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Abstract: Melody extraction is an important task in music information retrieval community and it is
unresolved due to the complex nature of real-world recordings. In this paper, the melody extraction
problem is addressed in the extreme learning machine (ELM) framework. More specifically, the input
musical signal is first pre-processed to mimic the human auditory system. The music features are
then constructed by constant-Q transform (CQT), and the concentration strategy is introduced to
make use of contextual information. Afterwards, the rough melody pitches are determined by ELM
network, according to its pre-trained parameters. Finally, the rough melody pitches are fine-tuned by
the spectral peaks around the frame-wise rough pitches. The proposed method can extract melody
from polyphonic music efficiently and effectively, where pitch estimation and voicing detection are
conducted jointly. Some experiments have been conducted based on three publicly available datasets.
The experimental results reveal that the proposed method achieves higher overall accuracies with
very fast speed.

Keywords: melody extraction; efficient melody extraction; extreme learning machine;
constant-Q transform

1. Introduction

Melody extraction, also known as main melody extraction or predominant F0 estimation, aims to
extract the predominant pitch sequence of melody (the lead voice or instrument) from polyphonic
music [1]. It can be used in some applications, such as query-by-humming [2], version identification [3],
music retrieval [4], and so on.

Various methods have been proposed since Goto first put forward the melody extraction
problem [5]. Salience and temporal continuity are two principles commonly utilized in the literature. In
the early studies, researchers tried various ways to formulate the melody extraction problem based on
the two principles. For example, Fuentes et al. designed a translation invariant model to track the lead
melody based on probabilistic latent component analysis [6]. Expectation maximization was utilized
to estimate the model parameters. Salamon et al. defined a set of contour characteristics, studied theirs
distributions, and devised rules to distinguish melodic and non-melodic contours [7]. This approach
works especially well on singing melody extraction due to the preference of singing pitch contour. Later,
Bosch and Gómez combined a salience function based on a smoothed instantaneous mixture model
and pitch tracking based on pitch contour characterization [8,9]. To alleviate the low-frequency strong
accompaniment influence, Zhang et al. generalized the Euclidean algorithm, which was designed
for computing the greatest common divisor of two natural numbers to positive real numbers, and
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proposed the melody extraction method based on the modified Euclidean algorithm [10]. In contrast to
tracking the pitch values, Arora and Behera proposed an online vocal melody extraction method, which
traced various sources with the help of harmonic clusters and then determined the predominant vocal
source by using the harmonic strength of the source. Recently, the task was formulated in the Bayesian
filtering framework, and the salience, timbre similarity, and spectral smoothness were incorporated in
the likelihood function, while temporal continuity was modeled in the pitch transition probability [11].
The aforementioned methods all addressed the melody extraction by human-crafted features and their
performances degraded greatly when dealing with more complex music.

More recently, some deep learning-based methods have been proposed. Typical methods include
the method by Fan et al., who separated the singing voice from polyphonic music, using a deep
neural network, and tracked the melodic pitch trajectory by dynamic programming [12]. Rigaud
and Radenen introduced two deep neural networks for singing melody extraction: one for pitch
estimation and the other for singing voice detection [13]. The aforementioned works obtain singing
pitches directly from the deep learning networks, while there are still some alternative methods.
For example, Bittner et al. got the deep salience representations for F0 estimation [14]. Lu and Su
addressed the melody extraction problem from the semantic segmentation on a time-frequency image
perspective [15]. Afterwards, following Lu and Su’s work, Hsieh et al. added links between the
pooling layers of the encoder and the un-pooling layers of the decoder to reduce convolution layers
and simplify convolution modules [16]. The deep learning-based methods can automatically learn
high-level features, according to the training data. They are capable of learning more sophisticated
features. However, their performance strongly relies on the capacity and variability of training set, and
it is often time-consuming to train their parameters.

Among these methods, Melodia is commonly considered as state of the art, especially for singing
melody extraction [7,17]. It is a typical salience-based method, which is centered on the creation and
characterization of pitch contours. The pitch contours are generated and grouped using heuristics
based on auditory streaming cues. The audio signal is first processed through spectral transform and
the instantaneous frequency method is adopted for frequency and amplitude correction. The salience
function, based on bin salience mapping and harmonic weighting, is then constructed for determining
the salience of frequencies among the pitch range. Afterwards, pitch contours are created based on
peak filtering and peak streaming cascaded by contour characterization. Finally, spurious melodic
trajectories are iteratively discarded based on some heuristic rules. This method tends to reserve
singing contours, hence it works especially well on singing melody extraction.

Huang and Babri proved that a single-hidden layer feedforward neural network (SLFN) with
N hidden nodes and with almost any nonlinear activation function can exactly learn N distinct
observations [18]. Later, Huang et al. proved that the input weights and hidden layer biases of SLFN
can be randomly assigned if the activation functions of the hidden layer are infinitely differentiable
and proposed the extreme learning machine (ELM) [19]. The ELM works efficiently and effectively
in both pattern classification and regression [19]. It does not need the slow gradient-based learning
algorithms to train neural networks or the iterative parameter tuning. As a result, the ELM network
training speed is much faster.

Inspired by the fact that the ELM can learn non-linear features efficiently and effectively, an
ELM-based melody extraction method is proposed in this work. The mixture signal is processed by
an equal loudness filter to mimic the human auditory system and constant-Q transform (CQT) is
employed to obtain multi-resolution spectral analysis. The CQT amplitude spectra of several adjacent
frames are then concentrated to construct the input vectors for ELM. Next, the rough melodic pitches
are estimated by the trained ELM network based on the training set. Finally, melodic pitch fine-tuning
is carried out by searching the spectral peaks around the frame-wise rough pitches. The experimental
results show that the proposed method achieves higher overall accuracies with fast speed, compared
with some typical reference methods. The proposed method has some potential applications in other
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areas, such as fault diagnosis [20], biomedical signal processing [21], animal emotional recognition [22],
and so on.

The main contributions of this paper include: The melody extraction is formulated in the ELM
framework, which can extract melody efficiently and effectively; the pitch estimation and voicing
detection are conducted jointly, which reduces their mutual inhibition; and the melodic pitches are
fine-tuned after coarse melody estimation, which reserves the tiny dynamics of melody.

The rest of this paper is organized as follows. ELM is presented in Section 2. The ELM-based
melody extraction method is elaborated in Section 3. The experimental results and discussions are
provided in Section 4. Finally, the conclusions are drawn in Section 5.

2. Preliminaries

2.1. Extreme Learning Machine

Feedforward neural networks can approximate complex nonlinear mapping functions directly
from training data and provide models for difficult artificial phenomena. Traditionally, the parameters
of the feedforward networks need to be tuned, leading to the dependency between different layers.
The gradient descent-based methods are commonly used for parameter learning. However, these
methods are often time-consuming due to either improper steps or converging to local minima. In this
subsection, the SLFN and ELM will be presented in detail.

Given N arbitrary distinct samples (x j, y j), where x j = [x j1, x j2, . . . , x jn] ∈ Rn and y j =

[y j1, y j2, . . . , y jm] ∈ Rm, standard SLFNs with Ñ hidden nodes and an activation function g(·)
are modeled as:

o j =
Ñ∑

i=1

βigi(x j) =
Ñ∑

i=1

βig(wi•x j + bi), j = 1, . . . , N (1)

where o j is the output of x j, wi = [wi1, wi2, . . . , win]
T is the input weight vector connecting the i-th

hidden unit and input units, βi = [βi1, βi2, . . . , βim]
T is the output weight vector connecting the i-th

hidden unit and the output units, bi is the bias of the i-th hidden unit, and wi•x j denotes the inner
product of wi and x j.

The architecture of the ELM network that maps x j to o j is illustrated in Figure 1.
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Figure 1. Architecture of the extreme learning machine (ELM) network. 
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Figure 1. Architecture of the extreme learning machine (ELM) network.

N samples can be approximated by the standard SLFNs with Ñ hidden nodes and an activation
function g(·), i.e.,

N∑
j=1

‖o j − y j‖ = 0 (2)
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In other words, there exist βi, wi and bi satisfying

Ñ∑
i=1

βig(wi•x j + bi) = y j, j = 1, . . . , N (3)

The above N equations can be denoted in the matrix form as:

Hβ = Y (4)

where hidden layer output matrix H, weight matrix β, and label matrix Y are, respectively, defined as:

H =


g(w1•x1 + b1) . . . g(wÑ•x1 + bÑ)

... . . .
...

g(w1•xN + b1) . . . g(wÑ•xN + bÑ)


N×Ñ

(5)

β =


βT

1
...

βT
Ñ


Ñ×m

(6)

Y =


yT

1
...

yT
N


N×m

(7)

If the activation function g(·) is infinitely differentiable, the number of hidden nodes satisfies
Ñ ≤ N.

It is proven in [19] that the input weights wi and the hidden layer biases bi can be randomly
initialized and then the output matrix H can be calculated. Furthermore, the least-squares solution β̂

of the linear function denoted in Equation (4) is:

‖H(w1, . . . , wÑ, b1, . . . , bÑ)β̂−Y‖ = min
β
‖H(w1, . . . , wÑ, b1, . . . , bÑ)β−Y‖ (8)

If Ñ = N, matrix H is square and invertible when the input weights wi and the hidden layer
biases bi are randomly initialized. In this case, the SLFN can approximate the training samples with
zero error.

In most cases, the number of hidden nodes is much less than that of the training samples, i.e.,
Ñ � N, then H is not square. Thus, the smallest norm least-squares solution of Equation (4) is:

β̂ = H†Y (9)

where H† is the Moore–Penrose generalized inverse of matrix H [23].
Huang et al. also proved that β̂ expressed in Equation (9) is one of the least-squares solutions

with the smallest norm. Additionally, the minimum norm least-squares solution of Equation (4) is
unique. In other words, the solution expressed by Equation (9) is the unique least-squares solution of
approximating the samples. Moreover, g(·) can be any infinitely differential activation function, such
as the sigmoidal function, radial basis, sine, cosine, or exponential function, and so on.

The detailed ELM training is presented in Algorithm 1.
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Algorithm 1. Procedure of ELM training

Input:
Training set ℵ =

{
(x j, y j)

∣∣∣x j ∈ Rn, y j ∈ Rm, j = 1, . . . , N
}
, activation function g(·), and hidden node number Ñ.

Output:
Output weights β̂.

Steps

(1) Randomly assign input weights wi and the hidden layer biases bi;
(2) Calculate the hidden layer output matrix H using Equation (5);
(3) Compute the output weights β̂ according to Equation (9);

Compared with the traditional gradient-based learning algorithms, ELM has several advantages,
such as faster learning speed, better generalization, reaching the solutions directly without confusion
of local minima or over-fitting, and so on.

2.2. Constant-Q Transform

Given a discrete time domain signal x(n), its CQT representation is defined as [24]:

X(k, n) =
N−1∑
m=0

x(m)a∗k(m− n) (10)

where k and n denote frequency and time indices, respectively, N is the length of the input signal x(n),
and the atoms a∗k(·) are the complex conjugated window functions, defined as:

ak(m) = gk(m)ei2πm fk/ fs , m ∈ Z (11)

with a zero-centered window function gk(m), bin center frequency fk, sampling rate fs, and i =
√
−1.

The center frequencies fk are geometrically distributed as

fk = f02
k
b , k = 0, . . . , K − 1 (12)

where f0 is the lowest frequency, b is the number of frequency bins per octave, and K is the total number
of frequency bins.

The Q-factor of CQT is constant. The frequency resolution ∆ fk at the k-th frequency bin is

∆ fk =
fk
Q

(13)

Substituting Equation (13) into Equation (12) yields

∆ fk =
f0
Q

2
k
b (14)

It can be found that the frequency resolution of CQT is also geometrically spaced along the
frequency bins. That is, higher frequency resolutions are obtained in the lower frequency bands, while
lower frequency resolutions are obtained in the higher frequency bands, in accordance with the pitch
intervals of notes.
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2.3. Equal Loudness Filter

The human auditory system perceives sounds at different sound pressure levels for different
frequencies. More specifically, human listeners are more sensitive to sounds among mid-frequency
bands [25]. Due to this fact, an equal loudness filter is usually introduced in the music information
retrieval community to pre-filter the musical signals. It is commonly implemented using the cascade
of a 10-th order infinite impulse filter, followed by a second order high pass filter [25]. Following the
previous works, we use the same implementation to enhance the components that the human auditory
system is more sensitive to. The amplitude frequency response curve of the equal loudness filter is
illustrated in Figure 2.

1 

 

 

Figure 2. Amplitude frequency response of equal loudness filter.

3. Extreme Learning Machine-Based Melody Extraction

To extract melody from polyphonic music efficiently and effectively with good generalization
properties, the ELM-based melody extraction is proposed. The block diagram of the proposed method
is shown in Figure 3. In detail, the audio mixture is first down-sampled and processed by the equal
loudness filter to simulate the human auditory system. Then, CQT is utilized to analyze the audio
with multiple resolutions and several CQT amplitude spectra are concentrated at the centering frames
to construct the input vectors for the ELM. Next, the coarse pitches are estimated by pre-trained
ELM. Finally, a post-processing step is employed in order to obtain a smoother melody contour.
The pre-processing, rough melody pitch estimation, post-processing, and computational complexity
analysis is presented in detail in this section.
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1 

 

 

Figure 3. Block diagram of the proposed method.

3.1. Pre-Processing

Previous studies illustrate that the spectral slope of musical signals decays 3 to 12 dB per octave [26],
which implies that the amplitudes of higher frequency components drop dramatically. Therefore,
down-sampling is utilized to reduce data quantity and accelerate processing speed.

In music, notes are spaced logarithmically with 12 semitones per octave. Hence, only the estimates
falling with about 3% of the ground truth are considered correct. According to the Heisenberg
uncertainty principle, the time and frequency resolutions cannot be increased at the same time,
meaning that higher frequency resolution can only be obtained at the expense of lower time resolution.
Hence, CQT is introduced to achieve variable resolution spectral analysis [24]. By CQT, the higher
frequency resolution can be obtained for the lower frequency bands and the higher time resolution can
be obtained for the higher frequency bands.

As musical signal is non-stationary and varies a lot, it is helpful to make use of the contextual
information. Inspired by this phenomenon, the input vectors of ELM are constructed by concentrating
the CQT amplitude spectra of several frames before and after the current frame, as depicted in Figure 4.
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3.2. Coarse Melody Pitch Estimation

In this work, the coarse melody pitches are estimated by ELM, with one semitone interval. ELM
parameters need to be trained based on training set. The training audios are first pre-processed, as
described in Section 3.1, and the input vectors are generated by incorporating some CQT amplitude
spectra of adjacent frames.

Pitch estimation and voicing detection are two sub-problems in the melody extraction task. Either
performance of these two sub-problems affects the other. To avoid their mutual inhibitions, pitch
estimation and voicing detection are conducted simultaneously. That is, the unvoiced situation is
also considered as one pattern, the same as pitches. More specifically, the labels are one-hot vectors
with the first element equal to one for the unvoiced frames. The other elements correspond to the
individual pitches.

During the training stage, given the training set {Xl, Yl} =
{
(x j, y j)

}l

j=1
, where x j is an input feature

vector, y j is the corresponding label, and l is the number of training samples, the input weights wi and
hidden layer biases bi are first generated following uniform distribution on [−1,1]. Then, the hidden
layer output matrix H is determined according to Equation (5), where the activation function is the
sigmoid function, i.e.,

g(wi•x j + bi) =
1

1 + e−(wi•x j+bi)
(15)

Afterwards, the output weights β̂ can be calculated according the Equation (9). All parameters of
ELM are now known, including the input weights wi, hidden layer biases bi, and the output weights β̂.

During the test stage, the coarse melody pitches can be obtained based on the ELM parameters.
Specifically, given the input vectors of a recording, the input feature vectors can be obtained, as
described in Section 3.1.

Then, the output of sample x j is
f (x j) = h(x j)β (16)

where h(x j) = [g(w1•x j + b1), g(w2•x j + b2), . . . , g(wÑ•x j + bÑ)].
Next, the function argmax(·) is utilized to locate the maximum value. If the maximum value is

the first element of vector f (x j), the corresponding frame is considered as unvoiced. In other cases, the
pitches, with respect to these locations, are the coarse melody pitches.

3.3. Pitch Fine-Tuning

In real-world recordings, the pitches are continuous. However, the pitches are quantized
to generate different classes in this paper. The estimated pitch contour might have some pitch
jumps between adjacent frames. Hence, pitch fine-tuning is employed to derive a smoother melody
contour herein.

As sinusoidal components exhibit a spectral peak in the CQT amplitude spectrum, pitch fine-tuning
is conducted by searching around the estimated rough pitches. Suppose the rough pitch at frame t is
ft,r, the interval of peak search is set to be [ ft,r − δ, ft,r + δ], where δ is the search radius. If some peaks
are found, the frequency with the highest amplitude is chosen as the final pitch at this frame. If no
peak is found at this interval, the rough pitch is chosen as the final one.

3.4. Computational Complexity Analysis

In this subsection, the computational complexity of the proposed method is analyzed. As
commonly assumed, one addition, subtraction, multiplication, and division of two floating numbers
are treated equally as one basic floating operation (Flops), and they contribute the same to the overall
computation load [27].

The computational load of the proposed method mainly originates from CQT and ELM training and
testing. Let Ll and Lt be the down-sampled signal lengths of training and testing recordings, respectively.
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Assume that l and t are the numbers of training and testing samples, respectively. Suppose that there
are m pitch classes and Ñ hidden neurons. CQT calculations of the training and testing recordings
require Flops on the order of O(Lllog2Ll) and O(Ltlog2Lt) [24], respectively. The computational cost of
the ELM solution is 3Ñ2+2Ñ2lÑ+2(l− 1)Ñ2+Ñ3+Ñ2l + Ñl2+Ñlm+Ñ(Ñ − 1)l+Ñ(l− 1)l+Ñ(l− 1)m.
As Ñ � 1, l� 1, l� m, and l� Ñ, the computation of ELM training is on the order of O(Ñ3l + Ñl2).
Similarly, ELM testing is on the order of O(Ñ3t). Therefore, the computational cost of ELM training is
on the order of O(Lllog2Ll + Ñ3l + Ñl2), and that of ELM testing is on the order of O(Ltlog2Lt + Ñ3t).

4. Experimental Results and Discussions

Some experiments were conducted to evaluate the performance of the proposed method. In this
section, the experimental results and discussions are provided in detail.

4.1. Evaluation Metrics and Collections

4.1.1. Evaluation Metrics

In this paper, we chose three metrics that are commonly used in melody extraction literature,
i.e., overall accuracy (OA), raw pitch accuracy (RPA), and raw chroma accuracy (RCA) [11].They are
defined as

RPA =
#
{
voiced true positive pitches

}
#
{
voiced f rames

} (17)

RCA =
#
{
voiced true positive chromas

}
#
{
voiced f rames

} (18)

OA =
#
{
true positive pitches

}
#
{
total f rames

} (19)

where the term ‘true positive’ means that the estimated pitch falls within a quarter tone from the
ground truth on a given frame or one frame is correctly identified as unvoiced [28].

4.1.2. Evaluation Collections

In this paper, the evaluation experiments were carried out based on three publicly available
collections: ISMIR2004, MIREX05 train, and MIR-1K. ISMIR2004 was collected by the Music Technology
Group of Pompeu Fabra University. It contains 20 excerpts with different genres, such as Jazz, R&B,
Pop, Opera, and so on. The sampling rate is 44.1 kHz. Durations of these recordings were about 20 s.
The reference melody pitches are labeled each 5.8 ms.

MIREX05 train (also referred to as MIREX05 for simplicity) is provided by Graham Poliner and
Dan Ellis (LabROSA, Columbia University). It involves 13 excerpts lasting between 24 s and 39 s, with
a sampling rate of 44.1 kHz. The ground truths are labeled each 10 ms.

MIR-1K is gathered by the MIR Lab of National Taiwan University. It contains 1000 song clips
chopped from 110 Karaoke songs. The total length of this dataset is 133 min, with each recording
lasting from 4 s to 13 s. The sampling rate of this dataset is 16 kHz. A 10 ms interval is also used on
this collection.

In this paper, the recordings of all collections were mixed together and randomly split into three
subsets; 150 recordings for training, 100 recordings for validation, and the rest 783 for testing. The
overview of training, validation, and testing sets is illustrated in Table 1.

Table 1. Overview of training, validation. and testing sets.

Collection Training Validation Testing Total

ISMIR2004 4 1 15 20
MIREX05 1 0 12 13
MIR-1K 145 99 756 1000
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4.2. Parameter Setting

There are some parameters that needed to be set before evaluation. As mentioned before, the
musical signals are down-sampled to reduce the data quantity and accelerate the processing speed.
In this work, the mixtures were re-sampled to 16 kHz. The MATLAB CQT toolbox implemented by
Schörkhuber et al. was utilized herein for multi-resolution spectral analysis [24]. The spectral analysis
range was [0, 8 kHz]. As the frequency tolerance is half semitone range of the ground truth, there are
12 semitones per octave, hence the CQT bins are geometrically spaced with 36 bins per octave, enough
to satisfy the tolerance. The melody pitches were experientially set, ranging from 110 Hz to 1000 Hz.
There were 40 notes with one semitone interval within this range. Hence, the ELM output one-hot
vector was of dimension 41, since the unvoiced frames are also assigned with one pattern. The search
radius δ of fine-tuning was set to be 2/3 semitones (i.e., two bins). If δ is set greater than 2/3 semitones,
the fine-tuned pitch might shift to other notes rather than the coarse one, and if it is set less than 2/3
semitones, i.e., 1/3 semitone, the searching range does not cover the frequency tolerance. Moreover, the
tiny margin between 2/3 semitones and tolerance can help track occasional singing glides. To make use
of contextual information, the input feature vectors of the ELM cover 7 adjacent frames centered at the
current frame.

Except for the aforementioned parameters, the hidden neuron number of ELM also need to be set.
In this work, we evaluated the training accuracy, validation accuracy, training time, and validation
time when the neuron number ranged from 1000 to 7000. The experimental results are given in Table 2.

Table 2. Influence of hidden neuron number on the overall accuracy(OA).

Neuron Number Training
Accuracy (%)

ValidationAccuracy
(%)

Training
Time (s)

Validation
Time (s)

1000 73.56 67.40 193.16 11.77
2000 77.79 68.80 594.48 24.73
3000 80.20 69.45 1236.82 37.34
4000 83.58 69.87 2300.94 50.33
5000 84.91 70.04 3786.51 63.95
6000 85.90 69.87 5698.43 71.48
7000 86.35 69.59 8112.62 81.07

It can be seen from Table 2 that training accuracy grows with the increase of the hidden neuron
number. This phenomenon might because more complicated non-linear mapping functions can be
approximated with more neuron numbers. However, the validation accuracy first grows then declines
slightly with the increase of the neuron number. This observation reveals that the ELM network suffers
from over-fitting to a small extent. As far as the processing times are concerned, the training time was
prolonged dramatically with the increase of a hidden neuron number and the validation time was also
extended approximately linearly. Considering both accuracies and time efficiencies, the hidden neuron
number was set as 5000 in the following experiments.

4.3. Experimental Results on Test Sets

The performance of the proposed method is compared with some typical methods, including
Melodia [7], the source/filter model incorporated with the contour characteristics (BG1) [9], the
harmonic cluster tracking (HCT) [29], the probabilistic model (PM) [6], the modified Euclidean
algorithm (MEA) [10], and the particle filter and dynamic programming (PFDP) [11] methods. These
methods were chosen since they are typical methods and we could get their source codes or Vamp
plug-in to assure the results were unbiased. In more detail, we used the Vamp plug-in of Melodia,
the source codes of BG1, HCT, and PM, provided by the authors. MEA and PFDP are two methods
proposed by us before. The detailed results and discussions of these methods are elaborated in
this subsection.
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4.3.1. Accuracies on Different Collections

As mentioned before, the three collections were mixed together and divided into training,
validation, and testing sets. Thus, only the results on the testing sets were reported. To be fair, the
results of the reference methods were also based on the testing set. The results are illustrated on
individual collections to provide some deep insights.

The OAs, RPAs, and RCAs on ISMIR2004 are shown in Figure 5. It can be observed that the
accuracies did not vary much among different methods. The proposed method obtained the highest
OA, while its RPA and RCA were not high. This phenomenon implies that the proposed method
was superior for voicing detection, while inferior for pitch estimation. Table 1 shows that recordings
from ISMIR2004 contributed 2.7% to the whole training set. Hence, it can be concluded that the pitch
estimation results relied more on the training set than voicing detection.Appl. Sci. 2020, 10, x FOR PEER REVIEW  11 of 15 
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The OAs, RPAs, and RCAs on MIREX05 are depicted in Figure 6. It can be seen that the OA of the
proposed method was much higher than all other compared methods. However, its RPA and RCA
were much lower than others. Only one recording of this collection was covered in the training set,
while 12 others were involved in the testing set. This great gap confirms our conclusion that pitch
estimation relied more on training data than voicing detection. Moreover, both RPA and RCA of the
other methods were higher than OA, while the OA of the proposed method was higher than the other
two. Similar results can be observed in ISMIR2004.

The OAs, RPAs, and RCAs on MIR-1K are provided in Figure 7. Results were very diverse on this
collection. The OAs ranged from 26% to 64%. RPAs varied between 31% and 66%. RCAs covered the
range of 39% to 69%. The proposed method obtained the highest OA, while Melodia achieved the
highest RPA and RCA. This result may be due to the fact that it involved some strategies to preferably
select the singing melody. RPA and RCA indicate the accuracies among the voiced frames, while the
OA took into account of both voiced and unvoiced frames. It can be inferred that the voicing detection
performance of the proposed method still outperformed the others on this dataset. Its RPA and RCA
on this dataset was much better than those on ISMIR2004 and MIREX04. Table 1 reveals that the
training set was mostly contributed by this collection, and that may be the reason for the RPA and
RCA improvement.
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4.3.2. Statistical Significance Analysis

To determine if the proposed method achieves significantly higher OA and lower RPA compared
with the reference methods, the statistical significance analysis was performed. A paired-sample t-test
was conducted between the proposed and reference methods in terms of OA and RPA.

The statistical significance results about OA are reported in Table 3. It can be seen from this table
that the proposed method performed better than reference methods with respect to OA on ISMIR2004,
but the differences were not significant. It outperformed the other methods significantly on both
MIREX05 and MIR-1K.
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Table 3. Statistical significance analysis of a paired-sample t-test (OA) between the proposed and
reference methods.

Datasets Pairs Mean t statistic p-Value

ISMIR2004

Proposed-BG1 4.08 0.67 0.51
Proposed-HCT 5.56 1.08 0.30
Proposed-MEA 9.34 1.04 0.06
Proposed-Melodia 2.20 0.52 0.62
Proposed-PFDP 2.35 0.51 0.62
Proposed-PM 6.45 0.97 0.35

MIREX05

Proposed-BG1 12.44 2.20 0.05
Proposed-HCT 15.28 3.00 0.01
Proposed-MEA 20.22 2.79 0.02
Proposed-Melodia 15.97 3.27 0.01
Proposed-PFDP 11.39 2.60 0.01
Proposed-PM 13.57 2.89 0.02

MIR-1K

Proposed-BG1 38.55 66.95 0.00
Proposed-HCT 28.17 56.31 0.00
Proposed-MEA 20.36 38.31 0.00
Proposed-Melodia 16.52 32.55 0.00
Proposed-PFDP 15.38 31.24 0.00
Proposed-PM 21.55 43.63 0.00

The statistical significance results about RPA are listed in Table 4. It can be found from this table
that Melodia and PFDP achieved significantly higher RPAs than the proposed method on ISMIR2004.
The proposed method obtained comparable RPA with the other methods on this dataset. However, all
methods, except MEA, outperformed the proposed method significantly on MIREX05. As only one
recording of MIREX05 was covered in the training set, it can be inferred that training samples were
important for ELM parameter training, similar to other machine learning-based methods. As far as
MIR-1K is concerned, the proposed method surpassed BG1 and HCT significantly, was comparable
with MEA, and was inferior to Melodia and PFDF significantly with respect to RPA.

Table 4. Statistical significance analysis of a paired-sample t-test (raw pitch accuracy (RPA))between
the proposed and reference methods.

Datasets Pairs Mean t statistic p-Value

ISMIR2004

Proposed-BG1 10.85 1.33 0.20
Proposed-HCT 9.39 1.39 0.19
Proposed-MEA 1.70 0.28 0.78

Proposed-Melodia 13.53 2.35 0.03
Proposed-PFDP 13.54 2.27 0.04
Proposed-PM 10.72 1.26 0.23

MIREX05

Proposed-BG1 24.47 3.47 0.01
Proposed-HCT 21.00 3.50 0.01
Proposed-MEA 8.74 0.94 0.37

Proposed-Melodia 21.08 3.42 0.01
Proposed-PFDP 23.77 4.04 0.00
Proposed-PM 26.92 5.28 0.00

MIR-1K

BG1-Proposed −22.93 −28.23 0.00
HCT-Proposed −5.42 −8.34 0.00
MEA-Proposed 0.74 0.99 0.32

Melodia-Proposed 12.74 20.23 0.00
PFDP-Proposed 7.63 12.77 0.00
PM-Proposed 6.01 11.08 0.00
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The statistical significance results, with respect to RCA, were similar to the results of RPA, so they
are not given herein. The statistical results confirmed the judgment that the proposed method works
better on OA than RPA and RCA, indicating its superiority in voicing detection.

4.3.3. Discussions

The averaged OAs, RPAs. and RCAs of all methods on the three collections are reported in Table 5.
It can be seen from this table that Melodia achieved the highest RCA, PFDP obtained the highest
RPA, while the proposed method gained the highest OA. The results revealed in this table indicate
the superiority of the proposed method, with respective to OA. However, the RPAs and RCAs of the
proposed method were not that high, indicating that the proposed method works much better on voice
detection than pitch estimation, compared with the reference methods.

Table 5. Averaged accuracies on three collections.

Methods OA(%) RPA(%) RCA(%)

BG1 45.58 58.56 62.79
HCT 47.60 62.76 67.47
MEA 45.18 57.49 63.48

Melodia 52.96 69.01 71.77
PFDP 54.22 69.41 71.71
PM 42.67 59.45 62.72

Proposed 63.93 54.43 56.08

There are still several limitations of this method that need to be further studied in the future.
First, the performance of the proposed method also relies on training set. It will help to improve
its performance if an abundant dataset is utilized instead of randomly selecting some recordings to
construct the training set. In addition, the proposed method does not take into account of the temporal
dependency. Incorporating some temporal strategies also might be one future direction.

5. Conclusions

In this paper, melody extraction from polyphonic music is addressed in the ELM framework. Pitch
estimation and voicing detection are carried out simultaneously. More specifically, the musical signals
are first down-sampled, processed by an equal loudness filter to mimic the human auditory system,
and analyzed by CQT. The frame-wise CQT spectra are then concentrated at the center frame to build
the input feature vectors for the ELM. The output one-hot vectors of the ELM are generated based
on the labels. Next, during the testing stage, the output prediction matrix of the ELM is computed
according to the pre-trained parameters, and the rough melody pitches are obtained by locating the
maximum value of each frame. Finally, the rough pitches are fine-tuned by searching around the rough
pitches. The proposed method can learn high-level melody features very efficiently. It performs pitch
estimation and voicing detection simultaneously. Experimental results demonstrate that the proposed
method achieves higher overall accuracies compared with reference methods.
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