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Abstract: Accurate generative chatbots are usually trained on large datasets of question–answer pairs.
Despite such datasets not existing for some languages, it does not reduce the need for companies to
have chatbot technology in their websites. However, companies usually own small domain-specific
datasets (at least in the form of an FAQ) about their products, services, or used technologies. In this
research, we seek effective solutions to create generative seq2seq-based chatbots from very small data.
Since experiments are carried out in English and morphologically complex Lithuanian languages,
we have an opportunity to compare results for languages with very different characteristics. We
experimentally explore three encoder–decoder LSTM-based approaches (simple LSTM, stacked LSTM,
and BiLSTM), three word embedding types (one-hot encoding, fastText, and BERT embeddings),
and five encoder–decoder architectures based on different encoder and decoder vectorization units.
Furthermore, all offered approaches are applied to the pre-processed datasets with removed and
separated punctuation. The experimental investigation revealed the advantages of the stacked LSTM
and BiLSTM encoder architectures and BERT embedding vectorization (especially for the encoder).
The best achieved BLUE on English/Lithuanian datasets with removed and separated punctuation
was ~0.513/~0.505 and ~0.488/~0.439, respectively. Better results were achieved with the English
language, because generating different inflection forms for the morphologically complex Lithuanian
is a harder task. The BLUE scores fell into the range defining the quality of the generated answers
as good or very good for both languages. This research was performed with very small datasets
having little variety in covered topics, which makes this research not only more difficult, but also
more interesting. Moreover, to our knowledge, it is the first attempt to train generative chatbots for
a morphologically complex language.

Keywords: generative chatbot; encoder–decoder architecture; LSTM; BiLSTM; fastText and BERT
word embeddings

1. Introduction

Modern society is not imaginable without personal virtual assistants and conversational chatbots
such as, e.g., Siri, Alexa, Google assistant, Cortana; they are completely changing our communication
habits and interactions with technology. Intelligent chatbots are fast and can substitute some human
functions; however, artificial intelligence (AI) and natural language processing (NLP) technologies are
still limited with respect to replacing humans completely.

The first chatbot ELIZA [1] invented in 1966 was based on keyword recognition in the text and
acted more as a psychotherapist. ELIZA did not answer questions; it asked questions instead, and
these questions were based on the keywords in human responses. Currently, there exist different types
of chatbots according to communication channels (voice-enabled or text-based), knowledge domain
(closed, general, or open domain), provided service (interpersonal or intrapersonal), used learning

Appl. Sci. 2020, 10, 2221; doi:10.3390/app10072221 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://dx.doi.org/10.3390/app10072221
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/7/2221?type=check_update&version=2


Appl. Sci. 2020, 10, 2221 2 of 22

methods (rule-based, retrieval-based, or machine learning-based), and provided answers (extracted or
generated answers).

Chatbot features such as its appearance/design or friendly human-like behavior are important,
but not as important as adequate reactions to human requests and correct fluent answers. Therefore,
a focus of our research is on natural language understanding (NLU) (responsible for comprehension
of user questions) and natural language generation (NLG) (responsible for producing answers in
the natural language) modules. Accurate generative-based chatbots are trained on large datasets;
unfortunately, such datasets are not available for some languages. Despite this, companies/institutions
often own small question–answer datasets (at least in the form of frequently asked questions (FAQs))
and want to have chatbot technology on their websites.

In this research, we explore seq2seq-based deep learning (DL) architecture solutions by training
generative chatbots on extremely small datasets. Furthermore, our experiments are performed with
two languages: English and morphologically complex Lithuanian. The generative chatbot creation
task for the Lithuanian language is more challenging due to the following language characteristics:
high inflection, almost twice larger vocabulary (compared to English), rich word-derivation system,
and relatively free word-order in a sentence.

2. Related Work

In this review, we exclude all outdated rule-based or keyword-based techniques used in chatbot
technology, focusing on the machine learning (ML) approaches [2] only, with particular attention paid
to DL solutions (a review on different types of chatbots can also be found in Reference [3]). Existing
ML-based chatbots can be grouped according to their model types, i.e., intent-detection or generative.

An intent-detection model is a typical example of a text classification task [4], where a classifier
learns how to predict intents (classes) from a set of requests/questions (text instances) incoming from
the user (a review of different intent detection techniques can also be found in Reference [5]). Since
the intent is usually selected from a closed set of candidates and the related answer is prompted
to the user, there is no flexibility in the content and the wording of these answers. Traditional
ML approaches typically rely on a set of textual feature types and discrete feature representations.
The research in Reference [6] described the investigation of n-grams, parts of speech, and support
vector machine (SVM) classifiers with three categories (expressing user intent to purchase/quit,
recommend/warn, or praise/complain) on the English dataset.

In general, intent detection is a broad task that can be defined as a churn detection (when a user
expresses their intent to leave a service usually due to another customer) problem, a question topic
identification problem, etc. The authors in Reference [7] offered an effective knowledge distillation
and posterior regularization method for churn detection. Their approach enabled a convolutional
neural network (CNN) applied on top of four types of pre-trained word embeddings (random,
skip-gram, continuous bag-of-words, and gloVe) to learn simultaneously from three logic rules and
supervised microblog English data. The research in Reference [8] also tackled the churn detection
problem; however, in this case, it was solved for multilingual English and German conversations.
The offered solution employed a CNN method with a bidirectional gated recurrent unit (BiGRU)
applied on the pre-trained English and German fastText embeddings. The authors experimentally
proved that their churn detection method tested on Twitter conversations was accurate and benefited
from the multilingual approach. The authors in Reference [9] reported question topic intent-detection
results for five languages (English and morphologically complex Estonian, Latvian, Lithuanian, and
Russian). They investigated two neural classifiers: feed forward neural network (FFNN) and CNN
with fastText embeddings. The accuracy of these classifiers was tested on three benchmark datasets
(the datasets were originally in English, but the authors machine-translated them into other languages
as well): askUbuntu (with 53 and 109 questions for testing and training, respectively); chatbot (with
100 and 106); webApps (30 and 59). The authors claimed that, despite extremely small training data,
their system demonstrated state-of-the-art performance.
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In addition to previously summarized closed-set intent detection problems, some researchers
dealt with a so-called zero-shot intent-detection problem by attempting to detect even those intents
for which no labeled data are currently available. The research in Reference [10] presented a two-fold
capsule-based architecture which (1) discriminates the existing intents with the bidirectional long
short-term memory (BiLSTM) network and multiple self-attention heads, and (2) learns to detect
emerging intents from the existing ones on the zero-shot via knowledge transfer (based on the evaluated
similarity). The authors achieved sufficient results on two benchmark datasets: one containing English
and another containing Chinese conversations.

Sometimes, the correct intent cannot be determined from one incoming question and must be
clarified in further conversation. This type of intent detection is a so-called multi-turn response
selection problem, which was addressed in Reference [11]. The offered deep attention matching
network (DAMN) method uses representations of text segments at different granularities with stacked
self-attention and then extracts truly matched segment pairs with attention across the whole context
and the author’s response. The authors proved the effectiveness of their method on the Ubuntu Corpus
V1 (regarding the Ubuntu system troubleshooting in English) and the Douban Conversation Corpus
(from social networking on open-domain topics in Chinese), both having ~0.5 million multi-turn
contexts for training.

Furthermore, we focus on another large group of chatbots—in particular, generative
chatbots—typically functioning in the machine translation manner; however, instead of translating
from one language to another, they “translate” the input sequence (question) into the output sequence
(answer) by sequentially generating text elements (usually words). This particular family of ML
approaches is called sequence-to-sequence (abbreviated as seq2seq). Seq2seq chatbots can be created
using either statistical machine translation (SML) or the recently popular neural machine translation
(NMT) approaches. The pioneering work [12], describing how the SMT approach was applied to
~1.3 million conversations from the Twitter, demonstrated promising results and encouraged other
researchers to continue working on generative chatbot problems.

Neural approaches typically employ the encoder–decoder architecture, where the encoder
sequentially reads the input text (question) and encodes it into a fixed-length context vector and
the decoder sequentially outputs the text (answer) after reading the context vector. The encoder–decoder
approaches learn to generate answers based on either the isolated question–answer (QA) pairs or on
the whole conversation.

The majority of approaches reuse (or slightly modify) the encoder–decoder architecture (described
in Reference [13]) that was initially offered for NMT; both encoder and decoder are composed of
long short-term memory (LSTM) networks applied on word2vec embeddings [14]. The authors in
Reference [15] applied their seq2seq model to two benchmark English datasets: the closed-domain
Information Technology (IT) Helpdesk Troubleshooting dataset and the open-domain OpenSubtitles
dataset. A subjective evaluation of their system demonstrated its superiority over the Cleverbot
(a popular chatterbot application). Similar research was performed in Reference [16]; however, instead
of the English language, the authors applied the seq2seq method to a Chinese dataset, containing
~1 million QA pairs taken from Chinese online forums. The performed subjective evaluation proved that
the offered approach achieved good results in modeling the responding style of a human. The authors
in Reference [17] used an encoder–decoder architecture enhanced with an attention mechanism. Their
method was successfully applied to a mixture of words and syllables as encoding/decoding units. Two
Korean corpora were used to train this model: the larger non-dialogue corpus captured the Korean
language model and the smaller dialogue corpus (containing ~0.5 million sentence pairs) collected
from mobile chat rooms was used to train the dialogue.

The research in Reference [18] presented a conversational model focusing on previous
queries/questions. They offered a hierarchical recurrent encoder–decoder neural-based approach that
considers the history (i.e., sequences of words for each query and sequence of queries) of previously
submitted queries, which was successfully trained on ~0.4 million English queries, demonstrating
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sufficient performance. Some researchers went even further by offering solutions for how to generate
responses for a whole conversation to be successful. Reference [19] described a seminal work toward
the creation of a neural conversational model for the long-term success of dialogues. The authors
addressed the problem of long-term dialogues when some generated utterance influences the future
outcomes. They integrated encoder–decoder (generating responses) and reinforcement learning
(optimizing a future reward by capturing global properties of a good conversation) paradigms.
The reward was determined with ease of answering, information flow, and semantic coherence
conversational properties. The offered method was trained on an English dataset containing ~0.8 million
sequences and, afterward, the conversation was successfully simulated between two virtual agents.

The comparative experiments with an encoder–decoder architecture demonstrated its superiority
over SMT approaches and even information retrieval (IR)-based chatbots. The recurrent neural
network (RNN) encoder–decoder trained with ~4.4 million Chinese microblogging post-response pairs
outperformed SMT approaches [20]. The BLUE scores with the encoder–decoder (containing two LSTM
neural networks with one-hot encoding for the input and the output) trained on ~0.7 million of English
conversations were significantly better compared to the results with the IR method in Reference [21].
Moreover, the seq2seq-based generative conversational model (adapted from Reference [13] with
tf-idf features) can enhance the results of IR systems [22]; it was experimentally proven with a model
trained on ~0.66 million QA pairs in English, but sometimes mixed with Hindi. The hybrid approach
in Reference [23] benefited from the combination of both IR and generative chatbot technology; it
outperformed IR and generative chatbots used alone. The method uses IR to extract QA pair candidates
and then re-ranks candidates based on the attentive seq2seq model. If some candidate is scored higher
than the determined threshold, it is considered as the answer; otherwise, the answer is generated with
the generation-based model. This chatbot trained on ~9 million QA pairs from an online customer
service center was mainly adjusted for conversations in Chinese.

The analysis reveals that chatbot research mostly focused on English and Chinese languages,
which have enough resources. Despite this, chatbots for other languages were sometimes
created using artificial data as in Reference [9], where Estonian, Latvian, Lithuanian, and Russian
intent-detection-based chatbots were trained on machine-translated English benchmark datasets.
The existing conversational generative chatbots can be used with a wide range of languages, as
demonstrated in Reference [24]. However, chatbot technology was not presented for any of these
languages; instead, chatbot technology was demonstrated for English, testing the power of Google
machine translation tools. Intent-detection models can be accurate even when trained on the smaller
datasets, whereas, for generative models, hundreds of thousands or even millions of QA pairs are
usually used.

The main contribution of our research is that we create a closed-domain generative chatbot by
training it on an extremely small, but real dataset. Moreover, we train it on two languages (English and
morphologically complex Lithuanian) and perform compare analysis. Furthermore, we investigate
several encoder–decoder architectures applied to different word embedding types (one-hot encoding,
fastText, and BERT). We anticipate that our findings could be interesting for researchers training
generative chatbots on small data. To our knowledge, this is the first paper reporting generative
chatbot results for a morphologically complex language.

3. Dataset

Experiments with generative chatbots were performed using a small domain-specific manually
created dataset, having 567 QA pairs. This dataset contains real questions/answers about the company
Tilde’s (https://tilde.lt/) products, prices, supported languages, and used technologies. The dataset
is available in two versions: English (EN) and Lithuanian (LT) (statistics about these datasets can be
found in Table 1). Questions and answers in English are manually translated from Lithuanian.

https://tilde.lt/
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Table 1. English (EN) and Lithuanian (LT) datasets used in generative chatbots (Q and A abbreviations
stand for questions and answers, respectively).

Number of
Q and A

Number of Tokens
in Set Q

Number of Tokens
in Set A

Average Q Length
in Tokens

Average A Length
in Tokens

EN/LT EN LT EN LT EN LT EN LT

Removed
punctuation 567 4025 2987 11,594 11,349 7.4 5.3 19.6 19.2

Separated
punctuation 567 4728 3549 14,818 14,531 8.5 6.8 25.4 24.9

The datasets for both languages were pre-processed using the following steps:

• Punctuation removal (when punctuation is ignored). This type of pre-processing is a right choice
under the assumption that the punctuation in generated answers will be restored afterward.

• Punctuation separation (when punctuation is not removed, but separated from the tokens).
This type allows training the generative chatbot on how to generate answers with words and
punctuation marks at once. The punctuation is particularly important for languages (such as, e.g.,
Lithuanian) having relatively free word-order in a sentence where a single comma can absolutely
change the sentence meaning. For example, the sentence Bausti negalima pasigailėti depending on
the position of a comma can obtain two opposite meanings: Bausti, negalima pasigailėti (punishment,
no mercy) and Bausti negalima, pasigailėti (no punishment, mercy).

4. Seq2seq Models

The seq2seq framework introduced by Google was initially applied to NMT tasks [13,25]. Later, in
the field of NLP, seq2seq models were also used for text summarization [26], parsing [27], or generative
chatbots (as presented in Section 2). These models can address the challenge of a variable input and
output length.

Formally, the seq2seq task can be described as follows: let (x1, x2, . . . , xn) be an input (question)
sequence and (y1, y2, . . . , ym) be an output (answer) sequence, not necessarily of the same length
(n , m). The architecture of seq2seq models contains two base components (see Figure 1): (1) anencoder,
responsible for encoding the input (x1, x2, . . . , xn) into an intermediate representation hn

(Q) (which
is the last hidden state of the encoder), and (2) a decoder, responsible for decoding the intermediate
representation hn

(Q) = h0
(A) into the output (y1, y2, . . . , ym). The conditional probability for (x1, x2, . . . ,

xn) to generate (y1, y2, . . . , ym) is presented in Equation (1).

p
(
y1, y2, . . . , ym

∣∣∣x1, x2, . . . , xn
)
=

m∏
t=1

p
(
yt

∣∣∣∣h(Q)
n , y1, . . . , yt−1

)
. (1)

Thus, the main goal of the task is to maximize the conditional probability max(p(y1, y2, . . . , ym|x1,
x2, . . . , xn)) that, for (x1, x2, . . . , xn), the most probable sequence (y1, y2, . . . , ym) would be found.

More precisely, the encoder–decoder architecture is composed of several layers: (1) an encoder
embedding layer, converting the input sequence into word embeddings: (x1, x2, . . . , xn)→ (x1

′, x2
′,

. . . , xn
′); (2) an encoder recurrent-based layer; (3) a decoder embedding layer, converting the output

sequence into the word embeddings: (y1, y2, . . . , ym)→ (y1
′, y2

′, . . . , ym
′); (4) a decoder recurrent-based

layer; (5) a decoder output layer generating the conditional probability ot = p(yt|hn
(Q), y1, . . . , yt−1) for yt

from the hidden state ht
(A) at each time step t. Virtual words <bos> and <eos> represent the beginning

and the end of the answer, respectively; the generation of the answer is terminated after generation of
<eos>.

In the encoder and decoder layers, we use the recurrent-based approach (suitable for processing
sequential data, i.e., text), but not the simple recurrent neural network (RNN), because it suffers from
the vanishing gradient problem and, therefore, is not suitable for longer sequences. Instead of RNN,
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we employ long short-term memory (LSTM) (introduced in Reference [28]) and bidirectional LSTM
(introduced in Reference [29]) architectures, both having long memory. LSTM runs the input forward
and, therefore, preserves information from the past, whereas bidirectional LSTM can run the input in
two ways, forward and backward, thus preserving information both from the past and from the future
in any hidden state. Both encoder and decoder are jointly trained; errors are backpropagated through
the entire model and weights are adjusted. The encoder–decoder weights are adjusted in 200 epochs
with the batch size equal to 5.
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Figure 1. The basic recurrent-based encoder–decoder architecture.

Three different seq2seq architectures (in Figures 2–4) explored in our experiments were
implemented with the functional API using Tensorflow [30] (the python library used for dataflow and
machine learning) with Keras [31] (the python library for deep learning). Used architectures were
plotted with the plot_model function in Keras.
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as BiLSTM encoder and LSTM decoder). E1, E2, E3, E4_h, E4_c represent the encoder; D1, D2, D3
represent the decoder.

All seq2seq architectures were applied on top of word embeddings. In our experiments, we used
the following types:

• One-hot encoding. This is a discrete representation of words mapped into corresponding vectors
containing all zero values, except for one value equal to 1. Thus, each word is represented by
its unique vector with the value of 1 at a different position. A length of such a vector becomes
the vocabulary size. Sizes of question and answer vocabularies are not necessary equal; therefore,
the lengths of their one-hot encoding vectors are also different.

• FastText (presented in Reference [32]). FastText is a library (offered by Facebook’s AI Research
Lab) used to train neural distributional embeddings able to catch semantic similarities between
words. In this research, we experiment with English (cc.en.300.vec) and Lithuanian (cc.lt.300.vec)
fastText embeddings trained using continuous-bag-of-words (CBOW) with position-weights, in
300 dimensions, with character 5-g of window size five and 10 negatives [33]. Each fastText word
embedding is a sum of n-gram vectors incoming into that word (e.g., 5-g chatb, hatbo, atbot n-grams
compose the word chatbot). FastText word embeddings can be created even for misspelled words,
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and the obtained vectors are close to their correct equivalents. This is an advantage for languages
having the missing diacritics problem in non-normative texts. Despite the Lithuanian language
having this problem, the dataset that we used in this research contained only normative texts.

• BERT (Bidirectional Encoder Representations from Transformers) (offered in Reference [34]). This
is Google’s neural-based technique (with multi-directional language modeling and attention
mechanisms), which demonstrates state-of-the-art performance on a wide range of NLP tasks,
including chatbot technology. Distributional BERT embeddings are also robust to disambiguation
problems, i.e., homonyms with BERT are represented by different vectors. In our experiments, we
used the BERT service [35] with the base multilingual cased 12-layer, 768-hidden, 12-head model
for 104 languages (covering English and Lithuanian).

Different vectorization types were tested in the following encoder–decoder units:

1. One-hot encoding with both encoder and decoder;
2. FastText (abbreviated ft) embeddings with the encoder and one-hot encoding with the decoder;
3. BERT embeddings with the encoder and one-hot encoding with the decoder;
4. FastText embeddings with both encoder and decoder;
5. BERT embeddings with both encoder and decoder.

5. Experiments and Results

To avoid subjectivity and the high human evaluation cost, the quality of the chatbot output
is typically evaluated using machine translation evaluation metrics such as BLUE [36] or text
summarization metrics such as ROUGE [37].

The BLEU (Bilingual Evaluation Understudy) score compares the chatbot-generated output text
(so-called hypothesis) with a human-produced answer (so-called reference or gold-standard) text and
indicates how many n-grams in the output text appear in the reference. The BLUE score can be any
value within the interval [0, 1] and is mathematically defined in Equation (2).

BLUE = BP×

 N∏
n=1

precisionn


1/N

, (2)

where N is the a maximum n-gram number n = [1, N] (N = 4 in our evaluations).
BP (brevity penalty) and precisionn are defined with Equations (3) and (4), respectively.

BP = min

1, exp

1−
re f length

outlength

, (3)

where re f length is a reference length, and outlength is the chatbot output length.

precisionn =

∑
n min

(
mn

out, mn
re f

)
∑

n′ mn′
out

, (4)

where mn
out is the number of n-grams in the chatbot output matching the reference, mn

re f is the number

of n-grams in the reference, and
∑
n′

mn′
out is the total number of n-grams in the chatbot output.

The BLUE scores were calculated using the python implemented blue_score module from
the translate package in the nltk platform [38]. The blue_score parameters were initialized with
the default values, except for the smoothing function, which was set to method2 [39] (adding 1 to both
numerator and denominator); n-gram weights were set to 0.25 and N = 4.

Depending on the interval the BLUE score values are in, the chatbot result can be interpreted as
useless (if BLUE < 10), hard to get the gist (10–19), the gist is clear, but has significant errors (20–29),



Appl. Sci. 2020, 10, 2221 9 of 22

average quality (30–40), high quality (40–50), very high quality (50–60), and better than human (>60).
These values and interpretations were taken from the Google Cloud’s AI and Machine Learning
product description in Reference [40].

The ROUGE (Recall-Oriented Understudy for Gisting Evaluation) metric measures the similarity of
the chatbot-generated output to the reference text. ROUGE-Nprecision, ROUGE-Nrecall, and ROUGE-Nf-score
are mathematically defined by Equations (5)–(7), respectively.

ROUGE−Nprecision =
mn

overlap

mn
out

, (5)

where mn
out is the number of n-grams in the chatbot output, and mn

overlap is the number of overlapping
n-grams in the chatbot output and the reference.

ROUGE−Nrecall =
mn

overlap

mn
re f

, (6)

where mn
re f is the number of n-grams in the reference, and mn

overlap is the number of overlapping
n-grams in the chatbot output and the reference.

ROUGE−N f−score =
2 × ROUGE−Nprecision ×ROUGE−Nrecall

ROUGE−Nprecision + ROUGE−Nrecall
. (7)

In addition to ROUGE-N, we also evaluated ROUGE-L, which measures the longest common
subsequence (LCS) of tokens and even catches sentence-level word order. ROUGE-Lprecision,
ROUGE-Lrecall, and ROUGE-Lf-score are mathematically defined by Equations (8)–(10), respectively.

ROUGE−Lprecision =
LCS
mout

, (8)

where mout is the number of tokens in the chatbot output.

ROUGE−Lrecall =
LCS
mre f

, (9)

where mre f is the number of tokens in the reference.

ROUGE−L f−score =
2×ROUGE−Lprecision ×ROUGE−Lrecall

ROUGE−Lprecision + ROUGE−Lrecall
. (10)

Both ROUGE-N and ROUGE-L differ from the BLUE score because they do not have the brevity
penalty (responsible for high-scoring outputs matching the reference text in length). ROUGE-N
computes the n-gram match only for the chosen fixed n-gram size n, whereas ROUGE-L searches for
the longest overlapping sequence of tokens and does not require defining the n-grams at all. Both
ROUGE-N and ROUGE-L can be any value within the interval [0, 1]. Despite this, there are neither
defined thresholds nor their interpretations; higher ROUGE-N and ROUGE-L values denote the higher
intelligence of the chatbot. Both metrics are important for our intra-comparison purposes.

For ROUGE-N and ROUGE-L evaluation, we used Python library rouge [41], with N = 2 in all
our evaluations.

To train and test our seq2seq models and to overcome the problem of a very small dataset
(described in Section 3), we used five-fold cross validation (20% of the training data were used for
validation). The obtained results were averaged and the confidence intervals (with a confidence level
of 95% and alpha = 0.05) were calculated.
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The BLUE scores with the LSTM encoder and decoder model applied using different vectorization
types to the datasets with removed and separated punctuation are presented in Figures 5 and 6,
respectively. The ROUGE-2 and ROUGE-L precision/recall/f-score values are presented in Tables 2
and 3, respectively.Appl. Sci. 2020, 10, 2221 10 of 19 
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Figure 5. Averaged BLUE scores with confidence intervals using the LSTM encoder and decoder model
with different vectorization types on the dataset with removed punctuation.
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Figure 6. Averaged BLUE scores with confidence intervals using the LSTM encoder and decoder model
with different vectorization types on the dataset with separated punctuation.
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Table 2. Averaged Recall-Oriented Understudy for Gisting Evaluation (ROUGE)-2 and ROUGE-L precision/recall/f-score values with confidence intervals using
the LSTM encoder and decoder model with different vectorization types on the dataset with removed punctuation. The best values in the column for EN and LT are in
bold. BERT—Bidirectional Encoder Representations from Transformers; ft—FastText.

Experiments ROUGE-2 ROUGE-L

Precision Recall f-Score Precision Recall f-Score

EN 0.458 ± 0.035 0.478 ± 0.025 0.463 ± 0.031 0.525 ± 0.033 0.559 ± 0.022 0.522 ± 0.030

LT 0.467 ± 0.042 0.475 ± 0.044 0.469 ± 0.043 0.526 ± 0.035 0.552 ± 0.045 0.522 ± 0.038

ft_encoder_EN 0.307 ± 0.020 0.323 ± 0.025 0.310 ± 0.022 0.385 ± 0.018 0.423 ± 0.021 0.382 ± 0.017

ft_encoder_LT 0.401 ± 0.038 0.411 ± 0.038 0.403 ± 0.038 0.476 ± 0.039 0.498 ± 0.041 0.470 ± 0.041

ft_encoder_decoder_EN 0.326 ± 0.022 0.363 ± 0.024 0.337 ± 0.023 0.416 ± 0.023 0.483 ± 0.025 0.422 ± 0.024

ft_encoder_decoder_LT 0.296 ± 0.040 0.405 ± 0.060 0.331 ± 0.044 0.372 ± 0.033 0.491 ± 0.050 0.388 ± 0.036

BERT_encoder_EN 0.395 ± 0.034 0.418 ± 0.032 0.401 ± 0.034 0.474 ± 0.029 0.515 ± 0.026 0.474 ± 0.029

BERT_encoder_LT 0.400 ± 0.026 0.427 ± 0.030 0.407 ± 0.027 0.469 ± 0.032 0.518 ± 0.037 0.471 ± 0.034

BERT_encoder_decoder_EN 0.402 ± 0.019 0.426 ± 0.020 0.409 ± 0.019 0.473 ± 0.023 0.517 ± 0.023 0.477 ± 0.023

BERT_encoder_decoder_LT 0.369 ± 0.026 0.386 ± 0.029 0.372 ± 0.026 0.442 ± 0.030 0.472 ± 0.026 0.436 ± 0.025
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Table 3. Averaged ROUGE-2 and ROUGE-L precision/recall/f-score values with confidence intervals using the LSTM encoder and decoder model with different
vectorization types on the dataset with separated punctuation. The best values in the column for EN and LT are in bold.

Experiments ROUGE-2 ROUGE-L

Precision Recall f-Score Precision Recall f-Score

EN 0.456 ± 0.020 0.474 ± 0.015 0.459 ± 0.016 0.526 ± 0.011 0.558 ± 0.008 0.520 ± 0.007

LT 0.431 ± 0.043 0.431 ± 0.044 0.428 ± 0.043 0.497 ± 0.040 0.515 ± 0.040 0.488 ± 0.041

ft_encoder_EN 0.346 ± 0.028 0.363 ± 0.025 0.349 ± 0.026 0.429 ± 0.024 0.464 ± 0.021 0.425 ± 0.022

ft_encoder_LT 0.380 ± 0.043 0.389 ± 0.045 0.381 ± 0.044 0.454 ± 0.039 0.482 ± 0.037 0.451 ± 0.038

ft_encoder_decoder_EN 0.290 ± 0.018 0.362 ± 0.049 0.312 ± 0.027 0.388 ± 0.023 0.479 ± 0.049 0.397 ± 0.030

ft_encoder_decoder_LT 0.287 ± 0.018 0.411 ± 0.029 0.328 ± 0.022 0.374 ± 0.026 0.508 ± 0.027 0.393 ± 0.026

BERT_encoder_EN 0.428 ± 0.012 0.426 ± 0.007 0.421 ± 0.009 0.511 ± 0.020 0.525 ± 0.011 0.494 ± 0.013

BERT_encoder_LT 0.401 ± 0.028 0.417 ± 0.026 0.404 ± 0.028 0.464 ± 0.022 0.503 ± 0.020 0.460 ± 0.022

BERT_encoder_decoder_EN 0.455 ± 0.012 0.454 ± 0.020 0.448 ± 0.016 0.531 ± 0.007 0.546 ± 0.015 0.513 ± 0.012

BERT_encoder_decoder_LT 0.409 ± 0.027 0.423 ± 0.028 0.410 ± 0.028 0.473 ± 0.021 0.513 ± 0.024 0.471 ± 0.023
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Despite the used punctuation treatment, the highest BLUE values (as presented in Figures 5 and 6)
with the simple LSTM encoder architecture were achieved using one-hot encoding vectorization for
both encoder and decoder. FastText vectorization is recommended only for the encoder and only for
the Lithuanian language. Differences in BLUE scores are not so huge with the BERT vectorization,
whether for different languages or for different vectorization units (BERT for encoder; BERT for encoder
plus decoder).

In Tables 2 and 3, we see the same trend as in Figures 5 and 6, respectively. Hence, one-hot
encoding vectorization for both units is the best solution with the simple LSTM encoder–decoder
architecture for both English and Lithuanian languages. FastText vectorization with the encoder and
decoder units is not recommended.

The BLUE scores with the LSTM2 encoder and decoder model applied with different vectorization
types to the datasets with removed and separated punctuation are presented in Figures 7 and 8,
respectively. The ROUGE-2 and ROUGE-L precision/recall/f-score values are presented in Tables 4
and 5, respectively.
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Figure 7. Averaged BLUE scores with confidence intervals using the LSTM2 encoder and LSTM decoder
model with different vectorization types on the dataset with removed punctuation.
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Figure 8. Averaged BLUE scores with confidence intervals using the LSTM2 encoder and LSTM decoder
model with different vectorization types on the dataset with separated punctuation.
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Table 4. Averaged ROUGE-2 and ROUGE-L precision/recall/f-score values with confidence intervals using the LSTM2 encoder and LSTM decoder model with different
vectorization types on the dataset with removed punctuation. The best values in the column for EN and LT are in bold.

Experiments ROUGE-2 ROUGE-L

Precision Recall f-Score Precision Recall f-Score

EN 0.420 ± 0.033 0.432 ± 0.024 0.416 ± 0.029 0.482 ± 0.032 0.508 ± 0.022 0.469 ± 0.029

LT 0.368 ± 0.031 0.378 ± 0.025 0.368 ± 0.027 0.432 ± 0.025 0.455 ± 0.022 0.423 ± 0.024

ft_encoder_EN 0.331 ± 0.030 0.348 ± 0.045 0.332 ± 0.037 0.416 ± 0.023 0.451 ± 0.047 0.410 ± 0.032

ft_encoder_LT 0.395 ± 0.010 0.405 ± 0.010 0.397 ± 0.011 0.470 ± 0.007 0.490 ± 0.002 0.463 ± 0.006

ft_encoder_decoder_EN 0.298 ± 0.025 0.384 ± 0.030 0.328 ± 0.026 0.404 ± 0.033 0.506 ± 0.027 0.418 ± 0.030

ft_encoder_decoder_LT 0.290 ± 0.030 0.365 ± 0.041 0.315 ± 0.033 0.368 ± 0.027 0.456 ± 0.030 0.379 ± 0.027

BERT_encoder_EN 0.488 ± 0.020 0.488 ± 0.030 0.483 ± 0.026 0.573 ± 0.015 0.585 ± 0.033 0.557 ± 0.026

BERT_encoder_LT 0.469 ± 0.021 0.476 ± 0.018 0.470 ± 0.020 0.528 ± 0.018 0.553 ± 0.019 0.525 ± 0.017

BERT_encoder_decoder_EN 0.446 ± 0.048 0.441 ± 0.047 0.438 ± 0.046 0.531 ± 0.036 0.536 ± 0.030 0.510 ± 0.032

BERT_encoder_decoder_LT 0.421 ± 0.042 0.435 ± 0.032 0.423 ± 0.039 0.481 ± 0.040 0.518 ± 0.028 0.481 ± 0.039
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Table 5. Averaged ROUGE-2 and ROUGE-L precision/recall/f-score values with confidence intervals using the LSTM2 encoder and LSTM decoder model with different
vectorization types on the dataset with separated punctuation. The best values in the column for EN and LT are in bold.

Experiments ROUGE-2 ROUGE-L

Precision Recall f-Score Precision Recall f-Score

EN 0.445 ± 0.044 0.458 ± 0.046 0.446 ± 0.042 0.503 ± 0.031 0.530 ± 0.025 0.497 ± 0.026

LT 0.415 ± 0.051 0.429 ± 0.052 0.417 ± 0.052 0.475 ± 0.043 0.498 ± 0.049 0.464 ± 0.047

ft_encoder_EN 0.320 ± 0.024 0.337 ± 0.028 0.323 ± 0.025 0.408 ± 0.020 0.445 ± 0.029 0.406 ± 0.020

ft_encoder_LT 0.369 ± 0.038 0.380 ± 0.040 0.371 ± 0.039 0.442 ± 0.031 0.460 ± 0.033 0.435 ± 0.026

ft_encoder_decoder_EN 0.347 ± 0.021 0.399 ± 0.023 0.365 ± 0.021 0.449 ± 0.023 0.505 ± 0.031 0.448 ± 0.022

ft_encoder_decoder_LT 0.339 ± 0.039 0.421 ± 0.039 0.368 ± 0.037 0.421 ± 0.033 0.502 ± 0.028 0.433 ± 0.030

BERT_encoder_EN 0.396 ± 0.045 0.417 ± 0.048 0.400 ± 0.048 0.477 ± 0.036 0.519 ± 0.040 0.473 ± 0.039

BERT_encoder_LT 0.418 ± 0.051 0.444 ± 0.050 0.424 ± 0.050 0.479 ± 0.045 0.520 ± 0.039 0.475 ± 0.042

BERT_encoder_decoder_EN 0.407 ± 0.042 0.431 ± 0.045 0.413 ± 0.043 0.484 ± 0.033 0.533 ± 0.040 0.484 ± 0.037

BERT_encoder_decoder_LT 0.392 ± 0.037 0.417 ± 0.036 0.399 ± 0.037 0.452 ± 0.040 0.496 ± 0.030 0.455 ± 0.039
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When comparing Figure 7 with Figure 8 representing the BLUE scores with the stacked LSTM
encoder, it is difficult to draw very firm conclusions. One-hot encoding for both encoder and decoder
units remains the best vectorization technique on the English dataset with the separated punctuation.
However, if excluding this particular result, BERT vectorization (for the encoder or encoder plus
decoder) stands out with the best achieved BLUE values for both languages. Surprisingly, with
the separated punctuation and BLUE vectorization, the results on the Lithuanian dataset are even better.
When comparing Figure 5 with Figure 7 (simple LSTM with stacked LSTM on the removed punctuation)
and Figure 6 with Figure 8 (simple LSTM with stacked LSTM on the separated punctuation), the stacked
LSTM encoder demonstrates similar results with the fastText encoding; however, BERT encoding is
recommended with the removed punctuation for both languages, but it is definitely not the choice
with separated punctuation in the English language.

Tables 4 and 5 demonstrate a similar trend to Figures 7 and 8, respectively.
The BLUE scores with the BiLSTM encoder and decoder model applied with different vectorization

types to the datasets with removed and separated punctuation are presented in Figures 9 and 10,
respectively. The ROUGE-2 and ROUGE-L precision/recall/f-score values are presented in Tables 6
and 7, respectively.Appl. Sci. 2020, 10, 2221 14 of 19 

 
Figure 9. Averaged BLUE scores with confidence intervals using BiLSTM encoder and LSTM decoder 
model with different vectorization types on the dataset with removed punctuation. 

 
Figure 10. Averaged BLUE scores with confidence intervals using the BiLSTM encoder and LSTM 
decoder model with different vectorization types on the dataset with separated punctuation. 

  

0.
48

3

0.
43

7

0.
42

6

0.
45

5

0.
26

5

0.
31

7

0.
48

9

0.
39

7

0.
51

3

0.
45

7
0.2

0.3

0.4

0.5

0.6

EN LT

ft_
en

co
de

r_
EN

ft_
en

co
de

r_
LT

ft_
en

co
de

r_
de

co
de

r_
EN

ft_
en

co
de

r_
de

co
de

r_
LT

BE
R

T_
en

co
de

r_
EN

BE
R

T_
en

co
de

r_
LT

BE
R

T_
en

co
de

r_
de

co
de

r_
EN

BE
R

T_
en

co
de

r_
de

co
de

r_
LT

0.
44

5

0.
39

2

0.
39

4

0.
37

6

0.
30

0

0.
27

4

0.
45

6

0.
37

0

0.
46

3

0.
43

9

0.2

0.3

0.4

0.5

0.6

EN LT

ft_
en

co
de

r_
EN

ft_
en

co
de

r_
LT

ft_
en

co
de

r_
de

co
de

r_
EN

ft_
en

co
de

r_
de

co
de

r_
LT

BE
R

T_
en

co
de

r_
EN

BE
R

T_
en

co
de

r_
LT

BE
R

T_
en

co
de

r_
de

co
de

r_
EN

BE
R

T_
en

co
de

r_
de

co
de

r_
LT

Figure 9. Averaged BLUE scores with confidence intervals using BiLSTM encoder and LSTM decoder
model with different vectorization types on the dataset with removed punctuation.
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Figure 10. Averaged BLUE scores with confidence intervals using the BiLSTM encoder and LSTM
decoder model with different vectorization types on the dataset with separated punctuation.
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Table 6. Averaged ROUGE-2 and ROUGE-L precision/recall/f-score values with confidence intervals using the BiLSTM encoder and LSTM decoder model with
different vectorization types on the dataset with removed punctuation. The best values in the column for EN and LT are in bold.

Experiments ROUGE-2 ROUGE-L

Precision Recall f-Score Precision Recall f-Score

EN 0.442 ± 0.018 0.455 ± 0.024 0.445 ± 0.020 0.512 ± 0.014 0.545 ± 0.019 0.510 ± 0.014

LT 0.413 ± 0.058 0.415 ± 0.057 0.411 ± 0.056 0.477 ± 0.059 0.488 ± 0.058 0.466 ± 0.055

ft_encoder_EN 0.368 ± 0.045 0.387 ± 0.043 0.373 ± 0.045 0.462 ± 0.043 0.492 ± 0.033 0.456 ± 0.039

ft_encoder_LT 0.414 ± 0.027 0.419 ± 0.021 0.413 ± 0.025 0.472 ± 0.026 0.491 ± 0.015 0.464 ± 0.026

ft_encoder_decoder_EN 0.290 ± 0.038 0.407 ± 0.043 0.328 ± 0.040 0.391 ± 0.039 0.508 ± 0.028 0.406 ± 0.037

ft_encoder_decoder_LT 0.325 ± 0.007 0.479 ± 0.016 0.372 ± 0.011 0.398 ± 0.007 0.563 ± 0.016 0.421 ± 0.009

BERT_encoder_EN 0.468 ± 0.015 0.477 ± 0.025 0.467 ± 0.018 0.561 ± 0.006 0.576 ± 0.018 0.546 ± 0.009

BERT_encoder_LT 0.392 ± 0.031 0.415 ± 0.027 0.398 ± 0.031 0.465 ± 0.031 0.520 ± 0.021 0.465 ± 0.032

BERT_encoder_decoder_EN 0.496 ± 0.020 0.504 ± 0.016 0.495 ± 0.018 0.571 ± 0.018 0.601 ± 0.007 0.565 ± 0.014

BERT_encoder_decoder_LT 0.428 ± 0.024 0.445 ± 0.024 0.431 ± 0.023 0.483 ± 0.021 0.525 ± 0.031 0.482 ± 0.023



Appl. Sci. 2020, 10, 2221 18 of 22

Table 7. Averaged ROUGE-2 and ROUGE-L precision/recall/f-score values with confidence intervals using the BiLSTM encoder and LSTM decoder model with
different vectorization types on the dataset with separated punctuation. The best values in the column for EN and LT are in bold.

Experiments ROUGE-2 ROUGE-L

Precision Recall f-Score Precision Recall f-Score

EN 0.420 ± 0.033 0.432 ± 0.024 0.416 ± 0.029 0.482 ± 0.032 0.508 ± 0.022 0.469 ± 0.029

LT 0.368 ± 0.031 0.378 ± 0.025 0.368 ± 0.027 0.432 ± 0.025 0.455 ± 0.022 0.423 ± 0.024

ft_encoder_EN 0.331 ± 0.030 0.348 ± 0.045 0.332 ± 0.037 0.416 ± 0.023 0.451 ± 0.047 0.410 ± 0.032

ft_encoder_LT 0.395 ± 0.010 0.405 ± 0.010 0.397 ± 0.011 0.470 ± 0.007 0.490 ± 0.002 0.463 ± 0.006

ft_encoder_decoder_EN 0.298 ± 0.025 0.384 ± 0.030 0.328 ± 0.026 0.404 ± 0.033 0.506 ± 0.027 0.418 ± 0.030

ft_encoder_decoder_LT 0.290 ± 0.030 0.365 ± 0.041 0.315 ± 0.033 0.368 ± 0.027 0.456 ± 0.030 0.379 ± 0.027

BERT_encoder_EN 0.446 ± 0.048 0.441 ± 0.047 0.438 ± 0.046 0.531 ± 0.036 0.536 ± 0.030 0.510 ± 0.032

BERT_encoder_LT 0.421 ± 0.042 0.435 ± 0.032 0.423 ± 0.039 0.481 ± 0.040 0.518 ± 0.028 0.481 ± 0.039

BERT_encoder_decoder_EN 0.488 ± 0.020 0.488 ± 0.030 0.483 ± 0.026 0.573 ± 0.015 0.585 ± 0.033 0.557 ± 0.026

BERT_encoder_decoder_LT 0.469 ± 0.021 0.476 ± 0.018 0.470 ± 0.020 0.528 ± 0.018 0.553 ± 0.019 0.525 ± 0.017
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With the BiLSTM encoder, BLUE values in Figures 9 and 10 are the highest with the BERT
vectorization in both languages, especially when BERT vectorization is used for both encoder and
decoder units. However, fastText vectorization for both encoder and decoder is not recommended for
any of the used languages. When comparing BiLSTM encoder values with the appropriate simple
LSTM or stacked LSTM values in Figures 5–8, the recommendation would be to use more sophisticated
architectures. If choosing the appropriate vectorization, stacked LSTM works better using the English
dataset and BiLSTM works better using the Lithuanian dataset.

As presented in Tables 6 and 7, BERT vectorization is the best choice with the BiLSTM
encoder. The conclusions from ROUGE-2 and ROUGE-L values in Tables 6 and 7 are consistent
with the conclusions drawn from the appropriate BLUE values in Figures 9 and 10, respectively.

6. Discussion

Focusing on the results (when BLUE is considered as the primary metric and ROUGE is considered
as the auxiliary metric for our analysis) allows us to make the statements below. Although with some
small exceptions, there is a correlation between calculated BLUE scores and ROUGE-2/ROUGE-L values.

In most of the cases, results on datasets with separated punctuation were a bit lower compared
to results with the removed punctuation pre-processing. This is because the separated punctuation
task is more complicated; instead of generating words only, the seq2seq model has to generate both
words and punctuation. The detailed error analysis revealed that the majority of errors were due to
the incorrectly generated punctuation marks. Despite the language and the punctuation pre-processing
type, the worst BLUE score values were calculated with the fastText embedding vectorization for
both encoder and decoder units (ft_encoder_decoder). Furthermore, results on the Lithuanian dataset
were even worse compared to English. On the contrary, the performance of the fastText encoder with
one-hot decoding on the Lithuanian dataset was obviously better compared to English in all cases
except for the dataset with separated punctuation and BiLSTM encoder and LSTM decoder.

However, BERT embeddings are definitely the better choice compared to fastText. With the LSTM
encoder and decoder and the BiLSTM encoder and LSTM decoder models, BERT performed better
in English, whereas the stacked LSTM encoder architecture (i.e., with the LSTM2 encoder and LSTM
decoder) applied to BERT embeddings was more suitable for the morphologically complex Lithuanian.

One-hot vectorization for both encoder and decoder units with the simple LSTM encoder and
decoder model outperformed other vectorization types. With more complex encoder units (i.e., stacked
LSTM or BiLSTM), one-hot encoding was the best choice only for the separated punctuation dataset
for the English language; however, in all other cases, it was outperformed by BERT embeddings.

The overall best BLUE/ROUGE-2f-score/ROUGE-Lf-score values on the English dataset with removed
punctuation pre-processing were ~0.513/~0.495/~0.565. These results were achieved with the BiLSTM
encoder and LSTM decoder model applied with BERT embeddings for both encoder and decoder
units. The best BLUE/ROUGE-2f-score/ROUGE-Lf-score values on the Lithuanian dataset with removed
punctuation were a bit lower, i.e., ~0.505/~0.470/~0.525. Values were obtained with the stacked LSTM2
encoder and LSTM decoder with BERT embeddings for the encoder unit and one-hot vectorization for
the decoder. The best BLUE value (~0.488) on the English dataset with separated punctuation was
calculated using the stacked LSTM2 encoder and LSTM decoder model applied on top of one-hot
vectorization for both units. The best ROUGE-2f-score and ROUGE-Lf-score values equal to ~0.483
and ~0.557, respectively, were achieved with the BiLSTM encoder and LSTM decoder model and
BERT embeddings for both units. The best BLUE/ROUGE-2f-score/ROUGE-Lf-score values equal to
~0.439/~0.470/~0.525 on the Lithuanian dataset with separated punctuation were achieved using
the BiLSTM encoder and LSTM decoder model and BERT embeddings for both units.

The lowest calculated BLUE score values (as a percentage) for both English and Lithuanian fell
into the range 20–29, which means that the gist of the generated answers was still clear, but had
significant errors (as explained in Section 5). The highest achieved values on the dataset with removed
punctuation were at the beginning of the interval 50–60; therefore, the quality of the generated answers
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was considered as very high; the highest values in the dataset with separated punctuation was in
the range 40–50 that is still considered as high quality. This allows us to conclude that the results are
accurate enough to be applied in practice.

Despite practical benefits, this work also brings a scientific contribution. Generative chatbots were
never previously trained for a morphologically complex language (such as Lithuanian). Furthermore, in
general, they were never trained on such a small dataset. In addition to testing different encoder–decoder
architectures (simple LSTM encoder, stacked LSTM encoder, BiLSTM encoder), different embedding
types (one-hot, fastText, BERT), and different vectorization options (only encoder, encoder plus
decoder), we tested two very different languages and formulated recommendations regarding what
works best for each of these languages. Moreover, we anticipate that, for languages with similar
characteristics under similar experimental conditions, similar results can be expected.

In addition to positive things, limitations of the investigated approach need to be mentioned as
well. Similar accuracy can be expected only if the used dataset is in a closed domain and contains
a limited number of topics. In our case, we tested the dataset covering rephrased questions and answers
about a company’s products, as well as their prices, used technologies, and supported languages. Thus,
such a generative chatbot cannot answer questions that are unrelated. Furthermore, BERT embeddings
are recommended as the best vectorization option; however, these embeddings are supported for
a limited number of languages (i.e., ~100 languages).

7. Conclusions

In this research, we presented the first generative chatbot results obtained on very small
domain-specific datasets for English and morphologically complex Lithuanian languages.

We investigated different encoder–decoder architectures (with LSTM, stacked LSTM, and BiLSTM),
different embedding types (one-hot, fastText, and BERT), different vectorization types in different
encoder and decoder units, and different punctuation treatment (its removal or separation).

The best BLUE values on the English/Lithuanian datasets with removed and separated punctuation
were ~0.513/~0.505 and ~0.488/~0.439, respectively. This research revealed that more complex
architectures (based on the stacked LSTM and BiLSTM encoders) are more accurate compared to
simple LSTM. It also demonstrates the advantages of BERT embeddings. Despite BLUE values for
the Lithuanian language being a bit lower, compared to English, the results are good enough to be
applied in practice. This research is important and interesting because (1) generative chatbots are
trained on very small domain-specific data, and (2) it reports the first generative chatbot results for
a morphologically complex language.

Despite the search for effective solutions on small datasets being much more challenging, in future
research, we are planning to augment our datasets with newly covered topics, to experiment with
different seq2seq architectures by tuning their hyper-parameters.
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