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Abstract: This paper presents a unified speech enhancement system to remove both background
noise and interfering speech in serious noise environments by jointly utilizing the parabolic reflector
model and neural beamformer. First, the amplification property of paraboloid is discussed, which
significantly improves the Signal-to-Noise Ratio (SNR) of a desired signal. Therefore, an appropriate
paraboloid channel is analyzed and designed through the boundary element method. On the other
hand, a time-frequency masking approach and a mask-based beamforming approach are discussed and
incorporated in an enhancement system. It is worth noticing that signals provided by the paraboloid
and the beamformer are exactly complementary. Finally, these signals are employed in a learning-based
fusion framework to further improve the system performance in low SNR environments. Experiments
demonstrate that our system is effective and robust in five different noisy conditions (speech interfered
with factory, pink, destroyer engine, volvo, and babble noise), as well as in different noise levels.
Compared with the original noisy speech, significant average objective metrics improvements are
about ∆STOI = 0.28, ∆PESQ = 1.31, ∆fwSegSNR = 11.9.

Keywords: speech enhancement; parabolic reflector; microphone array; deep neural
network; beamformer

1. Introduction

Perceived quality and intelligibility of speech signals are degraded by pervasive noise. This
presents challenges to many applications, such as speech communication, hearing aids, and speech
recognition. For these applications, speech enhancement is crucial to recover signals from the noisy
speech. The enhancements offered by multichannel devices are usually greater than those of
single-channel devices [1]. Recent studies indicate that it is beneficial to extract a desired speech
signal by beamforming in noisy and reverberant environments, especially in high-level background
noise [2,3].

Traditional beamforming methods require a priori knowledge of the Direction of Arrival (DoA) or
the transfer functions from an acoustic source to microphones [4]. It is a challenging task to estimate
the spatial information of a microphone array in adverse acoustic conditions. According to the auditory
masking effect, the time-frequency (T-F) masking technique applies a real-valued or binary mask on
the signal’s spectrum to filter out unwanted components, because the mask reserves speech-dominant
T-F units and weakens noise-dominant T-F units [5]. Advanced beamforming operations require an
estimate of the cross-power spectral density matrix of the noise. These statistics can be obtained by
estimating spectral masks for speech and noise. Then, beamformers with a mask estimation network
can also enhance the quality of speech. Networks are first applied in neural beamformers [6,7] to
estimate the time-frequency masks and then masks are applied on the signal’s spectrum to predict
speech and noise statistics. With these statistics, multichannel filter coefficients are computed based
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on well-studied beamforming designs, such as Minimum Variance Distortion Response (MVDR)
beamformers [8], Linearly Constrained Minimum Variance beamformers (LCMV) [9], and Generalized
Eigenvalue (GEV) beamformers [10]. Gannot S et al. [11] explored many popular data-dependent
spatial filter design criteria and recognized several well-known beamforming criteria as special cases.
S. Chakrabarty et al. [12] proposed a Convolutional Neural Network (CNN)-based mask estimation,
which was learned from all the channels simultaneously. The results have shown it is beneficial to
utilize multi-channel information, while the approach is array-dependent.

Many researchers choose to work on the single channel mask predictor because it can be applied
to all kinds of array configurations [13]. Recent studies have mainly focused on how to design an
efficient network structure for single channel mask prediction. The prediction can provide a more
accurate mask that assigns a proportion of each T-F bin to each of the sources. A Recurrent Neural
Network (RNN) with Long Short-Term Memory (LSTM) cells [14] was used to estimate the time-domain
spatial filter weights of a filter-and-sum beamformer for each channel separately, which are then
convolved with the input signal to obtain the enhanced signal. Then, this work was extended to
estimate frequency domain spatial filter weights in [15]. The recording quality of a microphone has
an important impact on speech enhancement performance of the system. It is crucial to subtract
the channel which captures the signal with less unwanted components as the reference microphone to
provide data for mask prediction. Ochiai T et al. [16] proposed an attention mechanism for reference
microphone selection, while Lei Sun [17] adopted the data cleaning and augment operations to attain
data to yield better performance in following stages. However, these methods mainly focused on
a learning-based approach to select desired data from existing channels, which made the system more
complicated. Furthermore, there are no significant differences in the different channels of homogenous
sensors. Hence, effective signals cannot be acquired. Given the trends above, in this paper, a novel
method for speech enhancement that combines acoustic focus and Deep Neural Network (DNN)-based
multi-channel beamforming is proposed. The microphone array speech enhancement framework
is extended by integrating the speech enhancement component from the parabolic reflector into
the mask-based beamformer. The performances of the two different enhancement approaches with
two different types of mask application are evaluated. The performances of a traditional Delay and
Sum Beamformer (DSB) are evaluated too. The performance of the proposed system is also compared
to a Complex Ideal Ratio Mask (CIRM) estimation method using a DNN network, presented in [18].
The performance of the proposed system for different noise types is also analyzed.

The rest of the paper is organized as follows. In Section 2, the design of the proposed system is
described, including the signal model, the acoustic focus performance of the paraboloid, as well as
masking and beamforming-based enhancement approaches. In Section 3, the experimental setups are
presented. In Section 4, results and analyses are reported. Section 5 concludes the paper.

2. Materials and Methods

In this section, the signal model is presented firstly. Then, quantitative analysis of the acoustic
focusing characteristics of the paraboloid along with a design of a parabolic reflector is rendered.
Following that, two different ways to incorporate the masks in a speech enhancement system are
presented. Finally, how to integrate the parabolic reflector (PR) model with multi-microphones
beamforming to yield a higher speech enhancement performance is presented.

2.1. Signal Model

A multi-channel data model with static sources and diffuse noise can be written as follows:

yi(t) = hi, j(t) ∗ s j(t) + vi(t), for i = 1, 2, . . . , L,, j = 1, 2, . . . , Q, (1)

where L denotes the number of microphones, and Q denotes the number of source signals. The notation
‘∗’ indicates convolution, and t indexes a time sample. yi(t) denotes the signal at microphone i, and
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s j(t) denotes the jth source signal. hi, j(t) defines the Room Impulse Response (RIR), which models
the aspect of sound propagation from source to receiver. An array of L microphones was utilized
throughout this work. In the Short Time Fourier Transform (STFT) domain, if the environment can be
assumed anechoic, the vector of received signal, y(n, k) = [Y(n, k, 1), . . . , Y(n, k, L)]T, at time frame n
and frequency bin k is given by Equation (2):

y(n, k) = xd(n, k) + vd(n, k) + v(n, k). (2)

The noise is divided into two components: diffuse noise, denoted by vd(n, k), and spatially
uncorrelated microphone self-noise, denoted by v(n, k).

2.2. Analysis of the Paraboloid with Acoustic Focus

2.2.1. Principles

Sten [19] studied the acoustic properties of a paraboloid. Two geometrical characteristics of
parabola are illustrated in Figure 1. These are essential for its application as an acoustic reflector.

Figure 1. Geometry of parabola and parallel incident waves. l

1. The angle between OP and the tangent on the point of contact P equals the angle between FP
and the same tangent. In acoustics, any incident wave route in parallel with the central axis will
always be focused into the same position, the focus;

2. For a given line at right angles to the axis, the sum of the lengths of OP and PF is a constant. This
means that the sound waves which are parallel to the central axis at the same frequency will have
the same phase when reflected to the focus.

and a are the depth and the focal length of paraboloid. Reflector diameter d is a function of ratio
l/a. F represents the focus point, P represents the reflection point, and OP is a straight line parallel to
the central axis.

As a consequence, the sound pressure is amplified at the focus F. According to [19], the amplification
of sounds parallels to the axis is given by Equation (3):

Fp =

1 +
[
4π

a
λ

ln(1 +
l
a
)

]2

+ 8π
a
λ

ln(1 +
l
a
) sin 4π

a
λ


1/2

, (3)

where Fp represents the sound pressure of the amplification factor at the focus, and it is also a pressure
factor. λ denotes the wavelength of sound, which equals the ratio of sound speed to sound frequency.

2.2.2. Performance Analysis and Validation

As illustrated in Equation (3), Fp is associated with three factors: a, l, and λ. Figure 2 is given to
illustrate the relationship of Fp, l/a, and the sound frequency when the diameter d is assumed as 1 m.
The gray plane (Fp = 0 dB) is the base plane, where there is no amplification or attenuation. The depth
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of paraboloid increases with the increase of the ratio l/a. We can intuitively understand the tendency
from Figure 2; that is, the amplification performance will increase, along with an increase in either
the frequency or the depth of the paraboloid. In addition, as the depth of the parabola increases,
the curve becomes smooth and gradually flattens. Therefore, the magnification performance cannot be
improved by deepening the paraboloid.

Figure 2. Theoretical amplification at the focus when the diameter is constant.

By means of the indirect boundary element method [20], a series of simulations were implemented
in LMS Virtual.Lab software. The results show the convergence of a sound in a parabolic model, which
is just the focus with the maximum sound pressure level.

In order to verify the feasibility of the PR-based method, the results obtained from the experiment
performed in a real anechoic chamber were compared with computer simulation results. According to
the results presented in Figure 3, both the simulation and the experimental results exhibited a similar
trend to theoretical rules in Equation (3). It is also noticeable that there were outliers in the measured
data curve. This is because the actual paraboloid was made up of plastic rather than a rigid body
(theoretically), which made sound waves partially penetrate the paraboloid. So, the ideal focusing
could not be achieved.

Figure 3. The results of validation.

Experimental results verified the effectiveness of the above theories. Based on the corresponding
results, the PR system was implemented, and the amplification function of PR was fitted with reference
to Equation (3). The ratio was assigned with l/a = 4 as a key parameter of the PR system. Other
structural parameters of the paraboloid were a = 40 mm, l = 160 mm, d = 320 mm.
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2.3. Two Approaches to Utilize Masks

The Ideal Ratio Mask (IRM) is a soft mask and is given as Equation (4):

IIRM(n, k) =

∣∣∣Xd(n, k, re fm)
∣∣∣∣∣∣Y(n, k, re fm)
∣∣∣ , (4)

where re fm denotes the reference microphone and m denotes the corresponding neural beamformer.
Y(n, k, re fm) denotes the signal recorded at the reference microphone, and Xd(n, k, re fm) represents
the estimated clean speech signal. For a noise mask, its value can be represented as 1−IIRM.

Two different approaches for incorporating a mask to obtain a desired signal are discussed below.

2.3.1. Direct Mask Application

In this approach, the mask can be applied directly to T-F representation of the microphone signal
at the reference microphone to calculate the ideal mask. An estimation of the desired signal is given by
Equation (5):

X̂d(n, k, re fm) = I(·)(n, k) ·Y(n, k, re fm), (5)

where I(·) represents the mask. Note that the phase of X̂d(n, k, re fm) is equal to the phase Y(n, k, re fm),
and the desired signal waveform is obtained by an inverse STFT with the estimated magnitude.

2.3.2. Neural Beamformer

The frequency-domain beamformer is used to reduce computational complexity. w(n, k) denotes
the corresponding beamforming filter coefficients. Using a spatial filtering approach, an estimation of
the desired signal is given as a linear combination of the microphone signals y(n, k), at each T− F bin,
as illustrated in Equation (6):

X̂d(n, k, re fm) = wH(n, k)y(n, k), (6)

where H represents conjugate transpose. In this work, the MVDR criterion was used to compute filter
coefficients, and in this criterion, coefficients were found by minimizing the power of noise components
at output, given by Equations (7) and (8).

w(n, k) = argmin
w

wHΦnw, (7)

subject to:
wH(n, k)a(n, k) = 1, (8)

where a(n, k) denotes the Relative Transfer Function (RTF) vector.
Considering the individual signal components in Equation (2) to be uncorrelated, the Power

Spectral Density (PSD) matrix of microphone signals can be expressed as Equation (9):

Φy(n, k) = E
{
y(n, k)yH(n, k)

}
= Φxd(n, k) + Φn(n, k), (9)

where E{·} represents the expectation operator, Φxd(n, k) denotes the rank-one PSD matrix of the desired
signal, and Φn(n, k), denotes the PSD matrix of noise components. PSD matrices are robustly estimated
using the expectation with respect to time-frequency masks as Equations (10) and (11):

Φxd(k) =
1∑N

n I(·)(n, k)

N∑
n=1

I(·)(n, k)y(n, k)yH(n, k), (10)

Φn(k) =
1∑N

n 1− I(·)(n, k)

N∑
n=1

(1− I(·)(n, k))y(n, k)yH(n, k), (11)
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The closed-form solution to the optimization problem is given by Equation (12) in [21]:

w(n, k) =
Φ−1

n a(n, k)

aH(n, k)Φ−1
n a(n, k)

. (12)

Adopting the optimization formalization [21], the explicit dependence of the above filter on
the relative transfer functions can be eliminated, and the following form can be obtained, as illustrated
in Equation (13):

w =
(Φn(k))

−1
Φxd(k)

Tr
(
(Φn(k))

−1
Φxd(k)

)u, (13)

where u is a one-hot vector representing a reference microphone, and Tr(·) represents matrix
trace operation.

The overall flowchart of the proposed speech enhancement framework is illustrated in Figure 4.
The circular microphone array captures the noisy speech. The speech is processed by a neural
beamformer, which removes most of the interference. So much high frequency information is lost. In
this approach, any microphone in the circular array can be defined as the reference microphone to
estimate the mask. The physical amplification characteristic of the designed PR model has significant
effects in speech enhancement, and some speech distortions are also introduced into the target speech.
The signals captured by the microphone at the focus and the output of the neural beamformer1 have
complementary information of the desired speech in the frequency domain. By processing the signals
from two approaches mentioned earlier, the fusion operation aims to make a trade-off between
speech distortion and speech intelligibility. The reflector microphone signal is utilized to estimate
the mask, and the direct mask application is used to enhance the desired speech. The Generalized
Cross-Correlation (GCC) method [22] is adopted to align the data from different processing methods.
The masked data are utilized by MVDR beamformer. During the postfiltering, the output of MVDR
beamformer is multiplied by IRM obtained by the mask estimation to get the final output.

Figure 4. The overall diagram of our proposed system.

In the proposed system, each neural beamformer is set as an MVDR beamformer, based on
a single-channel IRM estimation. With the same network structure, two higher quality signals are
used as input for the second beamforming. The enhancement performance is improved with a little
additional system complexity. It is also achievable to combine different types of neural beamformers to
meet our requirements.
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3. Experiment and Results

3.1. Experiment Setup

Considering the number of physical channels of the equipment used for data acquisition and
the structural parameters of the paraboloid, for all experiments, a uniform circular array was set
up, where L = 7 microphones, and the distance between the microphones was 18 cm. The other
microphone was at the focus of the parabolic reflector, and the circular array and the paraboloid were
combined into a whole, as shown in Figure 5. The input signals, with the sampling frequency of Fs
= 16 kHz, were transformed into the STFT domain, which used a Discrete Fourier Transform (DFT)
length of 256 and 50% overlap. Signals were divided into 16 ms frames with an 8 ms frame shift in
time-domain. McRoomSim [23] was used to generate the Room Impulse Responses (RIRs) required to
simulate different acoustic conditions. The room property was set to an anechoic chamber with a sound
absorption coefficient of 1, which means that there was no reverberation or other noise in the room. To
illustrate the independency of the source spatial position, eight different positions were set at different
angles. Table 1 shows the configuration used to generate the dataset. For each position in the training
stage, 100 speech signals were convolved with the simulated RIRs corresponding to the specific setup,
while for each position in the testing stage 60 speech signals were convolved. The proposed system was
evaluated on the IEEE database [24]. Each clean utterance was mixed by adding the speech interference
to each isolated noise (babble, volvo, destroyer engine, pink, and factory noise) at different SNRs from
–18 dB to 7 dB. The speech interference noise was an utterance of WSJ0 in around 10 s. The other five
noises were non-stationary and each signal was around 4 min long. Random cuts from the first half
of each noise were mixed with each training utterance to create the training mixtures, and cuts of
the second half of that were mixed with each testing utterance to create testing mixtures. Acoustic
conditions are shown in Figure 5, and different source positions are shown in Table 1 in detail.

Figure 5. Simulation environment.

Table 1. Different source positions.

Target Speech Noise Speech Interference

Training Position

[4, 0, 0] [1.3, 1.52, 2] [3.6, −3.5, 0.8]
[3, 0, 0] [1.8, 2.57, 0.6] [3.3, −1.58, 2.9]
[5, 0, 0] [2.5, 0, 3.66] [3, −3, 1.96]
[3, 0, 0] [1.8, 2.57, 0.6] [3.3, −1.58, 2.9]
[4, 0, 0] [2.3, 2, 1.89] [3.2, −2.65, 0.38]

Testing Position
[4, 0, 0] [1.3, −1,52, −2] [3.2, 2.65, 0.38]
[4, 0, 0] [1.8, −2.57, 0.6] [2.3, 2, 1.89]
[3, 0, 0] [1.8, 2.57, 0.6] [1.3, −1.52, 2]



Appl. Sci. 2020, 10, 2218 8 of 13

3.2. Training

Using IRM defined in Equation (4) as the learning target, DNN was designed, where the output
could be considered as the probabilities of the existence of speech at each time-frequency bin.
The magnitude, the second derivative of the magnitude, and the phase of the received signals for
each STFT time frame were directly provided as the input to the system [12]. Amplitude Modulation
Spectrogram (AMS), Relative Spectral Transform and Perceptual Linear Prediction (RST-PLP) [25]
were also appended to the feature vector. In this paper, Restricted Boltzmann Machine (RBM) [26]
based pre-training was used for DNN training. Supervised fine-tuning of the parameters throughout
the whole network was performed using the Mean Square Error (MSE) criterion, as illustrated in
Equation (14):

ρ =
1

2N

∑
n

∑
k

(IIRM(n, k) − Î(n, k))2, (14)

where Î(n, k) are the vectors of reference IRM, and N is the total number of frames for the input.
The DNN architecture was 2075-1024-1024-1024-129, which denotes that the size was 2075 (415 × 4
+ 415, including two left and two right context frames, and one current frame in the input layer),
1024 units for each of the four hidden layers, and 129 for the output layer (DFT length was 256,
where 256/2 + 1 is the total number of frequency bins). In this work, the dropout rate was 0.2, and
the momentum rate was set to 0.5 for the first five epochs, and afterwards the rate was changed to 0.9
for the remaining 35 epochs. The mini-batch size was set to 512. The sigmoid activation functions were
used for all hidden layers and the output layer. Other values were evaluated as well; however, this
combination performed best empirically.

In the following experimental evaluations, the method is called PR when processing noisy speech
through the physical model. The DSB used for comparison utilized ideal parametric information [27].
Since the estimated IRM from DNN was directly applied to a reference microphone signal, the method
was termed as IRM-F. Similarly, with the estimated CIRM, jointly estimating real and imaginary
components of STFT [18], the corresponding method is referred to as CIRM-F. When it is used to
estimate power spectral density matrices to be used within a MVDR beamformer, the method is
referred to as IRM-BF. The method proposed in this work is named PR-IRM-BF.

3.3. Results

The enhanced speech signals from each approach were evaluated in terms of three well-known
objective metrics, namely the Perceptual Evaluation of Speech Quality (PESQ), the Short-Time Objective
Intelligibility (STOI) score, and the frequency-weighted Segmental SNR (fwSegSNR).

As presented in Table 2, results of the comparison experiments in five mixed noise situations
showed that PR and IRM-BF had improved PESQ, STOI, and fwSegSNR performance compared with
the original speech in all mixed noise situations. In the presence of noise, a beamformer operation
removes speech interference but degrades the continuity of the target speech. PR is able to protect
target speech but it is not effective to eliminate high-energy speech interference.

Table 2. The average performance of the system in five mixed noise conditions.

Destroyer Engine Noise and Speech Interference

Measure SNR Noisy DSB IRM-F CIRM-F IRM-BF PR PR-IRM-BF

STOI

−18 dB 0.400 0.401 0.445 0.292 0.433 0.575 0.741
−13 dB 0.447 0.499 0.576 0.438 0.595 0.690 0.827
−8 dB 0.541 0.606 0.701 0.602 0.747 0.800 0.891
−3 dB 0.645 0.696 0.783 0.737 0.820 0.884 0.922
2 dB 0.756 0.763 0.861 0.843 0.884 0.941 0.938
7 dB 0.844 0.808 0.916 0.906 0.917 0.974 0.945
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Table 2. Cont.

PESQ

−18 dB 1.164 0.887 1.159 0.806 1.070 1.379 1.693
−13 dB 1.201 1.179 1.272 0.997 1.358 1.601 2.252
−8 dB 1.232 1.517 1.555 1.443 1.852 1.881 2.690
−3 dB 1.401 1.887 1.797 1.771 2.135 2.124 3.009
2 dB 1.718 2.249 2.101 2.212 2.532 2.437 3.287
7 dB 1.964 2.632 2.388 2.565 2.831 2.752 3.519

fwSegSNR

−18 dB −23.880 −17.140 −9.502 −3.233 −2.586 −13.094 0.644
−13 dB −18.862 −12.072 −5.819 −1.540 −0.926 −8.095 0.764
−8 dB −13.869 −7.168 −3.177 −0.201 0.584 −3.092 0.819
−3 dB −8.825 −2.178 −0.098 2.268 1.426 1.917 1.249
2 dB −3.860 2.688 3.073 4.597 1.697 6.908 1.264
7 dB 1.161 7.455 6.896 6.782 2.432 11.936 1.398

Babble noise and speech interference

Measure SNR Noisy DSB IRM-F CIRM-F IRM-BF PR PR-IRM-BF

STOI

−18 dB 0.352 0.362 0.389 0.323 0.381 0.510 0.656
−13 dB 0.409 0.447 0.492 0.362 0.484 0.643 0.779
−8 dB 0.490 0.543 0.618 0.511 0.631 0.768 0.863
−3 dB 0.594 0.641 0.726 0.656 0.767 0.867 0.909
2 dB 0.719 0.731 0.829 0.801 0.865 0.938 0.936
7 dB 0.828 0.801 0.896 0.884 0.903 0.973 0.946

PESQ

−18 dB 1.013 0.780 1.116 1.044 1.084 1.361 1.581
−13 dB 1.106 0.991 1.168 1.063 1.134 1.651 2.084
−8 dB 1.165 1.296 1.429 1.278 1.513 1.926 2.546
−3 dB 1.412 1.646 1.724 1.693 1.968 2.214 2.906
2 dB 1.747 2.020 2.097 2.071 2.452 2.558 3.218
7 dB 2.052 2.430 2.382 2.474 2.701 2.895 3.447

fwSegSNR

−18 dB −23.749 −20.353 −10.132 −7.863 −3.116 −12.036 −0.385
−13 dB −18.710 −15.373 −7.122 −3.650 −1.750 −6.971 −0.253
−8 dB −13.703 −10.374 −4.184 −1.033 −0.353 −1.967 0.369
−3 dB −8.677 −5.371 −1.356 1.315 0.854 2.993 0.982
2 dB −3.689 −0.379 2.119 3.639 1.573 8.035 1.367
7 dB 1.315 4.617 5.882 5.974 1.801 13.036 1.323

Factory noise and speech interference

Measure SNR Noisy DSB IRM-F CIRM-F IRM-BF PR PR-IRM-BF

STOI

−18 dB 0.375 0.382 0.387 0.334 0.382 0.531 0.658
−13 dB 0.423 0.469 0.494 0.375 0.482 0.653 0.781
−8 dB 0.493 0.569 0.624 0.521 0.649 0.771 0.863
−3 dB 0.611 0.662 0.746 0.676 0.790 0.875 0.912
2 dB 0.729 0.731 0.825 0.798 0.855 0.939 0.929
7 dB 0.833 0.773 0.896 0.878 0.899 0.974 0.944

PESQ

−18 dB 1.027 0.736 1.106 1.097 1.081 1.333 1.628
−13 dB 1.069 0.998 1.142 1.111 1.083 1.599 2.077
−8 dB 1.228 1.318 1.430 1.373 1.631 1.844 2.522
−3 dB 1.395 1.716 1.770 1.699 2.159 2.173 2.898
2 dB 1.715 2.108 2.037 2.058 2.427 2.508 3.170
7 dB 2.005 2.488 2.346 2.473 2.722 2.850 3.423

fwSegSNR

−18 dB −23.726 −20.386 −10.239 −7.031 −3.282 −12.125 0.194
−13 dB −18.722 −15.390 −7.514 −1.989 −1.587 −7.123 0.360
−8 dB −13.706 −10.401 −4.315 −0.456 −0.186 −2.134 0.502
−3 dB −8.713 −5.389 −1.120 1.576 1.049 2.879 0.915
2 dB −3.709 −0.407 1.931 3.538 1.473 7.879 1.128
7 dB 1.294 4.582 5.556 5.559 1.898 12.880 1.407
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Table 2. Cont.

Volvo noise and speech interference

Measure SNR Noisy DSB IRM-F CIRM-F IRM-BF PR PR-IRM-BF

STOI

−18 dB 0.361 0.393 0.618 0.479 0.705 0.619 0.808
−13 dB 0.456 0.488 0.722 0.603 0.806 0.744 0.874
−8 dB 0.562 0.589 0.800 0.704 0.870 0.843 0.910
−3 dB 0.677 0.678 0.868 0.805 0.904 0.913 0.930
2 dB 0.784 0.741 0.917 0.838 0.923 0.957 0.944
7 dB 0.868 0.780 0.949 0.923 0.930 0.981 0.947

PESQ

−18 dB 0.835 0.738 1.397 1.091 1.776 1.547 2.196
−13 dB 0.993 1.089 1.667 1.394 2.118 1.915 2.674
−8 dB 1.284 1.481 1.965 1.702 2.436 2.215 3.030
−3 dB 1.678 1.872 2.256 2.050 2.721 2.532 3.276
2 dB 1.982 2.265 2.533 3.357 2.877 2.871 3.486
7 dB 2.280 2.665 2.784 2.658 3.091 3.203 3.636

fwSegSNR

−18 dB −23.009 −22.330 −6.675 −2.596 −0.784 −8.496 0.576
−13 dB −17.892 −17.217 −4.041 −0.757 0.955 −3.413 0.818
−8 dB −12.890 −12.223 −1.529 1.016 1.718 1.588 1.083
−3 dB −7.887 −7.227 1.513 3.311 2.687 6.589 1.266
2 dB −2.885 −2.234 4.541 5.415 2.424 11.590 1.319
7 dB 2.117 2.763 7.748 7.932 2.237 16.596 1.376

Pink noise and speech interference

Measure SNR Noisy DSB IRM-F CIRM-F IRM-BF PR PR-IRM-BF

STOI

−18 dB 0.390 0.395 0.420 0.320 0.408 0.551 0.688
−13 dB 0.441 0.483 0.541 0.397 0.554 0.669 0.792
−8 dB 0.521 0.580 0.653 0.545 0.691 0.786 0.867
−3 dB 0.627 0.668 0.759 0.698 0.797 0.880 0.909
2 dB 0.736 0.731 0.830 0.811 0.856 0.941 0.934
7 dB 0.839 0.772 0.900 0.886 0.898 0.975 0.945

PESQ

−18 dB 1.003 0.746 1.085 1.007 1.072 1.314 1.738
−13 dB 1.028 1.043 1.190 1.040 1.267 1.587 2.203
−8 dB 1.135 1.393 1.488 1.390 1.781 1.839 2.587
−3 dB 1.375 1.783 1.807 1.776 2.200 2.149 2.916
2 dB 1.715 2.177 2.062 2.143 2.422 2.486 3.185
7 dB 1.988 2.554 2.350 2.512 2.775 2.837 3.469

fwSegSNR

−18 dB −23.746 −20.296 −10.597 −4.065 −3.235 −12.889 0.258
−13 dB −18.743 −15.300 −6.677 −1.282 −1.239 −7.889 0.265
−8 dB −13.740 −10.305 −3.933 −0.037 0.053 −2.889 0.388
−3 dB −8.737 −5.308 −0.544 1.862 1.3672 2.110 0.7513
2 dB −3.749 −0.322 2.200 3.881 1.698 7.101 1.039
7 dB 1.267 4.688 5.628 5.927 1.764 12.111 1.243

From the above analysis, the two isolated systems (PR, IRM-BF) have their own shortcomings
when addressing serious noises. In extremely low SNR environments, the proposed system significantly
outperformed the compared methods by utilizing the complementarity of PR and IRM-BF and made
a trade-off to get much better results over individual enhancements. In the case of 7 dB, the proposed
system caused performance degradation in terms of fwSegSNR and STOI, possibly due to signal
distortions. Specifically, when the original noisy speech was of relatively high quality, the PR model
failed to show its superiority in improving the SNR of the desired signal, while the fusion operations
introduced extra noise. For IRM estimation, the improvement of fwSegSNR and STOI achieved by
each application of the mask was much higher than that of DSB beamformers. The CIRM-F method led
to larger improvements in terms of fwSegSNR but suffered from lower PESQ and STOI improvement.
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4. Discussion

To illustrate the effectiveness of our speech enhancement system more clearly, an utterance
corrupted by mixed noise (destroyer engine + speech interference) at −2 dB from test data and
enhanced by our proposed system is presented, as shown in Figure 6.

Figure 6. (a–d) are the spectrograms and waveforms from clean speech, noisy speech, PR model, and
multi-channel beamforming preprocessing, respectively. The spectrogram of our final output is listed
in (e). (a) Spectrogram and waveform from clean speech; (b) Spectrogram and waveform from noisy
speech; (c) Spectrogram and waveform from IRM-BF results; (d) Spectrogram and waveform from PR
results; (e) Spectrogram and waveform from the proposed method.

Compared with the spectrogram of PR enhanced speech, speech processed by neural beamformer
removed most of the interference parts, while losing a lot of high-frequency information. It also
verified the description that there are some similarities, differences, and supplementary parts in
these twofold signals. Although the PR model also introduced some speech distortions to the target
speech, the spectrogram indicated that the PR model has significant performance in data cleaning.
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The processed speech makes a trade-off between speech distortion and speech intelligibility by fusing
operation, yielding better enhancement performance. As seen in Figure 6e, the power and the strength
of noise are largely suppressed.

5. Conclusions

The parabolic reflector, a physical amplification, was proposed. It focuses the target speech
considerably from noisy speech and provides a heterogeneous channel. The channel captures relatively
clean data to estimate masks. The source-to-array distance is so long so that it is difficult to collect
effective signals. The physical amplification model reduces the system complexity and provides
favorable data. Moreover, by utilizing complementary information between the parabolic reflector
and the microphone array, the proposed signal fusion system achieves better performance for noise
and speech interference mixed conditions, especially in low SNR environments. In the future, we will
extend the current work in several ways, such as upgrading a neural beamformer module to track
more phase information from microphone arrays. Our most important future work is to acquire RIR by
measuring and utilizing the framework in far-field multi-talker microphone array speech enhancement.
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