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Featured Application: This work reports the novel design of a micromotion-free electro-optical
trap for ions, integrated with a standard linear Paul trap. The ion trap is developed
for experiments with atom-ion quantum mixtures and allows the ions to reach ultracold
temperatures by sympathetic cooling with the neutral atoms, eventually leading to atom-ion
collisions in the s-wave scattering regime.

Abstract: In the development of atomic, molecular, and optical (AMO) physics, atom-ion hybrid
systems are characterized by the presence of a new tool in the experimental AMO toolbox: atom-ion
interactions. One of the main limitations in state-of-the-art atom-ion experiments is represented by
the micromotion component of the ions’ dynamics in a Paul trap, as the presence of micromotion in
atom-ion collisions results in a heating mechanism that prevents atom-ion mixtures from undergoing
a coherent evolution. Here, we report the design and the simulation of a novel ion trapping setup
especially conceived of for integration with an ultracold atoms experiment. The ion confinement is
realized by using an electro-optical trap based on the combination of an optical and an electrostatic
field, so that no micromotion component will be present in the ions’ dynamics. The confining optical
field is generated by a deep optical lattice created at the crossing of a bow-tie cavity, while a static
electric quadrupole ensures the ions’ confinement in the plane orthogonal to the optical lattice.
The setup is also equipped with a Paul trap for cooling the ions produced by photoionization of a hot
atomic beam, and the design of the two ion traps facilitates the swapping of the ions from the Paul
trap to the electro-optical trap.

Keywords: Paul traps; ion optical trapping; atom-ion interactions; atom-ion mixtures

1. Introduction

Recently, the possibility of merging together ultracold atoms and trapped ions in the same
experiment for creating a hybrid atom-ion quantum system has raised much interest [1]. In fact,
this composite system inherits the properties of its constituents, i.e., the possibility of controlling
space-localized trapped ions and creating large ensembles of coherent matter with quantum gases, and
makes it possible to use a new feature: atom-ion interactions. Atom-ion interactions are much longer
range than atom-atom interactions (if Rydberg states are not considered) and can in principle be tuned
via Feshbach resonances [2]. Systems of ultracold atoms and trapped ions represent an extremely
versatile and powerful experimental platform, in which both atoms and ions can simultaneously
play the role of probe and system [3]. For instance, a single ion immersed in an ultracold bath of
neutral atoms can be conceived of as a localized impurity in a many-body system. In this scenario,
the ion can be exploited as a probe for measuring local properties of the atomic gas, like its densities
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or correlations [4]. Analogously, the atomic cloud at low temperatures can act as an ultracold buffer
gas that continuously cools the ions through elastic collisions, realizing a transparent coolant at the
wavelengths used to manipulate the internal states of the ions [5]. Ultracold buffer gas cooling can
thus be an efficient alternative to laser cooling for preparing ion crystals in quantum technology
applications. Atom-ion hybrid systems are also suitable for studying in a controlled way chemical
reactions at low temperature, since the ions increase the local density of the neutral atom cloud, thus
acting as reaction centers for chemical processes, e.g., charge-exchange and molecule formation [6,7].

In most atom-ion experiments, the collisional energy is set by the driven component of the ions’
dynamics in radiofrequency (RF) traps (i.e., micromotion), since collisions with cold atoms cause
a coupling of energy from the driving field to the ions’ secular motion, thus making the systems
energetically open [8]. A relatively large collisional energy represents a limitation for experiments
aiming at exploiting the quantum nature of atom-ion interactions, which arise mainly when atom-ion
interactions can be characterized solely by the s-wave phase shift, i.e., the scattering length. In this
so-called s-wave scattering regime, the collisions could be controlled via Feshbach resonances, and
atom-ion interactions could lead to a coherent evolution of the two quantum systems [3]. However, this
regime has not been reached so far due to the presence of micromotion, and Feshbach resonances have
never been experimentally observed in atom-ion mixtures. A possible solution to reach the quantum
regime with RF-trapped ions in an ultracold bath of atoms is to properly choose the atomic species on
the basis of their mass ratio, thus limiting the energy transfer from the RF trapping field to the atom-ion
system due to the presence of micromotion and lowering the experimentally attainable temperature [9].
Following this strategy, the group of Rene Gerritsma recently observed atom-ion collisional energies
for which only s- and p-waves contribute to the collisions [10]. An alternative strategy to circumvent
the detrimental effects of micromotion is to change the ion confinement technique. For instance, ions
can be trapped in optical dipole traps [11,12]. Purely optical trapping of a single barium ion has
been realized for up to a few seconds with a trapping scheme based on two lasers having different
frequencies [13]. Moreover, optical trapping has also been achieved by employing one-dimensional
optical lattices formed by two counter-propagating beams [14], and very recently, small crystals of
up to six barium ions were trapped in a single-beam dipolar trap [15]. Hence, ion optical trapping
represents an encouraging solution to reach ultracold atom-ion collisions.

In this paper, we present the design of a novel ion trap made of a combination of optical and
electrostatic fields for trapping two-dimensional crystals of ions. This electro-optical (EO) trap is based
only on static fields, so no micromotion will affect the ions’ dynamics in the trap. The trap is part of an
atom-ion experiment that aims at observing collisions between Ba+ ions and Li atoms in the so-far
elusive s-wave regime [16].

2. The Electro-Optical Trap

The electro-optical potential is created by the superposition of a one-dimensional optical lattice and
a static electric quadrupole potential. Specifically, the optical potential is realized by the interference
pattern between the two crossed arms of a bow-tie optical cavity, in order to enhance the depth of the
optical trapping potential. If the wavelength of the laser injected into the bow-tie cavity is blue-detuned
with respect to the nearest atomic transition of the ions, the optical potential will confine the ions only
along the lattice direction (x axis in Figure 1), in correspondence with the minima of the interference
pattern, thus minimizing the off-resonant scattering rate. For realizing a three-dimensional trapping
potential, the confinement along the two remaining axes is ensured by the static electric quadrupole,
generated by two electrodes aligned along the lattice axis. Therefore, the approximated potential in
the local minimum of the optical lattice intensity pattern can be written as [16]:
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where α is the (negative) state-dependent atomic polarizability, w0x and w0y are the beam radii along
the x and y axes, P is the power of the laser beam, κ is a geometrical factor related to the electrodes’
shape and mutual position, R is the distance between the electrodes and the trap center, φ is the static
electric potential applied on the electrodes, and:
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are the rotated beam radii along the x and z directions, where zR is the Rayleigh range of the laser
beam and θC is the crossing angle between the diagonal arms of the bow-tie cavity. By analogy with the
anisotropic three-dimensional harmonic oscillator, the following trapping frequencies can be extracted
from Equation (1):
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Figure 1. Sketch of the electro-optical trap, in which a static electric quadrupole potential (red arrows)
is used for trapping ions along two orthogonal directions (y and z axes), while the confinement along
the antitrapping direction (x axis) is provided by the interference pattern of two crossed Gaussian laser
beams (drawn in blue). For positive ions, the electrodes generating the quadrupole potential must be
negatively charged.

Once the trapping wavelength, the crossing angle between the two cavity arms (through which
the lattice constant can be tuned), and the electrodes’ geometry are fixed, the electro-optical potential
depends only on the laser power P and on the applied potential φ. A “stability diagram” of the
electro-optical trap can be deduced from Equation (2): in fact, the potential acting on the ions provides
a stable confinement in all three directions if the frequencies associated with the harmonic potentials
are all non-negative. For instance, the stability plot evaluated for the trap parameters λ = 451.7 nm
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(a magic wavelength for the 6 2S1/2 ↔ 6 2P1/2 transition of Ba+ [17]), w0x = w0y = 40µm, and
2θc = 10 ◦ is presented in Figure 2. The figure shows that the electrode potentials must be negative for
ensuring an attractive potential along the y and z axes. Moreover, the optical potential must be deep
enough to prevail over the anti-trapping electric potential along the x axis. The red line in Figure 2
corresponds to the parameters {Piso, φiso} for which there is a 3D isotropic confinement. Therefore,
for a given laser power P, the shape of the electro-optical potential can be tuned by changing the
electric potential φ on the electrodes in the range [0, φtrap], where φtrap is the largest value for which
the particles are still trapped along the interference direction (x axis). The possible scenarios are thus:

• 0 > φ > φiso: The ions can be trapped in a single minima of the optical lattice, thus forming a
disk-shaped crystal.

• φ = φiso: The three trapping frequencies are equal, so the potential is isotropic.
• φiso > φ > φtrap: The confinement along the interference direction is weaker than the other two.

Considering the typical depth of the optical potentials and the Coulomb repulsion, the ions might
lie in different minima of the optical lattice.
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Figure 2. Electro-optical trap “stability diagram”. The shaded region shows all the values {P, φ} for
which the trapping frequencies in the three directions are simultaneously positive, thus indicating a
stable trapping potential. The laser wavelength, the beam waists, and the crossing angle chosen for
trapping Ba+ are λ = 451.7 nm, w0x = w0y = 40µm, and 2θc = 10 ◦, respectively. The red line indicates
the parameters {Piso, φiso} for which the confinement is equal in each direction. The region above this
line corresponds to a disk-like-shaped potential.

Loading Ions into the Electro-Optical Trap

In typical ion trapping experiments, ions are produced by ionizing atoms from a hot vapor created
by a small oven. Therefore, the depth of the trapping potential must be adequate (100 s of kelvins) so
that a hot ion could be confined and then laser-cooled. In an electro-optical trap, however, the depth is
limited mainly by the optical component of the potential, the depth of which is typically well below
1 K. For this reason, a different strategy for loading ions in an electro-optical trap must be devised. One
possibility could be to photo-ionize atoms that have already been laser-cooled in a magneto-optical
trap (MOT) [18,19]. However, since we are planning to use Ba+ ions, this solution is not practical as
a Ba MOT requires three infrared repumping lights [20]. Our plan, instead, is to use a Paul trap as a
first trapping stage in which the hot ions are trapped and laser-cooled and then transferred from the
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Paul trap to the EO trap. This strategy has the advantage of using standard ion trapping techniques
for producing ions at the Doppler temperature, for which the EO trap potential is deep enough to
ensure a confinement of the particles. In order to facilitate the swapping from the Paul trap to the EO
trap, the shape of the two trapping potentials should match as much as possible. This request sets a
number of constraints on the shape and size of the electrodes and on the method for creating the deep
optical lattice.

3. Trap Design

Our ion trapping apparatus is composed by the electro-optical trap, the Paul trap, and the neutrals’
ovens. These three components have to be easily integrated in the same structure; thus, their design is
a complex and adaptive process. In addition, another constraint on the design concerns the optical
access, which must be adequate for the imaging system, the numerous laser beams for manipulating
the particles, and an optical transport of the neutral Li atoms towards the trap center. This necessity
naturally leads to a trap with a wide trapping volume, which must also allow the crossing of the laser
beams for creating the optical lattice of the electro-optical trap.

3.1. Electro-Optical Trap Design

Ions are trapped along two directions by a static electric quadrupole potential, whereas along
the third direction (x axis), the confinement is provided by a 1D blue-detuned optical lattice. In our
electro-optical trap, the static quadrupole potential is created along y and z axes in Figure 3 by two
opposite electrodes, while along the third direction (x axis), the confinement is realized by a bow-tie
cavity. Since the axis orthogonal to the 2D ion crystals (x axis) coincides with the imaging direction,
the static electric quadrupole potential must be produced by a pair of ring-shaped electrodes, ensuring
a circular distribution of charges with the x direction as the symmetry axis. These rings must be
contained in mechanical supports that do not limit the numerical aperture of the imaging of the ion
crystals’ plane (y-z in Figure 3). To this end, we chose a conical shape for these electrodes, which we
will call “cone electrodes” in this article. As an additional constraint, the shape and dimensions of the
cone electrodes must be carefully adapted to the electrodes of the Paul trap.

z

x

y

Figure 3. CAD assembly of the electro-optical trap, formed by the cone electrodes and the bow-tie
cavity mirror mounts. The two mirror mounts on the left side have been removed for a better view.

The bow-tie cavity is based on a symmetric configuration with four curved mirrors having the
same radius of curvature, so that the laser beam traveling in the cavity has a focus in each of its arms,
two of which are overlapped in the center of the bow-tie. There, the two running waves create a
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deep lattice in which the intensity of the two interfering beams is enhanced by a factor proportional
to the cavity finesse, thus increasing the trap depth [21]. For facilitating the process of loading the
atoms and ions in a single minimum of the optical potential, the lattice constant must be as large as
possible, i.e., the two lattice beams must cross at a small angle. In our design, the crossing angle is
10 ◦, the waist of the beams at the crossing is 40µm, and the mirrors radius of curvature is 100 mm.
With these parameters, the bow-tie geometry can be entirely defined in the ABCD matrix formalism
by imposing the cavity stability [22]. The result, described in the stability diagram by the point
{g1, g2} = {−0.89,−0.9}, is a strongly elongated cavity with the crossed arms 9.48 cm long and
parallel ones 9.45 cm long.

Regarding the cavity assembly, the mirror mounts are composed of two parts: a ceramic mirror
holder and a metallic cover. The mirror, which has a diameter of 6 mm, is attached to the metallic
cover with an ultra-high vacuum compatible glue (e.g., Epoxy Technology 353ND). In order to tune
the cavity resonant frequencies, two of the mirrors are equipped with a circular hollow piezo element
(e.g., Noliac NAC2121), which is inserted between the mirror and the cover and held in position with
a thin layer of glue. This stack is then connected to the ceramic support by using three small and
finely threaded screws (M2x0.25 mm). An elastic element (DuPont Kalrez 8002, an ultra-high vacuum
compatible rubber) housed in the mirror compartment offers a contrasting force to the mirror (and
the piezo, if present), which keeps the cover stable and separated from the holder even if the screws
are not completely tightened. In this way, the mirror can be tilted by acting on the screws. In order to
facilitate the decoupling between the vertical and the horizontal degrees of freedom, the three screws
are placed at the vertices of a triangle with a vertical side. Moreover, in case one wants to rely on the
mechanical precision of the assembly, a metallic hollow spacer can be inserted between the holder and
the cover to fix their mutual distance, thus making the whole system “monolithic”.

In order to realize the cavity geometry as accurately as possible, it is crucial to position the four
mirror mounts on the base at the exact mutual distance and angle. To ease this task, the mirror mounts
are equipped with a pair of parallel rails that can move in the complementary pair of grooves placed
on a titanium base plate. In this way, when the mirror mounts are placed onto the base plate, they are
oriented in the right angle. Once the angular orientation is set, the position of the mounts can be set by
tightening each mirror mount to the base plate with two screws. Additionally, each mirror mount and
the base plate are equipped with precision holes corresponding to the exact position that the mirrors
should have: by using vented dowels, the mirrors can be positioned in this pre-aligned structure.

3.2. Paul Trap Design

The Paul trap is inspired by conventional linear Paul trap designs (e.g., [23]), with the four
electrodes fed with the RF potential extended along the z axis (refer to Figure 4). These electrodes are
characterized by a blade shape with a very thin tip having a hyperbolic profile to better reproduce
an ideal electric quadrupole. In addition, they are equipped with four pins for ensuring their precise
spatial positioning.

The other electrodes of the Paul trap, the so-called “endcaps”, ensure a shallow trapping along the
symmetry axis of the RF electrodes. Usually, the static electric potential is realized by two electrodes
places at the edges of the trapping volume [24]. In this case, though, it is crucial to generate ion
crystals with the shape that matches as much as possible the expected crystal shape in the EO trap,
in order to optimize the transition from one trapping potential to the other. To this end, in order
to ensure the confinement along the z axis, we designed two pairs of electrodes oriented along the
y-axis (see Figure 4). Each pair of electrode reproduces the same potential created by a hypothetical
tip aligned along the y axis, but leaving a clear optical access to the ions. The distance between the
electrodes must be small compared to the distance between them and the ions, so that particles do
not experience a double-well potential. Otherwise, the resulting potential would take the shape of
a double well, with two distinct minima along the z axis. With respect to their shape, these endcap
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electrodes are formed by a relatively large base in order to tighten them to the lateral supports, while
their tips are characterized by a simple circular profile.

z
x

y

Figure 4. On the left, the front view of the ceramic lateral support. Each hole is used to hold a specific
electrode. Extrusions for optical access are indicated with the label “lasers”. On the right, a CAD
assembly of some of the electrodes (two RF blades and four endcap electrodes) inserted in the lateral
support. The distance between the endcaps’ tips is 3 mm along the y axis and 1 mm along the z axis.

The electrodes of both the EO trap and Paul trap are held by a pair of ceramic supports (which
we will refer to as “lateral supports”), which are placed at the sides of the trap. Each electrode is
equipped with a pair of cylindrical extrusions (pins) in correspondence to precision holes made in
the lateral supports. One in each pair of pins is partially threaded in order to tighten the electrode to
the ceramic support with a nut. Both pins are used as dowels that facilitate the alignment and avoid
any possible rotation of the electrode around its tip-screw. In addition, the threaded tip that appears
on the other side of the ceramic support is exploited to feed the voltage to the electrode by using a
tubular crimp lug tightened with a second nut. The lateral supports are also provided with additional
holes and extrusions to ensure extra optical access, as shown in Figure 4. Specifically, the topmost
grooves can be used to shine a laser beam towards the trap center with an angle of approximately 45 ◦

with respect to all three trap axes. After passing through the center of the trap, this laser beam passes
through a second aperture in the opposite lateral support, in order to reduce stray light and avoid
the laser-induced creation of charges on the ceramic surface close to the ion trap center. Finally, the
supports have large clearance on the x-z plane, which ensures a large access to the atoms.

3.3. The Atomic Source

Two independent ovens for producing vapors of neutral atoms are integrated into the metallic
base, below the trap electrodes. The overall structure is formed by two tubes (Element 5 in Figure 5),
a copper heat-sink (1), a cold ceramic skimmer (11), and the metallic base itself. The tubes are tubular
pipes in which the solid metallic element is crammed. By applying to the thin stripe (6) at their bottom
a high current for a short time interval, the heat produced via Joule dissipation warms the ovens up
until a stream of atomic vapor is emitted. Therefore, the tubes’ design is based on the necessity to
facilitate the dissipation, thus the produced heat. For this reason, the ovens are produced in stainless
steel, a metal characterized by a low thermal conductivity as compared to other metals. In addition,
the electrical resistance is increased by minimizing the tubes’ thickness (the internal and external
diameters are respectively 1.20 mm and 1.50 mm). The tubes are fixed into a copper heat-sink, which
has two roles. First, since the heat-sink can be considered in thermal equilibrium with the cold flange to
which it is fixed with the screws (8), it rapidly lowers the temperature of the tubes after the production
of the atomic shot, starting from the cold upper side (4). Second, the heat-sink is connected to grounded
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wires, hence offering to the current a path to flow. The atomic beams, which can be independently
activated, are oriented towards the trap center. During their flight, the neutral atoms pass through a
trimming system composed by the skimmer and the metallic base. The skimmer has a pair of tilted
pipes (10)—about 2.5 mm long, with a diameter of 0.5 mm—which reduce the solid angle of the atomic
beam. The metallic base, to which the skimmer is attached, is provided with an inner cavity dug via a
series of tangent cylindrical removals (13), which culminate with two output holes having different
diameters of 0.4 mm (15) and 1.2 mm (16). In particular, the smaller oven is calibrated to reach the
trap center and avoid detrimental electrode sputtering. Additionally, the optical vertical access to the
trap is protected by a cylindrical wall (14), thus avoiding that the atomic jets could pass thorough it.
The mutual alignment of the ceramic skimmer and the base plate is a fundamental requirement in
order to ensure the creation of a velocity-selected atomic beam passing by the center of the trap. To this
end, the correct positioning of the skimmer is ensured by two dowels.z xy321119101215 21089121314164 5 6 713 1 cm2 cm 1 cm

Figure 5. CAD section of the oven system for producing atomic beams of neutral barium. (1) Copper
heat-sink. (2) Venting holes. (3) Screw passing hole for fixing the heat-sink on the flange. (4) Cold
upper part of the (5) tubes. (6) Tube stripes for the electric connections. (7) Threaded hole for the
ground connecting the heat-sink. (8) Screw passing holes for fixing the base on the flange. (9) Pipes
and (10) screw passing holes of the cold ceramic (11) skimmer. (12) Inspection viewports of the (13)
cylindrical oven cavities. (14) Anti-sputter wall for protecting the vertical optical access. (15) and (16)
Output holes.

3.4. Machining Tolerances

The successful assembly of a composite trap relies on achieving high machining precision. In our
assembly, the most delicate points in which a high fabricating precision is strongly required are the
rail-groove system providing the orientation of the mirror holders, the blade and cone electrodes, and
the external diameter of the oven tubes, which must be inserted into the heat-sink and held by friction.
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Additionally, dowels are particularly critical, since they represent the means extensively used to ensure
the precise positioning of the most critical parts. On the most demanding dimensions, a tolerance
of ±5µm or better was reached. After the production, each single trap component was individually
measured by using an optical microscope and a coordinate measuring machine (CMM), a device
able to measure the size of an object with a µm-level of precision. This measurements procedure
ensures that all the produced parts are optimal reproductions of the ideal objects described by the
technical drawings within the specified tolerances. Nevertheless, even if all the trap components were
machined within the tolerances, other detrimental deviations from the ideal assembly may arise due
to the tolerance interplay when different items are assembled together. For instance, an alignment
dowel can be produced with a diameter slightly bigger than its ideal value, but still have within the
tolerances specified by the constructor, and the corresponding hole into which it should be inserted can
be within tolerances as well, but slightly smaller. If this is the case, the dowel may not enter into the
hole, making both parts useless. In order to avoid these unfortunate situations, all the critical points
of the whole trap assembly—mainly the dowel inserting, the pairing between the mirror mount rails
and the base grooves, the electrodes’ alignment, and the tubes’ joint with their heat-sink—must be
treated with special care during the construction process, and the part features should be adaptively
machined, if possible. Moreover, more copies of these parts were realized and characterized with the
CMM, so that only the best combination of matching items is selected for the trap assembly. After
assembling the whole trap, we measured the position of the electrodes with the CMM and found that
all the discrepancies between the CAD design and the actual realization were <10µm, with one outlier
at 14µm.

3.5. Materials

In the ion trapping community, there is not a definitive choice for the best material for producing
the electrodes, and different options like beryllium copper, molybdenum, gold-plated alumina, etc.,
have successfully been used [25]. For our electrodes, we opted for titanium (alloy Ti6Al4V, also known
as “titanium grade 5”), mainly because it can be easily machined and has a lower thermal expansion
coefficient compared to other metals. Other metallic parts were produced in titanium, as dowels
and the trap base plate. Regarding the insulating material, we chose an aluminum nitride ceramic
commercially known as “Shapal Hi-M Soft”. This ceramic has the great advantage of combining a high
thermal conductivity (92 W/mK) with a low thermal expansion coefficient (about 4.8µm/mK). The
trap lateral supports and the cavity mirror holders were machined in Shapal, since this ceramic can
ensure a good dissipation of the heat that can be generated by the trap.

4. Simulations on the Trapping System

4.1. Electrical Simulations

The design of the trap electrodes was a result of a series of numerical simulations of the electric
potential, used to optimize the trap components step-by-step. The simulations were based on the
static problem approach, meaning that the varying electric fields were assumed to change slowly
with respect to the electromagnetic wavelength. Within this approximation, the problem reduced
to solving the Laplace equation, which was numerically treated in a script written in C language
using the toolkit ROOT [26] and the package BEMSOLVER [27]. The latter is a library in which the
algorithms required to solve electrostatic problems with complex charges distributions are already
implemented and optimized. The approach of BEMSOLVER is based on the boundary element method
(BEM), which converts a volume problem into a surface one. The basic idea behind this method is to
consider only the surfaces of the objects, then to find a continuous electric charge distribution on these
surfaces that satisfies the boundary conditions of the original problem. The numerical solution of the
superficial charge density can be found by cutting the interfaces between different media in squared or
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triangular panels (mesh), small enough to consider uniform the charge density on the surfaces. At this
point, the electric potential can be expressed as:

φ(~r ) =
1

4πε0

N

∑
i=0

(∫
Si

1
|~r−~r ′| dS′

)
σi (3)

where σi are the ith superficial charge densities of the surfaces Si and N is the panel number. Equation (3)
can be reformulated in a compact way as A ·~q = ~p, where the N × N matrix A, which depends only
on the mesh geometry, connects the vector~q containing the superficial charge distributions σi to the
vector ~p representing the applied voltage on the ith panel. BEMSOLVER employs two techniques for
solving Equation (3). The first is the generalized minimum residual (GMRES) method [28], which aims
at computing an approximate solution by running an iterative algorithm until a certain tolerance fixed
by the user is reached. This method starts with an initial guess~q0 for the solution, then evaluates the
first residual~r0 = ~p− A~q0, on which the convergence of the algorithm is checked. If another iteration
is needed, the new solution vector is computed as:

~qi+1 =
i

∑
j=0

αj~qj + β~ri

to minimize the new residual~ri+1 by properly choosing the coefficients αj and β. The second employed
method is the fast multipole method (FMM) [29], which basically describes the potential in a certain
point with the single contribution due to the nearest charge, whereas the effect of the remaining charges
is evaluated as a perturbation given by multipole and local expansions.

4.1.1. Paul Trap Stability Diagram

We used the simulation to extract the geometric coefficients linking the electric field in the
center trapping region to the voltages applied to the electrodes. Once the trap geometry has been
characterized, the electrical behavior of the electrodes can be predicted, and the stability diagram of
the Paul trap can be evaluated. It is important to note that the “blade” electrodes are rotated with
respect to the endcap electrodes’ axes by an angle of θ = 45◦ (see Figure 6). This rotation implies that
the operation of the Paul trap is described by a system of two coupled Mathieu equations [30]. The
expression of the dynamic electric potential, with the coordinates rotated from {x′, y′} to the {x, y}
frame, can be written as:

VRF(x, y) = − e0φRF
2

κRF

R2
RF

(
(cos(θ)x + sin(θ)y)2 − (cos(θ)y− sin(θ)x)2) cos(ωRF t)

where θ is the coupling angle, φRF is the amplitude on the potential applied on the blades, ωRF is
the RF pulsation, rRF is the distance of the blade electrode from the center of the trap, and κRF is a
geometrical factor smaller than unity that takes into account the electrodes’ shapes and shielding
effects. Taking into account the contributions of both the dynamical and static electric potentials and
the definition of the dimensionless Mathieu parameters~q and~a:

~q = q
(

1, −1, 0
)

=
2e0 φRF

mion ω2
RF

κRF

R2
RF

(
1, −1, 0

)
~a = a

(
−1, −1, 2

)
=

4e0 φDC

mion ω2
RF

κDC

R2
DC

(
−1, −1, 2

)
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the coupled motion equations for the x and y axes are:{
ẍ = 2 q

(
cos(θ)x + sin(θ)y

)
cos(2τ)− a x

ÿ = 2 q
(
sin(θ)x− cos(θ)y

)
cos(2τ)− α a y

(4)

where α is a geometrical factor expressing the ratio between ax and ay, i.e., ax = ay/α = a.
The substitution ωRFt = 2τ was also performed in order to make the equations time-dimensionless.
The stability condition of this system can be evaluated by applying the Floquet theorem. To do so,
Equations (4) must be first expressed as a system of first order differential equations, i.e., in matrix
notation ~̇x = B(τ)~x, where ~x = (x, y, vx, vy)T , and the periodic matrix B(τ) = B(τ + nπ) (n integer
number) is :

B(τ) =


0 0 1 0
0 0 0 1

2q cos(θ) cos(2τ)− a 2q sin(θ) cos(2τ) 0 0
2q sin(θ) cos(2τ) −2q cos(θ) cos(2τ)− αa 0 0



Figure 6. Conceptual sketch of the Paul trap electrodes’ position in relation to the electro-optical trap
cone-shaped hollow electrodes. The RF electrodes are rotated 45◦ with respect to the endcaps’ frame,
and the confinement along the z axis is provided by the negatively charged endcaps.

The Floquet theorem states that the differential equation system has at least one solution of the
form [31]:

x(j)(τ) = exp
(

log(λj)
τ

π

)
pj(τ) with pj(τ + π) = pj(τ) (5)

where λj are the eigenvalues of the matrix Z(π) defined as:

Ż(τ) = B(τ) Z(τ) with Z(0) = I4 (6)

The solution Equation (5) can also be reformulated as:

x(j)(τ) = exp
(

log(|λj|)
τ

π

)
exp(i arg(λj)) pj(τ)
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from which it is evident that the absolute value of the eigenvalues |λ| must be less than unity to
obtain a stable solution. Therefore, in order to ascertain if the trap is stable for a pair of parameters
{q, a}, one has to solve Equation (6) numerically and check the absolute value of the Z(π) eigenvalues.
The disadvantage of this procedure is that the stability boundaries are not well defined. To overcome
this inconvenience and find an approximated expression for the stability boundaries, one can use the
multiple-scale perturbation theory [32]. Basically, this approach consists of substituting an independent
variable with a pair of fast-scale and slow-scale independent variables. Then, the additional degree of
freedom is exploited to remove long-term and non-periodic variations in the approximated solutions,
which usually limit their validity only in a short time range when standard perturbation techniques
are used instead. For a system of coupled Mathieu equations, the approximated boundaries of the first
stability region are:

a1 = −1
2

q2

a2 =
1

2α
q2

a3 = 1− cos(θ)q−
(

cos(θ)2

8
+

2 sin(θ)2(5 + α)

(1 + α)(9 + α)

)
q2

a4 = − 1
α

(
1− cos(θ)q−

(
cos(θ)2

8
+

2 sin(θ)2(5 + 1/α)

(1 + 1/α)(9 + 1/α)

)
q2
)

The stability diagram of the Paul trap evaluated by using both numerical solutions and
multiple-scale perturbation theory is reported in Figure 7. The green area represents the first stability
region for the uncoupled Mathieu equations (θ = 0) and the geometry coefficients of our trap. The first
stability region evaluated with the numerical method (black thick dots) is well approximated by the
boundaries obtained with the multiple-scale perturbation theory (blue curves) only for small values
of q. For q > 0.7, the boundary curves enclose a region of {q, a} pairs (depicted in blue) for which
the numerical method predicts instability. For small q, both coupled and uncoupled systems have
stability regions characterized by the same boundaries; nevertheless, the coupled system has in general
a wider stability region. However, while the primary stability region does not appreciably vary for
small q with nonzero mixing angles θ, the presence of a coupling term strongly affects the secondary
stability region. When θ = 45◦, as in our trap, the maximum coupling is reached: the result is that the
secondary stability regions shift towards the primary one and join it, forming an exceptionally wider
triangular-shaped stability region [32], as shown by the black dots in the graph of Figure 7. There is a
discrepancy between the numerical and the analytic calculations. Nevertheless, Paul traps are usually
operated in the lower part of the stability diagram, where both methods predict a stable operation of
the trap. For the coefficients of our trap geometry, a potential difference on the blade electrodes of
200 V with ωRF = 3.2 MHz corresponds to q ≈ 0.15 [33].

4.1.2. Residual Axial Radiofrequency

In the simulations, the trap electrodes have been considered as perfectly machined and aligned.
Nevertheless, this is an ideal case, since misalignments or imperfections may occur during the
fabrication or the assembly. Regarding the Paul trap, for instance, any deviation of the blade electrodes
from the ideal case causes the presence of a nonzero RF field along the axial direction. The approximate
solution to the equation of motion for a particle with mass m and charge +e0 in a Paul trap in the
presence of an additional DC field can be written as [34]:

xi(t) ≈
(

x0,i + x1,i cos(ωit + ϕi)

)(
1 +

qi
2

cos(ωRFt)
)

with i = x, y, z
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where x1,i is the equilibrium position of the ion along the ith direction, x0,i is the position shift from
x1,i due to the stray electric field, ωRF is the RF frequency, and ωi is the secular motion frequency.
Consequently, the micromotion amplitude along the ith direction can be estimated as (x0,i qi)/2. Ideally,
along the RF electrodes’ axis, the parameter qz is null near the trap center; instead, it assumes nonzero
values if the finite electrodes’ length and misalignment effects are introduced. In order to evaluate qz

and the residual axial micromotion amplitude, a modified version of the trap assembly, having the
blade electrodes displaced from their exact position, was simulated. Since the mechanical tolerance on
the blades’ position was 5µm, the angular deviations were neglected in the simulation, while the linear
displacements were considered equal to the tolerance for taking into account the worst possible case.
This evaluation showed a residual axial micromotion amplitude of about 0.5 nm, which corresponded
to a micromotion energy of about 1µK.

0.0 0.5 1.0 1.5 2.0

-1.0

-0.5

0.0

0.5

1.0

q

a

Figure 7. Stability diagram of the Paul trap, characterized by a coupling angle of 45 ◦ between the RF
electrodes and endcaps’ axes. The black thick dots represent the {q, a} pairs for which the Paul trap
(described by a system of coupled Mathieu equations) is stable, whereas the small gray dots indicate
values of parameters for which the trap is unstable. The blue curves, calculated with the multiple-scale
perturbation theory, enclose a stability region that is wider than the numerically estimated one, yet
well describing the stability behavior for small values of q. The green area is the stability region of the
corresponding uncoupled system.

4.2. Thermal Simulations

4.2.1. RF Power Dissipation

Each pair of electrodes can be schematized as a capacitor having a complicated shape and
containing a dielectric medium (ceramics of the lateral supports) disposed only around their cylindrical
extrusions. As a result, an equivalent series resistance (ESR) can be associated with each electrode,
the value of which can be estimated as:

ESR =
tan(δ)
ωRF C

where C is the lossless electrode capacitance and tan(δ) is the loss tangent, which arises from the phasor
representation of the equivalent circuit parameters. For Shapal Hi-M Soft, its value is tan(δ) ≈ 10−3.
The reactive term of the ESR is responsible for the heating of the parts composing the trap by the Joule
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effect. The electrodes’ ESR is calculated by using a COMSOL Multiphysics simulation to estimate the
corresponding capacitances C. In the case of the blade electrodes, with ωRF = 2π · 3.5 MHz and an
RMS amplitude of 200 V/

√
2, we found an overall dissipated power of 0.69 mW for the upper blades

and 0.74 mW for the lower ones. These values can be employed for simulating the trap heating due to
the RF power losses in stationary conditions, using as the only constraint a fixed temperature for the
external side of the flange (293 K). The results showed a small temperature increase on the order of
tens of mK, with the hot spots mainly localized at the interfaces between the electrodes and the lateral
supports. Regarding the thermal perturbation on the optical cavity, the simulation showed at most a
vertical thermal expansion of 0.4 nm for the ceramic lateral supports, while along the directions in the
horizontal plane, there were no appreciable expansions.

4.2.2. Ions Loading from Paul Trap to Electro-Optical Trap

Studying the temperature variation of the trap is fundamental for estimating possible changes of
bow-tie cavity length. In particular, in the transition phase from the Paul trap to the electro-optical
trap, a local heating source (dissipated RF power) is turned off, thus possibly causing instabilities and
long thermal drifts to the bow-tie cavity and the trapping interference pattern. If the temperature of
the system undergoes a decrease of about 2 K, the calculations show that the corresponding variation
of the optical cavity length would lead to a shift of the central minimum of the interference pattern
equal to the waist of the trapping laser beam (40µm). Therefore, the trapped ions would be slowly
displaced until reaching the end of the trapping region. For better stabilizing the system temperature
and avoiding shifts of the confining interference pattern, a plate made of copper was attached to
the titanium base plate of the trap. This element was thermally connected to outside the vacuum
chamber through a thick feedthrough fixed on one of its extremities. In this way, the plate worked
as a “cold finger” that helped with dissipating the heat produced in the trap and, possibly, actively
controlling the trap temperature. To this end, a vacuum-compatible thermistor was placed on the plate
to monitor the trap assembly temperature.

4.2.3. Ovens’ Simulations

Thermal simulations with COMSOL Multiphysics on the ovens’ system were essential for
establishing the behavior of the tubes when high current bursts were applied. The parameters of the
current pulses’ train were fundamental knobs that had to be experimentally adjusted in order to reach
a satisfying trade-off between the number of atoms in the vapor flux and the minimization of the
vacuum pollution. For instance, the response of the ovens to a given current could be characterized by
detecting the neutrals’ flux. The reported trapping system was designed for an experiment that used
barium ions, generated through a two-photon resonant photo-ionization process [35]. Neutral barium
atoms coming out of the ovens were firstly excited through the intercombination line from the ground
state 6s2 1S0 to the level 5d6p 3D1 by shining light at 413.2 nm, then they were ionized by absorbing
a second photon at the same wavelength. However, barium atoms in the intermediate energy level
could decay to the 6s5d 3D1 or 6s5d 3D2 metastable levels, emitting a photon at 659.5 nm or 667.5 nm,
respectively. Therefore, it was possible to detect the atomic flux out of the ovens by exciting the atoms
with blue light and detecting their fluorescence in the red region of the spectrum. The graph displayed
in Figure 8 reports the average photon counts for a binning time of 10 ms, feeding one of the two tubes
with a train of 20 current pulses 400 ms long with a duty cycle of 75%, linearly modulated in amplitude
with a decreasing trend from 100 A to 70 A. The measurement was taken by using the photon counting
head Hamamatsu H11870-02 and the photon counting unit Hamamatsu C8855-01. The graph, where
t = 0 marks the beginning of the current feeding, shows that the first current pulses just heated up the
tube without causing the appreciable neutrals’ emission and that the atomic flux began in the second
half of the pulses’ train. When the current was switched off (after 8 s), the emission rapidly decreased
due to the copper heat-sink draining out the heat. At the end of the sequence, the neutrals’ emission
spikes caused by the last pulses of the sequence could be recognized.
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Another aspect that played a central role in the optimal functioning of the ovens was the geometry,
and in particular the ratio between the internal and external diameters φint/φext. Increasing this
ratio, i.e., reducing the tube section, caused an increment of the dissipated heat via the Joule effect.
Nevertheless, the diameters’ ratio was limited by the feasibility of its mechanical fabrication (in the
presented case, this ratio was 0.8). With lower values, thermal simulations showed a temperature
increasing during the current burst much less than the one predicted for φint/φext = 0.8, thus leading
to longer current pulses in order to obtain proper atomic vapors.
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Figure 8. Average counts of photons emitted by neutral barium atoms decaying from the 5d6p 3D1 level
are plotted as a function of time. The neutrals are emitted from one of the two ovens by applying a train
of 20 current pulses 400 ms long with a duty cycle of 75%, whereas the amplitude is linearly decreased
from 100 A to 70 A to keep the temperature from exponentially rising. Time t = 0 corresponds to the
moment at which the current pulses’ train starts.

5. Conclusions

In this work, we reported the design of an electro-optical trap for ions, suitable for experiments
with atom-ion quantum mixtures. The trap assembly, composed of a linear Paul trap, an electro-optical
trap, and two ovens, resulted from an adaptive design process strongly based on numerical simulations
for determining the shape of the electrical potentials and the heat distribution on the electrodes. This
trap was specifically designed for a quantum mixture of barium ions and lithium atoms. Nevertheless,
the apparatus could be easily adapted to other atom-ion mixtures with minor changes of the optical
setup. The position and shape of the Paul trap’s endcaps ensured a wide optical access to the ion
trapping region, facilitating the optical transport of ultracold atoms, which would be produced in
an optical trap in a separate vacuum chamber [36]. The production of quantum gases and trapped
ions would be synchronized by managing the overall experimental sequence with a single control
apparatus [37]. The micromotion-free dynamics of the ions in the electro-optical trap would allow the
ions to reach ultracold temperatures by sympathetic cooling with a quantum gas, eventually leading
to atom-ion collisions in the s-wave scattering regime.
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traps. Phys. Rev. A 2007, 76, 041401. [CrossRef]

20. De, S.; Dammalapati, U.; Jungmann, K.; Willmann, L. Magneto-optical trapping of barium. Phys. Rev. A
2009, 79, 041402. [CrossRef]

21. Naik, D.S.; Kuyumjyan, G.; Pandey, D.; Bouyer, P.; Bertoldi, A. Bose-Einstein condensate array in a malleable
optical trap formed in a traveling wave cavity. Quantum Sci. Technol. 2018, 3, 045009. [CrossRef]

22. Nagourney, W. Quantum Electronics for Atomic Physics; Oxford University Press: New York, NY, USA, 2010.

http://dx.doi.org/10.1088/1367-2630/13/8/083005
http://dx.doi.org/10.1103/PhysRevA.76.063602
http://dx.doi.org/10.1038/nature08865
http://www.ncbi.nlm.nih.gov/pubmed/20237565
http://dx.doi.org/10.1038/nphys2373
http://dx.doi.org/10.1103/PhysRevLett.107.243202
http://dx.doi.org/10.1080/00107514.2013.854618
http://dx.doi.org/10.1103/PhysRevLett.109.253201
http://dx.doi.org/10.1038/nphoton.2010.236
http://dx.doi.org/10.1038/ncomms6587
http://www.ncbi.nlm.nih.gov/pubmed/25418465
http://dx.doi.org/10.1103/PhysRevLett.109.233004
http://dx.doi.org/10.1103/PhysRevX.8.021028
http://dx.doi.org/10.1103/PhysRevA.92.031402
http://dx.doi.org/10.1103/PhysRevA.86.013417
http://dx.doi.org/10.1103/PhysRevA.76.041401
http://dx.doi.org/10.1103/PhysRevA.79.041402
http://dx.doi.org/10.1088/2058-9565/aad48e


Appl. Sci. 2020, 10, 2222 17 of 17

23. Herskind, P.F.; Dantan, A.; Albert, M.; Marler, J.P.; Drewsen, M. Positioning of the rf potential minimum line
of a linear Paul trap with micrometer precision. J. Phys. B At. Mol. Phys. 2009, 42, 154008. [CrossRef]

24. Roos, C.F. Controlling the Quantum State of Trapped Ions. Ph.D. Thesis, Leopold-Franzens-Universitat
Innsbruck, Innsbruck, Austria, 2000.

25. Doležal, M.; Balling, P.; Nisbet-Jones, P.B.R.; King, S.A.; Jones, J.M.; Klein, H.A.; Gill, P.; Lindvall, T.;
Wallin, A.E.; Merimaa, M.; et al. Analysis of thermal radiation in ion traps for optical frequency standards.
Metrologia 2015, 52, 842. [CrossRef]

26. Brun, R.; Rademakers, F. ROOT—An Object Oriented Data Analysis Framework. Nucl. Inst. Methods Phys.
Res. Sect. A 1997, 389, 81–86. [CrossRef]

27. Singer, K.; Poschinger, U.; Murphy, M.; Ivanov, P.; Ziesel, F.; Calarco, T.; Schmidt-Kaler, F. Colloquium:
Trapped ions as quantum bits: Essential numerical tools. Rev. Mod. Phys. 2010, 82, 2609–2632. [CrossRef]

28. Saad, Y.; Schultz, M. GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear
Systems. SIAM J. Sci. Stat. Comput. 1986, 7, 856–869. [CrossRef]

29. Greengard, L.; Rokhlin, V. A fast algorithm for particle simulations. J. Comput. Phys. 1987, 73, 325–348.
[CrossRef]

30. Landa, H.; Drewsen, M.; Reznik, B.; Retzker, A. Classical and quantum modes of coupled Mathieu equations.
J. Phys. A Math. Theor. 2012, 45, 455305. [CrossRef]

31. Likins, P.W.; Lindh, K.G. Infinite determinant methods for stability analysis of periodic-coefficient differential
equations. AIAA J. 1970, 8, 680–686. [CrossRef]

32. Ozakin, A.; Shaikh, F. Stability analysis of surface ion traps. arXiv 2011, arXiv:quant-ph/1109.2160.
33. Detti, A.; De Pas, M.; Duca, L.; Perego, E.; Sias, C. A compact radiofrequency drive based on interdependent

resonant circuits for precise control of ion traps. Rev. Sci. Instrum. 2019, 90, 023201. [CrossRef]
34. Berkeland, D.J.; Miller, J.D.; Bergquist, J.C.; Itano, W.M.; Wineland, D.J. Minimization of ion micromotion in

a Paul trap. J. Appl. Phys. 1998, 83, 5025–5033. [CrossRef]
35. Leschhorn, G.; Hasegawa, T.; Schaetz, T. Efficient photo-ionization for barium ion trapping using a

dipole-allowed resonant two-photon transition. Appl. Phys. B 2012, 108, 159–165. [CrossRef]
36. Berto, F.; Sias, C. Prospects for single photon sideband cooling in fermionic Lithium. arXiv 2019,

arXiv:physics.atom-ph/1912.08104.
37. Perego, E.; Pomponio, M.; Detti, A.; Duca, L.; Sias, C.; Calosso, C.E. A scalable hardware and software control

apparatus for experiments with hybrid quantum systems. Rev. Sci. Instrum. 2018, 89, 113116. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1088/0953-4075/42/15/154008
http://dx.doi.org/10.1088/0026-1394/52/6/842
http://dx.doi.org/10.1016/S0168-9002(97)00048-X
http://dx.doi.org/10.1103/RevModPhys.82.2609
http://dx.doi.org/10.1137/0907058
http://dx.doi.org/10.1016/0021-9991(87)90140-9
http://dx.doi.org/10.1088/1751-8113/45/45/455305
http://dx.doi.org/10.2514/3.5741
http://dx.doi.org/10.1063/1.5063305
http://dx.doi.org/10.1063/1.367318
http://dx.doi.org/10.1007/s00340-012-5101-y
http://dx.doi.org/10.1063/1.5049120
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Electro-Optical Trap
	Trap Design
	Electro-Optical Trap Design
	Paul Trap Design
	The Atomic Source
	Machining Tolerances
	Materials

	Simulations on the Trapping System
	Electrical Simulations
	Paul Trap Stability Diagram
	Residual Axial Radiofrequency

	Thermal Simulations
	RF Power Dissipation
	Ions Loading from Paul Trap to Electro-Optical Trap
	Ovens' Simulations


	Conclusions
	References

