreased by 22.8%, and D was decreased by 20.3%; optimal values of W = 33.08 kg, J = 6.4906 kg.m2, and D = 0.0513 mm were obtained for Hi = 198.81 mm, Hm = 549.99 mm, Vm = 100.07 mm, Rh = 60.00 mm, and Ta = 90.13 mm. The results reveal that our proposed method is able to solve this real engineering optimization problem, and its effectiveness is thus validated.




4.4. The Improvement of Computational Efficiency


A computational efficiency comparison between the use of surrogate models and the use of ANSYS is shown in Table 5. If ANSYS is used, the computational time for a single configuration is 30 s. We set the computation of each configuration as a sequential process (computing one configuration at a time) performed in a single computer (no cluster computing). It is feasible to compare the computational cost of each model. The results of the comparison show that the computational cost of the proposed method is significantly less than that of ANSYS.




4.5. The Relationship between Objectives and Design Variables


There are two ways to represent the relationship between design variables and objective functions: main effect analysis based on the results of design of experiment and pairwise plots of the SBEO results.



4.5.1. Main Effect Analysis


A main effect is frequently used in the context of factorial designs and regression models to distinguish main effects from interaction effects. A main effect occurs when the mean response changes across the levels of a factor. According to the ranges of design variables in Table 1, the lower bound is denoted as level (−1), the upper bound is denoted as level (+1), and the average of the two is denoted as level (0) when running the DOE. The main effect plots for the objectives of weight (W), deformation (D), and moment of inertia (J) are shown in Figure 11. Several results observed in the main effect plots are stated below.



On the objective W:




	(1)

	
All factors, except Rh, can cause the response to increase when they move from low level (−1) to high level (+1). While Hi and Hm can only cause the response to increase slightly as the level changes, Vm and Ta can cause the response to increase significantly, especially Ta.




	(2)

	
Factor Rh can cause the response to decrease when its level increases, but the slope of the response only changes slightly.




	(3)

	
Consequently, all five factors appear to have a main effect on the response W. Among them, Ta is the most important factor because of its high significance.









On the objective J:




	(1)

	
Factors Hi and Rh present no significant main effects because the response remains nearly the same when they move from low level to high level.




	(2)

	
Factors Vm and Ta can cause the response to increase significantly when they move from low level to high level, and the slope of the increased response induced by Ta is the sharpest.




	(3)

	
Factor Hm can cause the response to increase sharply when it moves from low level to intermediate level, and after the saddle point, the response remains almost constant until high level.




	(4)

	
Consequently, factors Hm, Vm, and Ta appear to cause a main effect on the response J. Among them, Ta is the most important factor because of its high significance.









On the objective D:




	(1)

	
When the factors move from low level to high level, only Rh causes response D to decrease, while the others cause response D to increase.




	(2)

	
Factors Hi, Vm, and Ta cause the response D to decrease sharply when the factors move from low level to high level, and the slopes of the responses remain almost the same.




	(3)

	
Consequently, all five factors appear to have main effects on the response. Among them, Ta is the most sensitive and important factor according to the main effect plots.










4.5.2. Pairwise Plot Analysis


A pairwise plot of the relations between the objectives and design variables was obtained and is shown in Figure 12. At the first generation, we can see that our evolutionary algorithm takes random samples for each variable from x1 to x5 within the defined lower and upper bounds. Using Kernel Density Estimation (KDE), we can visualize the distribution for each parameter with respect to other variables and confirm that the sampling was indeed randomly distributed. Histogram plots also confirm that the initial population was distributed throughout the parameter space (lower and upper bounds of each variable). Interestingly, the scatter plots and correlation coefficients reveal that the proposed mathematical model can be attained in the parameter space of variables. Only variable x5 is linearly correlated with the objectives W, D, and J. Also, W, D, and J are linearly correlated with each other. In detail, W has a negative correlation with D, and D has a negative correlation with J. However, W and J have a positive correlation. So, we can conclude that for smaller values of W and J, we can expect to have a larger value of D. Similarly, for a smaller value of D, we expect to have larger values of W and J. From a mechanics point of view, this can be seen as (1) W being directly proportional to J, (2) W being inversely proportional to D, and (3) J being inversely proportional to D. Thus, we can conclude that our surrogate model captures the mathematical properties of the system nicely.






5. Discussion


In this work, a surrogate-based evolutionary optimization method together with Pareto front was presented to design the 2nd robot arm of an industrial robot for attaining high speed performance of the robot. The robot arm was optimized considering the minimum weight, deformation, and moment of inertia. The optimization problem was subjected to constraints on performance indicators such as the W2SR, W2JR, and geometric conditions. Five design variables selected from the important shape geometric parameters were placed under realistic engineering consideration in the optimal design. In order to solve the multi-objective problem, the weighted sum method was used to determine the best candidate from the generated population samples, where the weighting factors were chosen according to the importance or preference of each objective. The characteristics of the optimized 2nd robot arm were also compared with those of the baseline 2nd robot arm. The results obtained in the comparison show that the optimized profile not only increased the performance indicators W, J, and D by up to 16.1%, 22.8%, and 20.3%, respectively, but also saved over 90% on the computational cost. These advantages indicate the effectiveness of the proposed SBEO method when compared with the existing ANSYS-based methods and thus confirm the efficiency of the proposed method in solving complex realistic engineering problems. Some conclusions can be drawn as follows:




	(1)

	
The optimal shape design of a robot arm performed in this study showed that shape design optimization is useful to improve the performance of industrial robots with real engineering considerations.




	(2)

	
The optimal design of the 2nd robot arm obtained via the multi-objective optimization approach features good performance for conflicting objectives, and a Pareto front was obtained by employing preference sets of weighted factors for the various design objectives.




	(3)

	
Compared with the conventional expensive ANSYS-based simulation technique, the proposed SBEO is more practicable and effective for shape optimization of robot arms parameterized with many design variables. In the SBEO, the population samples and Pareto fronts are able to converge quickly to the optimized hot zone of design candidates according to the designer’s preference criteria to obtain better performance.




	(4)

	
It was shown that objective W is proportional to J, and both W and J are inversely proportional to D. The objectives are all affected by the five adopted design variables, of which thickness Ta has the most significant effects, which depend on the selected criteria. When Ta, Rh, and Vm are fixed, smaller Hi and Hm at the same time could cause larger deformation in the robot arm design optimization.









For future research directions, it is worthwhile to seek further applications of the SBEO algorithm to robot design, as well as other types of robot mechanism. In this study, we only considered the shape design of the 2nd robot arm, but did not consider the design of the whole body and robot dynamic behavior yet. Anyone who is interested in this area can extend our study to the abovementioned topics based on our results. In addition, an experimental study to test and validate the performance of the algorithm is also recommended.
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Figure 1. Robot configuration: (a) Schematic description of the robot architecture; (b) Finite element analysis FEA model. 
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Figure 2. Dimensions of the 2nd robot arm: (a) Dimensions of the baseline design; (b) Design variables of the proposed model. 
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Figure 3. Modeling robot arm forces: (a) Configuration of arms; (b) Simulation of loads on the 2nd robot arm. 
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Figure 4. Finite element model of the 2nd robot arm: (a) Mesh model; (b) Supporting boundary. 
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Figure 5. FEA result of the 2nd robot arm: (a) Static deformation; (b) Modal analysis. 
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Figure 6. Framework of surrogate-based evolutionary optimization. 
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Figure 7. The model validations of (a) weight, (b) moment of inertia, and (c) deformation. 
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Figure 8. Flowchart of the MOEA/D-DE algorithm used for optimization. 
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Figure 9. Pareto front history of MOEA/D for the 2nd robot arm. 
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Figure 10. The weighted sum histories of objectives and design variables: (a) Objectives; (b) Design variables. 
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Figure 11. Main effect plots for the effects of variables on objectives. 
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Figure 12. Pairwise plot of relations between objectives and variables. 
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Table 1. Ranges of design variables in the evolutionary model.
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Design Variable

	
Model-1

	
Model-2

	
Model-3




	
xiL

	
xiU

	
xiL

	
xiU

	
xiL

	
xiU






	
Shape Dimension (point A)

	
Hi

	
100

	
250

	
150

	
200

	
150

	
200




	
Shape Dimension (point C)

	
Hm

	
400

	
560

	
450

	
550

	
450

	
550




	
Shape Dimension (point C)

	
Vm

	
100

	
120

	
100

	
120

	
100

	
120




	
Radius of Reduced Hole

	
Rh

	
40

	
60

	
50

	
60

	
50

	
60




	
Thickness of Robot Arm

	
Ta

	
100

	
120

	
90

	
110

	
90

	
100
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Table 2. Box–Behnken design matrix with data for Model-3.
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Run

	
Coded Variables

	
Uncoded (Real) Variables

	
Response (FEM)




	
X1

	
X2

	
X3

	
X4

	
X5

	
Hi(x1)

	
Hm(x2)

	
HV(x3)

	
Rh(x4)

	
Ta(x5)

	
W(y1)

	
J(y2)

	
D(y3)






	
1

	
−1

	
−1

	
0

	
0

	
0

	
150

	
450

	
110

	
55

	
95

	
37.8640

	
7.4954

	
0.03921




	
2

	
−1

	
1

	
0

	
0

	
0

	
150

	
550

	
110

	
55

	
95

	
38.3861

	
7.6226

	
0.03809




	
3

	
1

	
−1

	
0

	
0

	
0

	
200

	
450

	
110

	
55

	
95

	
38.4216

	
7.4789

	
0.03700




	
4

	
1

	
1

	
0

	
0

	
0

	
200

	
550

	
110

	
55

	
95

	
39.2435

	
7.6958

	
0.03555




	
5

	
0

	
0

	
−1

	
−1

	
0

	
175

	
500

	
100

	
50

	
95

	
37.0219

	
7.1141

	
0.04079




	
6

	
0

	
0

	
−1

	
1

	
0

	
175

	
500

	
100

	
60

	
95

	
36.0889

	
7.0655

	
0.04287




	
7

	
0

	
0

	
1

	
−1

	
0

	
175

	
500

	
120

	
50

	
95

	
41.1573

	
8.1635

	
0.03313




	
8

	
0

	
0

	
1

	
1

	
0

	
175

	
500

	
120

	
60

	
95

	
40.2243

	
8.1149

	
0.03449




	
9

	
0

	
−1

	
0

	
0

	
−1

	
175

	
450

	
110

	
55

	
90

	
35.3401

	
6.8625

	
0.04671




	
10

	
0

	
−1

	
0

	
0

	
1

	
175

	
450

	
110

	
55

	
100

	
41.6777

	
8.2743

	
0.03387




	
11

	
0

	
1

	
0

	
0

	
−1

	
175

	
550

	
110

	
55

	
90

	
35.9760

	
7.0237

	
0.04520




	
12

	
0

	
1

	
0

	
0

	
1

	
175

	
550

	
110

	
55

	
100

	
42.3765

	
8.4515

	
0.03272




	
13

	
−1

	
0

	
−1

	
0

	
0

	
150

	
500

	
100

	
55

	
95

	
36.1010

	
7.0679

	
0.04390




	
14

	
−1

	
0

	
1

	
0

	
0

	
150

	
500

	
120

	
55

	
95

	
40.4444

	
8.1267

	
0.03446




	
15

	
1

	
0

	
−1

	
0

	
0

	
200

	
500

	
100

	
55

	
95

	
37.0302

	
7.1134

	
0.04001




	
16

	
1

	
0

	
1

	
0

	
0

	
200

	
500

	
120

	
55

	
95

	
40.9697

	
8.1538

	
0.03308




	
17

	
0

	
0

	
0

	
−1

	
−1

	
175

	
500

	
110

	
50

	
90

	
36.2567

	
7.0050

	
0.04481




	
18

	
0

	
0

	
0

	
−1

	
1

	
175

	
500

	
110

	
50

	
100

	
42.6410

	
8.4286

	
0.03238




	
19

	
0

	
0

	
0

	
1

	
−1

	
175

	
500

	
110

	
60

	
90

	
35.3237

	
6.9565

	
0.04663




	
20

	
0

	
0

	
0

	
1

	
1

	
175

	
500

	
110

	
60

	
100

	
41.7079

	
8.3801

	
0.03383




	
21

	
0

	
−1

	
−1

	
0

	
0

	
175

	
450

	
100

	
55

	
95

	
36.0959

	
6.9702

	
0.04304




	
22

	
0

	
−1

	
1

	
0

	
0

	
175

	
450

	
120

	
55

	
95

	
40.2101

	
8.0121

	
0.03441




	
23

	
0

	
1

	
−1

	
0

	
0

	
175

	
550

	
100

	
55

	
95

	
36.6138

	
7.1004

	
0.04158




	
24

	
0

	
1

	
1

	
0

	
0

	
175

	
550

	
120

	
55

	
95

	
41.0175

	
8.2187

	
0.03330




	
25

	
−1

	
0

	
0

	
−1

	
0

	
150

	
500

	
110

	
50

	
95

	
38.7225

	
7.6191

	
0.03744




	
26

	
−1

	
0

	
0

	
1

	
0

	
150

	
500

	
110

	
60

	
95

	
37.7895

	
7.5705

	
0.03960




	
27

	
1

	
0

	
0

	
−1

	
0

	
200

	
500

	
110

	
50

	
95

	
39.4499

	
7.6557

	
0.03535




	
28

	
1

	
0

	
0

	
1

	
0

	
200

	
500

	
110

	
60

	
95

	
38.5168

	
7.6072

	
0.03673




	
29

	
0

	
0

	
−1

	
0

	
−1

	
175

	
500

	
100

	
55

	
90

	
33.8264

	
6.4804

	
0.05110




	
30

	
0

	
0

	
−1

	
0

	
1

	
175

	
500

	
100

	
55

	
100

	
40.0143

	
7.8544

	
0.03724




	
31

	
0

	
0

	
1

	
0

	
−1

	
175

	
500

	
120

	
55

	
90

	
37.7877

	
7.4856

	
0.04164




	
32

	
0

	
0

	
1

	
0

	
1

	
175

	
500

	
120

	
55

	
100

	
44.3674

	
8.9590

	
0.03004




	
33

	
−1

	
0

	
0

	
0

	
−1

	
150

	
500

	
110

	
55

	
90

	
35.4554

	
6.9641

	
0.04696




	
34

	
−1

	
0

	
0

	
0

	
1

	
150

	
500

	
110

	
55

	
100

	
41.8044

	
8.3859

	
0.03422




	
35

	
1

	
0

	
0

	
0

	
−1

	
200

	
500

	
110

	
55

	
90

	
36.1521

	
6.9992

	
0.04450




	
36

	
1

	
0

	
0

	
0

	
1

	
200

	
500

	
110

	
55

	
100

	
42.5701

	
8.4245

	
0.03202




	
37

	
0

	
−1

	
0

	
−1

	
0

	
175

	
450

	
110

	
50

	
95

	
38.6021

	
7.5130

	
0.03721




	
38

	
0

	
−1

	
0

	
1

	
0

	
175

	
450

	
110

	
60

	
95

	
37.6691

	
7.4644

	
0.03895




	
39

	
0

	
1

	
0

	
−1

	
0

	
175

	
550

	
110

	
50

	
95

	
39.2660

	
7.6813

	
0.03599




	
40

	
0

	
1

	
0

	
1

	
0

	
175

	
550

	
110

	
60

	
95

	
38.3329

	
7.6328

	
0.03761




	
41

	
0

	
0

	
0

	
0

	
0

	
175

	
500

	
110

	
55

	
95

	
38.6488

	
7.6147

	
0.03700




	
42

	
0

	
0

	
0

	
0

	
0

	
175

	
500

	
110

	
55

	
95

	
38.6488

	
7.6147

	
0.03700




	
43

	
0

	
0

	
0

	
0

	
0

	
175

	
500

	
110

	
55

	
95

	
38.6488

	
7.6147

	
0.03700




	
44

	
0

	
0

	
0

	
0

	
0

	
175

	
500

	
110

	
55

	
95

	
38.6488

	
7.6147

	
0.03700




	
45

	
0

	
0

	
0

	
0

	
0

	
175

	
500

	
110

	
55

	
95

	
38.6488

	
7.6147

	
0.03700




	
46

	
0

	
0

	
0

	
0

	
0

	
175

	
500

	
110

	
55

	
95

	
38.6488

	
7.6147

	
0.03700
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Table 3. The coefficients of RS models and real variables.
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Coded Variables

	
Model-1

	
Model-2

	
Model-3




	
Model Coefficients

	
YW

	
YJ

	
YD

	
YW

	
YJ

	
YD

	
YW

	
YJ

	
YD






	
Beta 0

	
Const.

	
0.02734

	
0.02496

	
−0.15331

	
−0.00590

	
−0.00610

	
−0.15458

	
−0.01057

	
−0.01064

	
−0.01826




	
Beta 1

	
x1

	
0.11596

	
0.00428

	
−0.37509

	
0.04264

	
0.00331

	
−0.10549

	
0.06862

	
0.01394

	
−0.11655




	
Beta 2

	
x2

	
0.09879

	
0.11059

	
−0.18021

	
0.03929

	
0.03783

	
−0.05495

	
0.06323

	
0.06838

	
−0.06151




	
Beta 3

	
x3

	
0.25687

	
0.28164

	
−0.46145

	
0.24607

	
0.27069

	
−0.32638

	
0.39591

	
0.42706

	
−0.39148




	
Beta 4

	
x4

	
−0.08976

	
−0.02008

	
0.14201

	
−0.05228

	
−0.01179

	
0.06951

	
−0.08852

	
−0.01959

	
0.08057




	
Beta 5

	
x5

	
0.74737

	
0.72229

	
−0.56288

	
0.75449

	
0.72972

	
−0.79298

	
0.60527

	
0.57397

	
−0.60071




	
Beta 6

	
x12

	
−0.01362

	
−0.00941

	
0.10906

	
−0.00099

	
0.00532

	
0.01938

	
−0.00159

	
−0.00037

	
0.01376




	
Beta 7

	
x22

	
0.06079

	
0.08144

	
−0.07636

	
0.00885

	
0.03363

	
−0.00680

	
0.01422

	
0.01810

	
−0.00774




	
Beta 8

	
x32

	
−0.03279

	
−0.00272

	
0.17937

	
−0.01193

	
−0.00233

	
0.05312

	
−0.01916

	
−0.00370

	
0.05953




	
Beta 9

	
x42

	
0.00000

	
0.00000

	
−0.08645

	
0.00000

	
0.00000

	
−0.01540

	
0.00000

	
0.00000

	
−0.01861




	
Beta 10

	
x52

	
0.01099

	
0.00108

	
0.04749

	
0.00410

	
0.00088

	
0.01302

	
0.00327

	
0.00070

	
0.00623




	
Beta 11

	
x1x2

	
−0.05798

	
−0.06420

	
0.11599

	
−0.01896

	
−0.01527

	
0.03603

	
−0.03051

	
−0.03286

	
0.03191




	
Beta 12

	
x1x3

	
0.00505

	
0.00647

	
0.05851

	
0.00853

	
0.00978

	
0.00752

	
0.01373

	
0.01541

	
0.00848




	
Beta 13

	
x1x4

	
0.00000

	
0.00000

	
−0.00978

	
0.00000

	
−0.00003

	
−0.00237

	
0.00000

	
0.00000

	
−0.00287




	
Beta 14

	
x1x5

	
0.00865

	
0.00949

	
0.02232

	
0.00373

	
0.00408

	
0.01182

	
0.00298

	
0.00322

	
0.00833




	
Beta 15

	
x2x3

	
0.00033

	
0.00181

	
0.07972

	
−0.00051

	
−0.00123

	
0.03799

	
−0.00081

	
0.00096

	
0.06871




	
Beta 16

	
x2x4

	
0.00000

	
0.00000

	
−0.02389

	
0.00000

	
0.00000

	
−0.01404

	
0.00000

	
0.00000

	
−0.01702




	
Beta 17

	
x2x5

	
0.02283

	
0.02510

	
0.05574

	
0.02318

	
0.02548

	
−0.01720

	
0.01858

	
0.02005

	
0.05375




	
Beta 18

	
x3x4

	
−0.00816

	
−0.00108

	
0.03197

	
−0.00234

	
−0.00238

	
0.01659

	
−0.00398

	
−0.00095

	
0.01111




	
Beta 19

	
x3x5

	
0.00000

	
0.00000

	
−0.02829

	
0.00003

	
0.00000

	
−0.01601

	
0.00000

	
0.00000

	
−0.00895




	
Beta 20

	
x4x5

	
0.00082

	
0.00112

	
0.10402

	
0.03974

	
0.03661

	
0.33444

	
0.06728

	
0.06380

	
0.21738




	
Real Variable yi = Yi× y_Range/2 + y_Mean i = W, J, D




	
y_Mean

	
49.29504

	
9.91004

	
0.02896

	
42.24819

	
8.41802

	
0.03467

	
38.70456

	
7.62786

	
0.04325




	
y_Range/2

	
9.45013

	
2.17960

	
0.00726

	
8.92588

	
2.05787

	
0.01077

	
5.27049

	
1.23931

	
0.01053
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Table 4. Comparison of objectives with the baseline design.
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2nd Robot Arm

	
Objectives (Predicted by Model/ANSYS)




	
Weight W (kg)

	
Moment of Inertia J (kg. m2)

	
Deformation D (mm)






	
(0) Baseline Design

	
--/40.26

	
--/8.404

	
--/0.0644




	
(1) First Design Model-1

	
40.75/41.28

	
7.8078/8.0081

	
0.0311/0.0333




	
(2) Renewal Design Model-2

	
32.69/33.89

	
6.6873/6.5079

	
0.0409/0.0501




	
(3) Renewal Design Model-3

	
33.02/33.80

	
6.3328/6.4906

	
0.0491/0.0513




	
Improvement %: ((3)/(0))−(1)

	
−18.0%/−16.1%

	
−24.7%/−22.8%

	
−23.8%/−20.3%
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Table 5. Computational efficiency comparison between the model and ANSYS.






Table 5. Computational efficiency comparison between the model and ANSYS.





	Model
	Population Size
	Time (sec) per Generation
	Converge at Generation
	Total Time (sec) to Convergence
	All Process Time (sec) (Total Time + ANSYS)





	ANSYS
	1035
	31.050
	3
	93.150
	93.150



	Model-1
	1035
	0.249
	25
	6.225
	6.225+30 × 25 = 756.225



	Model-2
	1035
	0.325
	22
	7.150
	7.15+30 × 22 = 667.15



	Model-3
	1035
	0.299
	15
	4.485
	4.485+30 × 15 = 454.485
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