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Abstract: Peer-to-peer (P2P) content distribution and file sharing systems aim to facilitate the
dissemination of large files over unreliable networks. Network coding is a transmission technique that
has captured the interest of researchers because of its ability to increase throughput and robustness
of the network, and decrease the download time. In this survey paper, we extensively summarize,
assess, compare, and classify the most recently used techniques to improve P2P content distribution
systems performance using network coding. To the best of our knowledge, this survey is the first
comprehensive survey that specifically focuses on the performance of network coding based P2P file
sharing systems.

Keywords: content distribution networks; peer-to-peer computing; random linear network coding;
file sharing; rarest-piece issue; information thoery

1. Introduction

The Peer-to-Peer (P2P) architecture has triggered a technical revolution of large content
distribution service on the Internet. The P2P model is the antithesis of the classic client–server
architecture, in which each node can behave either as a server or a client. In the client–server
architecture, data stored on the server is sent to clients on a request basis. However, for a large
number of clients, the workload on the server may be too heavy, leading to extremely low download
rates. Moreover, for this architecture, the server represents a single point of failure. On the contrary,
in the P2P architecture, each node is called a servent [1,2] which means that a node may behave as a
server as well as a client at the same time. This leads to higher bandwidth utilization, more availability
of content, and reduced download times [3]. The BitTorrent protocol [4] is considered to be one of
the most successful P2P file sharing protocols. BitTorrent-like systems work in two phases, the first
phase utilizes a discovery protocol, in which peers discover and establish connections to each other.
Detailed discussions on the discovery protocol can be found in [5–10]. The second phase utilizes file
dissemination protocol, in which peers start to download and upload the chunks of a file until they get
the complete file.

In the file dissemination protocol, the algorithm used for the selection of the pieces to download
is highly important to achieve an acceptable level of system performance. In fact, wrong selection
choices may lead to a situation where pieces of a file owned by a peer are not required by any
other peer. Conversely, a piece which is needed by many peers is either very rare or not available
within the network. Consequently, the peer requires a specific policy for downloading the pieces
of the file. The original specification of the BitTorrent protocol [4] requires that clients are able to
download pieces in a purely random way. Subsequently, new selection techniques were introduced
to improve performance [11,12]. In general, an involved peer in any P2P file sharing network must
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answer the following questions when requesting a file: (1) which pieces should be downloaded, and (2)
from which peers? This is known as piece scheduling [13], piece selection [14], or the coupon collector’s
problem [15]. The other important challenge, especially in large-scale content distribution networks,
is that the departure, or the failure of a peer is naturally dynamic as the peer may depart or fail without
notice, which is known as dynamics peer participation or churn [16]. Subsequently, pieces that were
owned by the departing peers may become rare or unavailable.

With the assistance of network coding [17], the aforementioned issues can be partially resolved.
Rather than distributing the original data pieces, a peer shares encoded pieces, where each encoded piece is
a linear combination of the original pieces. In this manner, there is no need for the requester peer to ask for
special data pieces since all encoded pieces are almost equally likely to be beneficial to the peer. A peer in
the network can blindly download encoded pieces from other peers. When a sufficient number of encoded
pieces are owned, the original file can be reconstructed. Using this scheme, the rarest piece problem is
avoided, and the download time of the file is potentially reduced [18]. Another feature of network coding is
the robustness against sudden peer departure. In the original BitTorrent, if a peer who is the single owner of
a piece, leaves the swarm, the complete original file cannot be collected by the remaining peers. However,
with network coding, the concern regarding the absence of certain data pieces is no longer an issue. Since the
pieces are linearly combined together, each of them is available in a large number of encoded pieces in
the network.

The main contributions of this paper are as follows. First, we provide a detailed tutorial of network
coding implementation for P2P file sharing. Second, we extensively survey the most important and
recent network coding based P2P file sharing protocols and provide a classification for those protocols.
Third, this paper, to the best of our knowledge, is the first paper that is specific to network coding
based P2P content distribution systems.

The rest of the paper is organized as follows: Section 2 introduces a brief background along with
a network coding tutorial, while Section 3 outlines the literature review. In Section 4, different network
coding based P2P file sharing systems are summarized. A discussion and comparison between these
systems is conducted in Section 5 and the paper is concluded in Section 6.

2. BitTorrent-Like Systems and Network Coding Background

2.1. How BitTorrent-Like Systems Work

Initially, a seeder, who owns the full content of a file, divides the file into equal size segments
called pieces, chunks, or blocks. For the rest of the paper, the piece terminology is used. As new
peers join the swarm, i.e., P2P network, the seeder randomly selects and distributes pieces to leechers
which are nodes that need some pieces or all the pieces to complete the file downloading. When a
peer finishes downloading a piece, it can upload this piece to other peers who request it. As shown
in Figure 1a, the peer maintains a structure called a bitmap which indicates whether the peer has
a certain piece or not. The original specification [4] of the protocol requires that clients download
pieces in a purely random way, but subsequently new techniques were introduced to improve the
performance [11,19]. An example of an improved technique is the local rarest first, which is called
the rarest first piece selection algorithm as well. In such technique, a piece that is the least common
among all the neighbor peers is selected to be distributed with high priority. The target is to ensure
a uniform distribution of the pieces. In practical systems, the distribution of the rare pieces is still a
big issue—since the local rarest piece among neighbors is not necessary, the same global rarest piece
among the entire network [14,18].

In the network coding BitTorrent as shown in Figure 1b, a peer first encodes the pieces that it has
by multiplying each piece with a coefficient (c), which is randomly chosen from a finite field, known as
Galois Field (GF). Then, the pieces are linearly combined as one encoded piece. The encoded piece is
distributed to other downstream peers. At the receiver peer, the decoding process is performed when
a sufficient number of encoded pieces are received.
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(a) (b)
Figure 1. Illustration of piece distribution in baseline and network coding BitTorrent. (a) Baseline BitTorrent;
(b) Network coding BitTorrent.

2.2. Network Coding Overview

Network coding is a recent technique that changes the traditional idea of store-and-forward
routing by allowing a network node to linearly combine incoming packets and then send the combined
packet to the next hub node. The idea was introduced by Ahlswede et al. [20], showing that the
network coding can increase network throughput and improve robustness. The basic idea is relatively
simple: the intermediate nodes combine the received packets, then send a linear combination of these
packets, creating a new representation of the original packets. In order to decode and rediscover the
original packets, the recipient must have a sufficient number of independent linear combinations of
these packets. The benefits of network coding in computer networks have been demonstrated by the
study of different aspects such as throughput and end-to-end delay [20], wireless resources [21–23],
and problems of security and resilience [24–29]. The following subsection demonstrates the benefit of
using network coding.

2.3. The Butterfly Example

In this subsection, we show a simple multicast network, with a single source node that sends
messages to multiple recipient nodes. The butterfly network is the conventional example where
throughput gain using network coding can be demonstrated.

In the directed graph shown in Figure 2, the source S sends two messages to each of the recipients
R1 and R2. With traditional routing, R1 will receive the first message through the path A-R1, and the
second message through the path C-B-D-R1. Similarly, R2 will receive the first message through the
path C-R2, and the second message through the path A-B-D-R2. Assuming that each node can send
only one multicast message per time slot, then using the traditional store-and-forward routing scheme,
the link BD becomes a bottleneck. Furthermore, R1 will receive message <a> two times, and R2 will
receive message <b> two times, leading to redundancy and wastage of the link bandwidth.

Figure 2. Butterfly network with traditional routing. (a) node B sends packet b; Then, (b) node B sends
packet a [20].
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Applying network coding as shown in Figure 3, the two messages <a> and <b> can be XORed
at router B, a new message <c> is created such that <c = a⊕ b>. Then, this message is forwarded
to router D which will send message <c> as a multicast to both R1 and R2. R1 can retrieve message
<b> by Xoring message <a> with message <c>, as <b = a⊕ (a⊕ b)>, while R2 can retrieve message
<a> by Xoring message <b> with message <c>, as <a = b ⊕ (a ⊕ b)>. Using this novel encoding
technique, the time required to deliver the two messages to the recipients is decreased by one time slot.
Furthermore, neither redundant packets nor wastage of bandwidth are incurred.

Figure 3. Butterfly network using network coding [20].

In more complex scenarios, we need more complex coding operations such as random linear
network coding (RNLC) [30,31], or vector network coding [32–34]. With RNLC, the outgoing packets
are linear combinations of original packets, so each encoded packet contains data plus coefficients.
RLNC can be applied in a distributed fashion, where each node can independently and randomly
select coefficients from the Galois field (GF). GF is very useful for practical purposes because each
element of the GF can be represented with the same number of bits that guarantees that the result is
representable with the same number of bits as the original packets.

2.4. Detailed Network Coding Tutorial for P2P File Sharing Systems

Since most of the published papers provide only high level information about implementation of
network coding, we provide a thorough tutorial of network coding implementation.

The use of network coding requires the use of Galois field (GF) and its operations as well as basics
of linear algebra. A GF is a field with finite number of elements. For instance, GF(23) is a field whose
elements are eight and each element is presented by 3-bits. The GF(23) elements are generated using
the following polynomial:

A(x) = a2x2 + a1x + a0 (1)

Table 1 shows the elements (polynomials) of GF(23) generated by eqrefeq:1 and their
corresponding binary presentation.
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Table 1. GF(23) elements presentation.

Binary GF(23)

000 0
001 1
010 x
011 x + 1
100 x2

101 x2 + 1
110 x2 + x
111 x2 + x + 1

The following four operations over any GF(2m) field are defined:

• Addition and Subtraction: The sum of two elements is computed according to (2):

C(x) = A(x) + B(x) =
m−1

∑
i=0

cixi, ci ≡ ai + bi mod 2. (2)

Addition and subtraction modulo 2 are the same. Moreover, addition modulo 2 is simply
equivalent to bitwise XOR.

• Multiplication: two elements of GF(2m) are multiplied using the standard polynomial
multiplication rule. However, if the product polynomial has a degree higher than m− 1, then it
has to be reduced. Irreducible polynomials, which are roughly comparable to prime numbers in
such that their only factors are 1 and the polynomial itself, are used for the modulo reduction. Let
P(x) be an irreducible polynomial over GF(2m); then, the multiplication of two elements is done
as in (3):

C(x) = A(x) · B(x) mod P(x). (3)

To find the product of 6(x2 + x) and 7(x2 + x + 1) in GF(23), we begin by doing normal
polynomial multiplication: C(x) = (x2 + x) ∗ (x2 + x + 1) = x4 + x. Since x4 + x /∈ GF(23),
the irreducible polynomial P(x) = x3 + x + 1 is needed and thus we calculate
C(x) = (x4 + x) mod (x3 + x + 1) = x2 ∈ GF(23).

• Inversion: Every Element (except 0) in GF(2m) has an inverse. The inverse A−1 of a nonzero
element A ∈ GF(2m) is defined as in (4):

A−1(x) · A(x) ≡ 1 mod P(x) (4)

For example, in GF(23) and P(x) = x3 + x + 1, (x) is the inverse of (x2 + 1) since x ∗ (x2 + 1) mod (x3 +

x + 1) = 1.

To use network coding for sharing a file within a P2P network, it should be started by decomposing
the whole file into equal pieces. For example, each piece size is 16 KB, 32 KB, or 64 KB. Furthermore,
each piece is divided into equal smaller units called blocks. For example, each block size is 4-bits or
8-bits as shown in Figure 4. Subsequently, network coding is applied per block, but a piece is still the
transmission unit. Since GF(28) is always recommended for real implementation scenarios, an 8-bits
block is widely used.
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Figure 4. File segmentation phases.

The following example demonstrates how this process works using GF(23). Assume, without
loss of generality, that we want to share a 12-bits file using BitTorrent. Assume that the 12-bits file
binary representation is (100011110110):

• 1st Step: The seeder decomposes the file into two 6-bit pieces (100011, 110110).
• 2nd Step: For encoding over GF(23), we should decompose each piece into two 3-bits blocks:

P1(100, 011), and P2(110, 110).
• 3rd Step: Interpret each block as GF(23) element (using (1)); then, we have P1(x2, x + 1), and P2(x2 +

x, x2 + x).
• 4th Step: Since we have two plain pieces, we need two coded pieces. Randomly draw coefficients

from GF(23) and multiply them by the blocks. Assuming we first draw c1 = x, c2 = 1, then the first
block of the first encoded piece (Pc1) is Bc10 = x ∗ (x2) + 1 ∗ (x2 + x) = x + 1 (011), and the second
block is Bc11 = x ∗ (x + 1) + 1 ∗ (x2 + x) = 0 (000). Now, Pc1(x + 1, 0) is completely encoded and
ready to be shared. Next, to get the second encoded piece, we randomly draw two additional
coefficients, say c1 = x + 1, c2 = x and generate Bc20 = x + 1 ∗ (x2) + x ∗ (x2 + x) = 0(000),
and Bc21 = x + 1 ∗ (x + 1) + x ∗ (x2 + x) = x2 (100). Thus, Pc2(0, x2) is completely encoded and
ready to be shared.

• 5th Step: The sender shares the encoded pieces along with their coefficients (Pc1, x, 1), and (Pc2, x +

1, x). This is algebraically represented as:

A ∗ B = C(
x 1

x + 1 x

)[
b10
b11

]
=

[
x + 1

0

]
(

x 1
x + 1 x

)[
b20

b21

]
=

[
0
x2

] (5)

where A is the coefficients matrix, B is the original blocks vector, and C is the encoded blocks vector.

• 6th Step: Upon receiving the encoded pieces with their coefficients, the receiver should solve
the previous matrices system to recover the original blocks and thus the original pieces. This is
achieved by using the formula: B = A−1 ∗ C. First, find the determinant of the coefficients matrix
as shown in (8):

det(A) =

∣∣∣∣∣
(

x 1
x + 1 x

)∣∣∣∣∣ = x2 + x + 1. (6)

Since det(A) 6= 0, the system is solvable:

A−1 =
1

det(A)

(
x 1

x + 1 x

)

=

(
x2 + x + 1 x2 + 1

x x2 + x + 1

)
,
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b1 = A−1 ∗
[

x + 1 0

]
=

[
x2 x2 + x

]
,

b2 = A−1 ∗
[

0 x2

]
=

[
x + 1 x2 + x

]
.

This leads to reconstructing the blocks and thus the pieces: P1(x2, x + 1) and P2(x2 + x, x2 + x).

• 7th Step: Simply interpret the pieces’ blocks as binary presentation and link the pieces together to
reconstruct the original file.

The previous steps can be generalized for any number of pieces and for any finite field GF(2m).
However, as the number of pieces increases, solving such linear system becomes far expensive.

Another network coding implementation guidance can be found in [35] and a ready Java and C
implementations can be found in [36].

2.5. Network Coding Challenges

The use of linear algebra in encoding and decoding incurs additional computation overhead that is not
present in the baseline BitTorrent. In BitTorrent, the file is split into pieces, and the peers are only concerned
with completing the file by exchanging pieces with each other. A piece is considered useful if it is received by
a peer for the first time. With network coding, the coded pieces are distributed rather than the original pieces.
As the coefficients are received with a piece, they must be tested against all previous sets of coefficients
that the peer has received to examine if the new piece contains any previously unknown information.
The received encoded piece is said to be innovative if it contains beneficial information; otherwise, it will be
discarded. Additionally, decoding the file after receiving enough pieces is more computationally intensive
using network coding. The file decoding within BitTorrent is very trivial and simple. Each piece is checked
and verified separately; then, it is directly stored on the hard disk. Conversely, the decoding process in
network coding cannot be done until all the needed pieces are received. Consequently, decoding the file
requires solving many linear equations. As the size of the file increases, the cost of solving these equations
increases [32]. For example, for downloading a 3 GB file that is segmented into 1000 pieces, the required
disk read operations are 3000 GB on each receiving node. Meanwhile, the BitTorrent system only needs to
write 3 GB of data [33].

3. Related Works

Two major survey papers of network coding based P2P applications are found in the literature.
First, Matsuda et al. [37] provide a comprehensive survey on network coding applications including
techniques for throughput/capacity improvement, robustness improvement, network tomography,
and security. Secondly, Li et al. [38] focus in their paper on both file sharing and media streaming.
However, the latter survey is not comprehensive and its concentration appears to be on network
coding theory rather than its applications. A very brief survey on network coding based P2P file
sharing for delay tolerant networks (DTN), namely wireless channel networks, can be found in [39].
Additional theoretical network coding comprehensive survey is found in [40] and two other shorter
surveys are found in [15,41].

Since some recent research related to network coding based P2P file sharing systems have been
appearing, this survey aims to cover all network coding based P2P sharing systems focusing on the
more recent techniques and solutions. In addition, this survey paper is specific in that it focuses only on
P2P file sharing systems. Finally, this paper attempts to, in addition to surveying, provide classification,
discussion, and assessment of the respective applications.
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4. Network Coding Based P2P File Sharing Systems

Practically, five network coding schemes are applied to P2P File sharing Systems: (1) full coding
approach in which the encoded piece is a linear combination of all the original pieces, (2) sparse coding
approach in which only subset of pieces are selected for encoding, and (3) generation-based approach in
which the file is segmented into groups; then, network coding is applied per group separately, (4) combined
coding scheme which uses a mix between generation-based and sparse coding, and (5) an overlapped
coding scheme that is fundamentally a generation-based approach but allows overlapping between groups.
In the following subsections, we extensively survey the studies that are related to each of these approaches.

4.1. Full Network Coding

Gkantsidis et al. [42] proposed Avalanche, which is the first P2P file sharing system that applies
the concept of network coding for P2P content distribution networks. The main three contributions
of that work are: (1) Apply a practical network coding based method which alleviates the piece
selection problem across a large scale distributed system and makes better use of the available network
bandwidth. (2) Provide experimental evaluation which shows that the network coding outperforms
both the encoding at the source approach [43] and no coding at all, by a factor of two and three,
respectively. (3) The authors show that, by using network coding, the network is very robust to
churns such that peers can finish downloading even if the original seeder is left after uploading
exactly one copy of the file to the network. For the evaluation, the authors implement a real system
simulator “Avalanche” that utilizes network coding. They evaluate the performance for different
network topologies, a heterogeneous number of peers, and dynamic peers’ arrivals and departures.
They calculate the time it takes for one peer to download the file, measuring both the average download
time and the maximum. Another performance metric used is the network throughput as the total
number of pieces transferred in a unit of time. In general, the results show that network coding
performs well when the peers have different link rates, when there is a churn, and when incentive
mechanisms [44,45] such as Tit-for-Tat are in place to reduce free-riders and encourage cooperation.

A theoretical analysis of a simplified version of Avalanche can be found in [46]. The study
assumes one downloader and multiple servers in which each server contains a small part of the file.
Moreover, each server does not have any knowledge of what the others are storing (i.e., stored pieces).
The analysis and results show that the encoding vectors generated by network coding, for GF(23)

and a 1 GB file size, require an additional space of around 10−4% at the sources, whereas the erasure
coding [47] (β = 8) requires 9 GB storage space at the file server. Furthermore, results show that RLNC
is highly applicable for uncoordinated P2P networks by making the system behave as if the different
server peers, which the downloader connects to, coordinate effectively for distributing the different
pieces of the file.

A similar work to [46] was proposed by Deb et al. [48]. The study applied RLNC to gossip-based
protocols [49], where nodes act based on their own state only without any knowledge of the contents
of other nodes. The model is very similar to the rumor mongering model [50], where each node
chooses a partner in a randomly uniform manner and only one piece can be transmitted per round.
RLNC is compared with Random Piece Selection (RPS) and modified RPS (mRPS). In the RPS approach,
the piece to be sent is selected among other pieces with equal probability, whereas the mRPS approach
allows negotiation between the two connected nodes before a piece is sent. The theoretical analysis
shows that the computational overhead of RNLC to recover the file is rather reasonable for n ≤ 1000,
where n is the number of pieces. Simulation results show that RLNC always outperforms RPS and
mRPS for dissemination pieces over the networks. None of the aforementioned studies [42,46,48]
simulate the computation overhead incurred within the decoding process, which is considered an
important issue of the full network coding since it is accomplished by inverting an n x n matrix which
requires O(n3) operations.

Wang et al. [51] proposed Downloader Initiated Random Linear Network Coding (DRLNC)
to solve the problem of generating useless coded piece from two or more useful coded pieces or what
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they called “unlucky combination”. In DRLNC, each node keeps copies of the current coefficients
matrices of its neighbors and updating information exchanged among these nodes once a new
innovative piece is received. Based on this information, a node knows where the innovative pieces are
placed and thus sends a request to the designated node for downloading. By this scheme, any unlucky
linear combination is avoided. The DRLNC approach can eliminate the unlucky combination problem
even with a field size of 2 unlike the other approaches such as Avalanche which state that the problem
could be considered negligible if the field size is increased. However, the authors show that increasing
the field size to q = 7 may waste 1/8 of the network bandwidth. Simulation results show that DRLNC
has less number of rounds to complete downloading than traditional RLNC approaches. However,
extra control messages must be changed among peers which may incur extra overhead to the network.

Yeung et al. [52] concluded in their analysis of Avalanche that Avalanche can achieve the
theoretical lower bound of the file downloading time. However, the real performance of Avalanche
is affected by some factors such as computational efficiency, incentive mechanisms, and piece
scheduling algorithms.

However, Chiu et al. [13] stated that Avalanche did not present enough proof to its performance
claims. The authors studied network coding in P2P file sharing by modeling a simple star topology
network, assuming that this topology has the important features of a P2P systems. They show that
there is no advantage of network coding over routing, since the network coding can be beneficial only
if it is applied on a network which supports multicast, and indeed this is not the case for P2P file
sharing networks.

Soro et al. [53] proposed a network topology based on Fast Fourier Transform (FFT) graphs and
adapting network coding to achieve robustness in the case of churn, and flexibility of content
distribution. The authors claim that this topology can improve throughput and solve the rarest
piece problem; however, neither analysis nor experimental work are presented by the authors to
support their claim.

Since the Avalanche claim is based on simulation and not real implementation and to perfectly
judge the feasibility of applying network coding to P2P file sharing systems, Wang et al. [54]
implemented an empirical testbed. The experimental results show that the use of network coding
in P2P content distribution proceeds even worse than any trivial BitTorrent system. The main two
reasons stated of this inferior performance are: (1) the heavy decoding computation overhead and (2)
the latencies of buffering coded blocks before the ability to generate new coded blocks.

Li et al. [55] tried to improve the neighbors selection of Avalanche by giving each neighbor
a degree, and based on the neighbor degree the decision made whether to select the neighbor or
not. The degree criteria determines how a particular neighbor can utilize the network bandwidth,
and thereby accelerates the download time. However, the computational complexity of Avalanche is
not discussed at all.

To conclude, full network coding suffers from very high computational overhead which makes
it impractical in large scale P2P file sharing systems. All the studies that show the benefits of full
network coding are based on theoretical analyses and/or numerical simulation, whereas the studies
that show the infeasibility of full coding are based on real implementation. Table 2 summarizes the
most important studies related to the full network coding.
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Table 2. Full network coding approaches and their characteristics.

Reference Approach Main Findings Verification
Method

Network
Topology

Performance
Metrics

Gkantsidis et al. [42] Utilizing RNLC on P2P
file sharing networks.

- RLNC alleviates the pieces
selection problem and
churns, and accelerates
the downloading process.

Numerical
Simulation

Single overlay,
and Multi-clusters
overlay.

- Download time.
- Throughput.

Acedanski et al. [46]
Providing extensively
theoretical analysis for
P2P RNLC-based method.

- RLNC overhead is about
10(−4) % of the file size.
- RLNC is highly applicable
for uncoordinated P2P networks.

Numerical
Simulation Star.

- Probability of
download
completion.
- Probability of
contents
availability.

Deb et al. [48]
proposing RLNC-based
approach for P2P gossip
protocols.

- Computational overhead of
RNLC to reconstruct the file
is rather reasonable for n ≤ 1000.

Numerical
Simulation. Complete Mesh. - Download time.

Wang et al. [51]
Proposing DRLNC to
mitigate unlucky
combination problem.

- Unlucky combination problem
could be eliminated
even with GF(2).

Numerical
simulation. Mesh.

- Rounds to
complete
download.

Yeung [52] Analysis Avalanche using
graph theory.

- Avalanche can achieve the
theoretical lower bound of the file
downloading time.

No
experimental
work.

Mesh. —–

Chiu et al. [13]
Avalanche is studied by
modeling a simple star
topology network.

- No advantage of network coding
over traditional routing.

No
experimental
work.

Star. —–

Wang et al. [54]

Justifying the feasibility of
RLNC on P2P systems by
realistic application layer
implementation.

- RNLC performs worse than any
conventional store and forward
P2P file sharing system.

High
performance
C++
implementation.

Mesh

- Average
downloadtime.
- Encoding/
decoding
complexity.

4.2. Sparse Network Coding

In sparse coding scheme, instead of encoding all the pieces, only some pieces are selected in
random to be encoded aiming to alleviate encoding and decoding computational complexities.

Guanjun et al. [56] proposed a sparse network coding scheme based on stochastic formulas;
the probability of the number of pieces that will be encoded by the seeder, which has all the pieces (n)
is set as in (7). For a non-source peer which has k pieces, the encoding probability is set as in (8):

p = (logn + d)/n (7)

p = (logk + d)/n (8)

where d is a nonnegative constant (d = 6). The study also focuses on how to choose coefficients such
that no linear dependency appears. The Chord overlay network [1] that is used as a network topology
and the encoding interval, which is a window to limit selecting pieces for encoding according to their
expected innovation, is used to minimize the likelihood of transmitting dependent pieces. The authors
argue that using the aforementioned formulas, (7) and (8), for encoding probability ensures that all of
the encoded pieces generated by the same peer are linear independent with high probability (99.991%),
taking into account that the used finite field is GF(28). Moreover, a dependency test at the receiver
nodes is conducted to prevent receiving more dependent pieces which works as follows: let H and G
be two connected peers via a link, if no less than 3% of the pieces from H to G are dependent, H will
stop requesting G for pieces for 30 s. If the dependency rate is greater than 5%, the link between
the two peers will be torn down. We believe that the dependency rate is not increasable since the
coefficients are randomly selected and the finite field size is large enough. Empirical results indicate
that the sparse network coding outperforms the full coding in terms of encoding/decoding rate by
10% and slightly outperforms the baseline BitTorrent with a rarest-first scheduling policy in terms of
download and distribution times. The definition of total download time does not include the decoding
time. We believe that it would be fairer if the robustness to churn test was conducted between the
sparse and the full network coding.



Appl. Sci. 2020, 10, 2206 11 of 27

Ortolf et al. [57] proposed a “Paircoding” scheme. In Paircoding, each coded piece, P(i,j), is a linear
combination of only two original pieces (Xi, Xj) such that the decoding overhead remains quite
reasonable. Using this approach, the coded piece given by (9) has half of the information about
the original pieces Xi and Xj that it is generated from. If the coefficients are linear independent,
two different coded pieces generated from the same original piece contain the original data of the
original piece:

P(i,j) = CiXi + CjXj (9)

The authors claim that Paircoding relatively decodes pieces as good as BitTorrent, and, for some
scenarios, it shares pieces as good as full network coding. For the sake of the decoding speed comparison
between Paircoding and BitTorrent, a file of n pieces (n = 30) is distributed by a seeder to one downloader.
For BitTorrent, the seeder selects at random one piece for sharing, while, in Paircoding, the seeder randomly
selects two pieces and then shares a linear combination of them. Experimental results show that, through a
file sharing process, BitTorrent can decode (i.e., collects non-redundant pieces) better than Paircoding in
the first quarter of the process, but, as time progresses, Paircoding outperforms BitTorrent. Paircoding can
start decoding in the best case after receiving two encoded pieces. For the content availability metric,
Paircoding falls in the middle between Avalanche and BitTorrent. Nonetheless, in some scenarios, Paircoding
provides content availability as Avalanche but with very low probability.

Fixed-Paircoding [58,59] is a variation of Paircoding in which each encoded piece as shown in (10)
is a combination of two adjacent original pieces. Fixing the choice of the two original pieces yields a
faster decoding. However, its influence on the content availability is worse than Paircoding

P(i,j) = CiXi + CjXj (10)

where i is an odd number, 1 ≤ i ≤ n− 1 and j = i + 1.
Cai et al. [18] conducted an in-depth analysis of Avalanche and Paircoding, and proposed a new

fixed coding approach that is very similar to fixed-Paircoding. Furthermore, the rarest-first scheduling
policy is also considered. The proposed approach depends on computing the importance of the
encoded pieces according to their underlying original pieces: those encoded pieces that consist of the
original pieces that are less distributed among neighbors will be assigned with a higher priority to be
requested. In contrast to [60], the authors claim that fixed Paircoding could promote the availability and
diversity of the pieces. To evaluate the performance, the proposed approach is tested and compared
against: (1) BitTorrent, (2) adaptive neighbor selection BitTorrent [19], and (3) BitTorrent using FEC [43].
The results show that the proposed approach outperforms the other implementations with regard
to throughput with a slight increase in the control overhead. In addition, it has been shown that
the duration of the period during which no seeder is available while content is available, is greatly
prolonged and only a few peers are sufficient to render the content available.

Other variations of Paircoding are Treecoding and Tree network coding [58–60]. In these schemes,
the encoded pieces are defined by a complete binary tree, where the leaves contain the original pieces
such that each leaf contains an original piece multiplied by a coefficient. For the upper levels, each piece
is generated by XORing its children pieces. If the coefficients’ vector is known, then any encoded piece
in the tree can be decoded simply by XORing its two encoded children pieces, or from its encoded
parent piece and its sibling. The main difference between Tree coding and Tree network coding is that
the former only allows encoding at the seeders, whereas the latter allows recoding within the other
peers. The main feature of Treecoding is that an encoded piece may contain information up to all n
original pieces when compared with Paircoding whose encoded piece covers only two original pieces
at most. However, the static encoding, namely allowing encoding only at the seeder, yields a reduction
in the availability of pieces. Figure 5 shows an example of Treecoding.
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Figure 5. (a) File X with n = 8, (b) Tree coding of file X.

In conclusion, sparse network coding could be considered practical and valid for implementation
for real world P2P file sharing systems. We re-evaluate the decoding rate of Paircoding and, as
depicted in Figure 6, the results show that Paircoding is outperformed only for the initial rounds,
then it significantly outperforms BitTorrent. Table 3 summarizes the most important studies related to
sparse network coding.

Figure 6. Paircoding vs. BitTorrent decoding Rates.
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Table 3. Sparse network coding approaches and their charactersitics.

Reference Approach Main Findings Verification
Method

Network
Topology

Performance
Metrics

M. Guanjun et al. [56]

Proposing sparse
network coding
based on stochastic
formulas.

- Sparse coding encodes/decodes
faster than full coding and
slightly downloads faster than
baseline BitTorrent.
- Encoding interval and
dependency test can
minimize the drop rate
of dependent coded pieces.

Implementation Chord
overlay

- Encoding/decoding
rate.
- Download time.

C. Ortolf et al. [57]

Proposing sparse
coding such that
each encoded piece
is a combination of
only two
randomized original
pieces.

- Paircoding relatively decodes
pieces as good as BitTorrent,
and for some scenarios,
it achieves the piece diversity of
full coding.

Numerical
Simulation Mesh - Decoding rate.

- Content availability.

C. Ortolf et al. [60]

Proposing sparse
coding such that
each encoded piece
is a combination
of two adjacent
original pieces.

- Fixing the choice of the two
original pieces yields to faster
decoding. yet affects the piece
diversity.

No
experimental
work

—– —–

Q. Cai et al. [18]

Analyze Avalanche
and Paircoding,
and propose a
Fixed-Paircoding
with considering
the rarest first
scheduling policy.

- Achieves both fast decoding
opposed to Avalanche and
wide piece diversity opposed to
Paircoding.
- Increases throughput with
slightly control overhead.

Numerical
Simulation Mesh

- Content availability.
- Control overhead.
- Download time.

C. Ortolf et al. [55]

Proposing sparse
coding by modeling
encoded pieces as
full binary tree

- allowing encoding only in the
seeder, yields to worse pieces
availability. On the other hand,
dynamic encoding yields to
much complexity.

No
experimental
work

—– —–

4.3. Generation Based Coding

After the appearance of Avalanche and the associated issues, generation-based network
coding [61], also known as grouped [23], chunked [62], segmented [63], or clustered [64], is proposed.
In such a scheme, the file is segmented into groups where each group contains a mutually exclusive
subset of the overall pieces; afterwards, network coding is applied per group only. The two major
benefits of this scheme are: (1) reducing the required computations and disk operations, and (2)
minimizing the size of encoding vectors. For the rest of the paper, we use the terminology ‘generation
based coding’ or ‘generation coding’ for simplicity.

Chou et al. [65] propose a so-called practical network coding which splits a file into generations
with each generation containing a subset of the file’s pieces. Subsequently, network coding is applied
on each generation separately. The authors suggest that the transmission of encoded pieces can be
done sequentially, i.e., generation by generation. Control messages among nodes are exchanged to
request a generation and then to inform that the generation is fully completed and thus decoded.

Maymounkov et al. [66] suggest that, in order to avoid the overhead of the control messages,
a generation can be selected randomly and then the generation based encoded piece is sent. The authors
argue that this method achieves a good level of the performance without the need for feedback.
However, redundant and unrequired pieces could be pushed to the network, and thus yielding
even more overhead. The former two studies are general and not intended for P2P content
distribution networks.

To address the overhead problems of the aforementioned studies [65,66], Xu et al. propose
Swifter [67], a scheme that mixes local-rarest-first scheduling policy with generation coding algorithms
so as to achieve a high scheduling efficiency. The authors start by studying the trade-off between
the network coding overhead and the scheduling overhead. To make sure that the pieces are shared
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in a high diversity, the local-rarest-first scheduling algorithm is applied at the generation level as
follows: each peer presents a list of the number of pieces in each generation within every neighbor.
Periodically, this information is exchanged among the peers and updated. Among the generations
which still need pieces to be decoded, the requester can choose the rarest generation based on that list
and then pull a piece in that generation from the sender. If there is more than one rarest generation,
a generation is randomly selected among them. After collecting all the pieces in one generation,
the receiver can reconstruct the original pieces of the generations. The authors argue that this scheme
improves the encoding/decoding speed and there is no need to use sparse network coding that is
used within Paircoding. However, this claim is not supported. To evaluate the performance of Swifter,
the authors compare Swifter with [66] denoted by “R-push” and another scheme that is a modified
version of Swifter yet with random scheduling denoted by “R-Swifter”. The results show that Swifter
can enhance the average download time by at most 40% compared to R-push and by at most 6%
compared to R-Swifter.

Since Swifter is a pull-based scheme, it still incurs moderate control messages overhead.
Xu et al. [62] propose an improved Swifter, denoted by I-Swifter, in an attempt to improve
generation-based network coding by reducing the control messages overhead and eliminating the
distribution of encoding vectors. The architecture of I-Swifter is based on the architecture of Swifter,
and hence it inherits Swifter components and adds two new elements: the requests reducer that lowers
the requesting overhead, and the coefficients’ vectors reducer that stops the distribution of encoding
vectors. Extra requests from a receiver peer appear when continuous requests are sent to the sender peer
for the same generation. To minimize these request messages, the receiver peer will send a generation
request once and upon the request received by the sending side, the sender peer continuously send
pieces to the receiver in a push-based manner until a control message, from the receiver, arrive at
the sender saying that the local-rarest generation is changed. Moreover, the distribution of encoding
vectors is eliminated by the encoding vectors reducer which allows the sender to send only random
seed rather than the coefficients’ vectors. The receiver peer can generate the encoding vectors by using
the same pseudo random number generator. Experimental results show that I-Swifter can enhance the
average download time by as much as 4% when compared to Swifter. In both Swifter and I-Swifter,
the optimal number of generations is not specified.

Hundeboll et al. [68] propose BRONCO. BRONCO considers a scenario where there is one server
that initially distributes pieces of a file to multiple peers with a total download rate greater than
the upload rate of the server and then the peers exchange their pieces. The authors state that there
are three important parameters that affect the performance of the system and thus these parameters
should be selected carefully: (1) number of generations (g) for a given file, (2) size of the finite field (q),
and (3) size of each piece in a generation (b). The selection of these parameters is a trade-off process
between the computation complexity of the network coding, and the probability of creating linear
dependent vectors. Increasing g or q while keeping the size of the file constant reduces the expected
number of the linear dependent vectors, and, subsequently, the amount of valid vectors is increased.
However, the complexity of encoding and decoding pieces will increase as well. The authors argue
that, if Avalanche consumes 20% to 40% of CPU utility, BRONCO needs only 5% of CPU utility to
share the same file, yet with a redundant packets’ overhead of 9%. For evaluation purposes, BRONCO
is compared to HTTP (as a standard method to transfer a file), and BitTorrent. As expected, BRONCO
far outperforms HTTP, and almost performs as well as BitTorrent.

Niu et al. [69,70] specify when it is advantageous to use network coding while getting acceptable
computational coding complexity. Theoretical analysis based on Markov processes and differential
equations, and simulations are both used to evaluate a large scale dynamic P2P system. The authors
find out that a generation with around 20 to 30 pieces is sufficient to benefit from network coding
features with reasonable coding complexity, considering peers collaboration system (no free-riders),
although it is prone to a high churn rate.
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Zhang et al. [71,72] present the impact of network coding by using a game theory framework.
They consider a non-collaborative system, in which egoistic free riders comprise the dominant part
of the system. Thus, the network is modeled as a market, and peers are modeled as agents who
purchase and resell pieces. The prices of the pieces are strategically set according to their availability.
Mathematical analysis results show that full network coding is the most robust to churn, but with
high cost of encoding and decoding complexities. When generation network coding is used with a
generation size (g) that is smaller than a threshold that depends on the churn rate, robustness could
be achieved with feasible cost of encoding and decoding rates. This conclusion is obtained by using
g = 20 and g = 5. In addition, the results show that BitTorrent without coding is the most affected by
churn even when the churn rate is very small (close to zero).

Leu et al. [73] execute a wide range of P2P file sharing simulations including both with and
without network coding schemes for the sake of comparison and analysis. Results show that utilizing
generation network coding for a P2P file sharing network incurs only a relatively small overhead and
could perform much better than trivial routing approaches as long as the following conditions are
met—first, using DRLNC [51] to avoid unlucky combinations; second, the selection of the size and the
number of coding pieces should be done carefully such that the coding speed is no longer slower than
the transmission speed; and, third, applying Gauss–Jordan elimination for early decoding to avoid
long delay in the decoding process.

Yang et al. [74] propose P2P FilE sharing based on nEtwork coDing (PPFEED). PPFEED studies
network coding by utilizing a special network topology called a combination network [75,76],
which can be modeled by a graph that contains three types of nodes: one source, relays, and receiver
nodes. The authors claim that such a topology has a good level of performance in terms of network
coding gain. In contrast to RLNC, a deterministic network coding scheme is proposed based on [77]
such that the encoded pieces are always innovative. For n pieces, generation size g, and GF(q) with q
different symbols such that q ≥ n, pieces of a generation are encoded n times and for each row vector
only one coefficient, ci, is randomly selected from GF(q) and then the encoding is done as follows: the
1st piece’s value is multiplied by 1, the 2nd piece’s value is multiplied by the selected coefficient, the 3rd
piece’s value is multiplied by the same coefficient squared, and so on until the kth piece is multiplied by
the same coefficient raised to a power of g− 1. For instance, for g = 3, coefficients vectors are selected
as follows: (1, c1, c2

1modq), (1, c2, c2
2modq), ..., (1, cn, c2

nmodq) . By this scheme, any g pieces of these n
pieces can be used to decode the original g pieces. Moreover, relay and receiver nodes no longer need
to re-code pieces, and just need to forward them properly such that a peer doesn’t receive the same
coefficient vector two times. To evaluate the performance of this scheme, simulation comparisons are
conducted against Narada [78], a P2P multicast system, and Avalanche. The results show that the
overall download time of PPFEED is shorter than Narada and Avalanche by 15%–20% and 8%–10%,
respectively.

Braun et al. [79] propose Network Coding Messaging Extension (NCME). NCME is not an
alternative for BitTorrent; it only extends the features of BitTorrent and backward compatibility while
the baseline BitTorrent is kept. The peer must decide which optimal communication paradigm to
use, either pure BiTorrent or NCME. After encoded pieces are received and a generation becomes
fully downloaded and decoded, BitTorrent pieces can be restored and shared with a non-NCME
compatible BitTorrent. For evaluation purposes, a comparison between NCME and standard BitTorrent
is conducted. Results show that NCME distributes the file among the peers 20% faster. Moreover,
to maintain NCME’s superior performance over BitTorrent, it is suggested to keep a generation size of
43 pieces. However, neither is the best piece size mentioned nor an experimental work provided to
support this suggestion.

From the aforementioned studies, we can conclude that generation network coding can be
applied practically. However, to get the best gain of generation network coding, parameters such that
generation size and piece/generation selection policy should be perfectly selected. Table 4 summarizes
the most important studies related to generation Network coding.
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Table 4. Generation network coding approaches and their characterstics.

Reference Approach Main Findings Verification Method Network
Topology Performance Metrics

Xu et al. [67]

Proposing pull-based
generation coding system
and mixing rarest-first
selection policy with
generation coding to
alleviate the overhead of
control messages.

- Swifter can reduce the
average download time by
40% compared to push-based
generation system with random
selection policy.

Implementation over
LAN with 30 nodes.

Partially
Meshed - Download time.

Xu et al. [62]

Proposing push-based
generation coding system
promising to reduce the
requests overhead.

- I-swifter can reduce the
average download time by 4%
compared to Swifter.

Implementation over
LAN with 30 nodes.

Partially
Meshed - Download time

Hundeboll et al. [68]

Implementing generation
coding system to study the
parameters of generation
coding: generation size, GF
size, and piece size.

- BRONCO far outperforms
HTTP while it performs almost
as good as BitTorrent.
- BRONCO consumes almost
quarter the CPU utility
Avalanche consumes but
with extra 9% redundant pieces.

C++ Implementation Partially
Meshed - Download time

Niu et al. [69,70]

Modeling generation coding
system by Markov process
and differential equations
and study the optimal
generation size.

- The optimal generation size to
enjoy network coding is 20–30
pieces.

Numerical simulation Mesh - Decoding rate.
- Download time.

Zhang et al. [71,72]

Proposing a game theory
framework to study
generation network coding
considering a system with
many free-riders.

- network coding can enhance
the market’s flexibility for
urgent peers, but with the high
encodingdecoding cost.
- network coding can improve
the peers’ incentive. Only
mathematical and analytical
model.

Only mathematical
and analytical model —– - Robustness to churn.

Leu et al. [73]

Proposing a framework
based on simulations
to deeply analyze and
understand generation
network coding.

- Network coding outperforms
trivial approaches when (1)
DRLNC is used, (2) appropriate
coding size is selected and,
(3) Gauss-Jordan elimination is
applied for early decoding.

C++ P2P simulator [80] GIA [81]
overlay

- Encoding/ decoding
rates.
- Download time.
- Network overhead.

Yang et al. [74]

Proposing deterministic
network coding and
utilizing a special network
topology “combination
network”.

- The overall download time of
PPFEED is shorter than Narada
and Avalanche by 15-20% and
8-10% respectively.

Simulation
Combination
network
overlay

- Throughput.
- Reliability (to churn).
- Link stress
(redundancy).
- Download time.

Braun et al. [79]

Proposing generation
coding P2P file sharing
system with backward
compatibility with standard
BitTorrent.

- In some scenarios, NCME can
share a file to the network 20%
faster than BitTorrent.
- The suggested generation size
for good level of performance
is 43.

Java Implementation Partially
Meshed

- Download time.
- Generation size.

4.4. Combined Network Coding

Since, in the worst case, sparse coding decodes almost as poorly as full coding, and generation
coding limits the diversity of pieces, combined network coding is proposed. In this scheme,
generation network coding is mixed with sparse network coding aiming to minimize the
decoding/encoding computational complexity, and at the same time keep the diversity of the
pieces widespread.

Zeng et al. [82] propose a redesigned model for network coding based P2P file sharing systems,
by adding two new parameters: generation size and encoding size. The model is a generation based
network coding model, but the main distinguishing feature of this model is that the encoding size
may be less than or equal to the generation size while the decoding size is always kept equal to the
generation size. The authors claim that the appropriate optimal choice of the two new parameters
can show the benefit of using network coding. If the swarm size is small (20 to 40), determining the
appropriate encoding size is hard and the system performance is unstable. However, if the swarm
size is relatively large (90 to 100), the best encoding size is 4 when the generation size is fixed at 10.
The average download time is used as a performance metric, and the proposed system is compared
with the original BitTorrent and another combined network coding system whose parameters are
not selected properly (generation size = 12, and encoding size = 2). Simulation results show that the
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optimized network coding guarantees improved performance by at most 20% to 30% over BitTorrent,
and 10% over coding system with poorly selected parameters.

Yong et al. [63] use the same parameters proposed in [82] (generation size = 10, and encoding
size = 2) and propose a coding system based on CoolStreaming architecture [83] by adding a network
coding encoder/decoder and a scheduler. Empirical results show that the best encoding size of the
original seeder is 6, and the average download time is 10% and 20%–30% less than that for Avalanche
and BitTorrent, respectively. Moreover, an improvement is shown in resisting peer churn by 12.5%
compared with the BitTorrent system.

Kaiqian et al. [84] propose a Dasher system that is a combined network coding scheme. In addition,
the local rarest-first policy is adopted to deal with generation scheduling. The main feature of Dasher
over the previous combined network coding schemes is that the encoding size of Dasher varies based
on a probability formula. For the sake of comparison, Dasher and three other systems are implemented:
Sparser with sparse coding only, Chunker which uses generation coding only, and a BitTorrent-like
system. Dasher benefits from this combined scheme such that it can nearly decode as fast as Chunker,
and at the same time it can download almost as fast as Sparser. Experimental results show that Dasher
can improve the download time by up to 43% and 14% against Chunker and BitTorrent, respectively,
when the generation size is 256. However, when the generation sizes are small (16 to 64), Chunker and
Dasher download nearly at the same speed and with an improvement of 12% relative to BitTorrent.
The results also show that Sparser always downloads slightly faster than Dasher; however, Dasher can
decode faster than Sparser by 10%.

Su et al. [85] propose PCLNC, a Push-based Combined coding strategy with adaptive encoding
window size and Low-cost computational Network Coding operations. The sender prepares a
coded piece based on the requested piece such that the requested piece encoded with probability
1 and the other pieces are encoded with probability 0.5; then, the encoded piece is pushed to the
requester. To speed up the decoding process, an upper triangle matrix is introduced. To minimize
the encoding/decoding cost, coefficients are selected from GF(2) and thereby XOR operations are
used rather than addition and multiplication. To reduce the high probability of linear dependency
of selecting coefficients from GF(2), two schemes are proposed: (1) Postponement scheme which is
very similar to the scheme inspired by [56] . However, in this scheme, after a requesting peer receives
a linear dependent piece from a requested peer, then, the requesting peer will stop requesting the
requested peer for two seconds, if the requesting peer receives consecutive linearly dependent pieces,
the waiting time will be twice the number of these dependent pieces. (2) Loop self-checking scheme:
When a peer is receiving linearly dependent pieces from any neighboring peer for more than 180 s, this
means that there is a high probability that these two peers have the same pieces, thus they tear their
connection and try to find other neighbors. To evaluate the performance of PCLNC, it is compared
with native BitTorrent and sparse network coding scheme proposed by [56]. Metrics selected for
evaluation are: (1) Average download time: PCLNC download time is shortened by 3.17% and 21.0%
compared to [56] and BitTorrent, respectively. (2) Average start-up time: PCLNC peer can start sharing
a piece faster than BitTorrent by 36.8% , and almost as fast as [56], and (3) Coding degree (number of
innovative pieces): for PCLNC as the number of peers increases, the coding degree decreases and is
always less than that for [56].

These studies are limited and don’t show deep analysis of the ability of the combined coding
to provide wide sparsity and diversity of the content (file’s pieces). Table 5 summarizes the most
important studies related to combined network coding.
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Table 5. Combined network coding approaches and their characteristics.

Reference Approach Main Findings Verification
Method

Network
Topology Performance Metrics

Zeng et al. [82]
Introducing and adjusting new
parameters (generation size and
encoding size).

- If parameters are well tuned,
network coding outperform
other traditional P2P schemes.
Otherwise, network coding
performs worse.

Simulation on
NS-2 platform

Partially
Meshed

- Download time.
- Robustness to churn.

Yong et al. [63]
Studying the effect of the
generation and encoding sizes
on download time and churn.

- The download time is
shortened compared with
Avalance and BitTorrent by 10%
and 20%–30%.
- Churn resist can be improved
by 12.5%.

Simulation
based on
CoolStreaming
overlay
network.

Partially
Meshed

- Download time.
- Effect of churn.

Kaqian et al. [84]
Proposing combined coding with
adoption of local rarest first
policy for generation scheduling.

- Dasher can download faster
than Chunker and BitTorrent
as well as decode faster
than Sparser.

Implementation.
Tested both on
Planet-Lab [86]
and LAN
testbeds.

Mesh - Download time.
- Decoding speed.

Su et al. [85]

Proposing (1) adaptive encoding
window size and upper
triangle matrix to speed-up
encoding/decoding and
(2) postponement and loop
self-checking schemes to
minimize linear dependency.

- PCLNC is shortened the
download time by 3.17%
and 21.0% compared to
sparse coding and BitTorrent,
respectively.
- PCLNC peer can start sharing
a piece faster than BitTorrent
by 36.8% , and almost as fast as
sparse coding.

Simulation
based on
peerSim [87]

Mesh
- Download time.
- Start-up time.
- coding degree.

4.5. Multi-Generation Mixing (MGM) and Overlapping Network Coding

In MGM [88,89], a file is chunked into g generations. Each of these generations contains p pieces.
Additionally, among all the generations, m generations are grouped in a mixing set where m ≤ g.
In such a scheme, in addition to the trivial coding per generation, pieces are encoded/decoded per the
mixing set as well. Precisely, the first generation’s pieces in the mixing set are just encoded as they are
encoded in the classical generation coding, but the second generation’s pieces in the same mixing set
are encoded separately in their separate generation k times and then combined and encoded with either
some or all the pieces of the first generation at least once, continually, the third generation is combined
with the first and the second generations and so on. By this scheme, each earlier generation could
be considered as a subgroup of the subsequent generations. Figure 7 shows a simple example which
illustrates how MGM encoding is done where Ex denotes an encoded piece and cx denotes a coefficient.
The main advantage of this scheme is that an extra encoded piece received with a generation of a
higher position index in the mixing set may assist with decoding generations of lower position indices
in the same mixing set resulting in robustness to churn and a wide piece diversity.

Figure 7. Multiple-Generation-Mixing (MGM) coding illustration, Ex denotes encoded piece, and ci

denotes a coefficient.
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Similarly, in the overlapping coding scheme, generations are prepared in such a way that the
same piece/s are available in more than one generation. Two generations g0 and g1 overlap if they
have a non-empty intersection. For instance, g0 ∩ g1 = pi. By this scheme, generations that are fast
decoded can assist other generations in decoding when some generation’s pieces are rare or missed by
allowing back substitution. As a result, the number of innovative coded pieces is reduced, which in
turn enhances the throughput of the network.

Wei et al. [90] propose a P2P Content-propagation Mechanism that utilizes Network Coding
(PCMNC) based on MGM. PCMNC is similar to PPFEED, whence it uses network combination
topology and selects the coefficients deterministically. On the other hand, it differs from PPFEED
by applying MGM coding rather than generation coding. The authors argue that PCMNC can
achieve the maximum network coding gain by suggesting optimal size of the mixing set, m = 3.
Additionally, PCMNC is superior in performance to PPFEED by allowing more piece diversity and
thus lower chances of decoding failure. Empirical evaluation shows that PCMNC can shorten the
download time by 26% and 13% when compared to BitTorrent and P2P randomized-generation coding,
respectively. In literature, this is the only study that has been found that applies MGM to P2P content
distribution networks.

Silva et al. [91] propose the first overlapping coding scheme by introducing both square and
diagonal grid structures. In the square grid structure, shown in Figure 8a, base generations are
horizontally arranged while overlapping (supportors) generations are vertically stacked in such a way
that each overlapping generation overlaps with all base generations by exactly one piece per generation.
In the diagonal grid structure, shown in Figure 8b, supporter generations are diagonally stacked with
an angle θ. The authors aim to mix the benefits of network coding and fountain codes [92,93] such as
Luby Transform (LT) code [94] and Raptor [95]. Indeed, a fountain decoder is a propagative decoder
that has the feature of achieving a small overhead with a low decoding complexity by allowing back
substitution. The authors mainly try to answer the following question: is it possible to use true network
coding and at the same time enjoy a fountain-like decoder? A practical simulation shows improved
performance over independent generation coding in terms of decoding complexity overhead trade-off.
Exactly, the results show that for fixed expected complexity, the overlapped generations codes can
reduce the overhead by up to 70%. However, the theoretical analysis is done only for short lengths
equal to four groups.

Figure 8. (a) square grid overlapping structure, (b) diagonal grid overlapping structure.

Heidarzadeh et al. [96] propose head-to-toe overlapping that allows a generation of k pieces to be
overlapped with its following neighbor in at least one piece and at most k− 1 pieces. The overlapping
is allowed between neighboring generations only. More theoretical analysis than [91] is done by
measuring the asymptotic performance over a line network, in which a single source is connected to a
single sink via intermediate nodes such that each node is connected to exactly one sender and one
receiver forming a unidirectional-line network that contains n nodes and n− 1 links. Performance
comparison of full codes, disjointed generations codes, and overlapped generation codes is conducted.
Results show that the overlapping network coding can exploit the network bandwidth optimally
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by reducing the network overhead by nearly 60% and 29% for a line network of lengths 1 and 2,
respectively. In addition, they suggest using overlapped chunked codes for multimedia transmission
as shown in [97].

Li et al. [98] propose random annex codes which allow generations to be overlapped by attaching
to each generation a random annex of pieces selected randomly from other generations such that
the annex size is always smaller than the base generation size. Theoretical analysis and simulations
show that the optimal overlap (annex) size that increases the throughput and decreases the decoding
latency is around the half of the generation size. Moreover, results show that the proposed scheme
outperforms the head-to-toe scheme slightly in terms of throughput and the probability of decoding
failure. Both schemes outperform the disjoint generations’ coding scheme.

Tang et al. [99] propose an expander graph based overlapped generation codes (EOC)
which models generations as vertices and overlapping as edges between the vertices. EOC allows
each generation to overlap with another generation in one distinct piece only. The authors suggest
that the number, d, of generations that overlap vary from a minimum of 3 to a maximum that
does not exceed the generation size. Figure 9 shows an example of EOC graph with d = 3 and 5
generations, each of seven pieces (four distinct and three overlapped), i.e., generation one’s (G1) pieces
are P1, P5, P6, P8, P9, P10, P11. Simulation results show that EOC can achieve throughput rate of 93%
while independent generations codes can achieve maximum rate of 73% when the generation size
= 32 and GF size = 16. Additionally, the EOC receiver can decode all the pieces and reconstruct the
file faster than random annex and head-to-toe schemes. The extra ratio of encoded pieces needed
for decoding all the generations are ≤ 10%, 20%, and 40% for EOC, random annex, and head-to-toe,
respectively.

Figure 9. a d-regular graph (d = 3) with 5-vertices (generations).

Joshi et al. [100] proposed overlapping structure similar to EOC in which allowing overlapping
between two generations in one piece only. However, in contrast to EOC, they consider deterministic
overlapping structures by arranging generations circularly and allowing a generation to overlap with
its successive generations in a modular arithmetic scheme. Another improved deterministic circular
structure called distributed is proposed which allows overlapping based on a distance. Additionally,
in opposition to the foregoing studies which consider a random scheduling, round-robin scheduling is
considered and compared with the random scheduling. Analysis shows that round-robin scheduling
can accelerate the download time significantly for small generation sizes (≤8). Simulation results show
that the proposed deterministic overlap structures minimize the expected download time compared to
the random annex, and the distributed structure has almost the same download time as EOC but with
less network overhead and indexing complexity of EOC.
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In contrast to the aforementioned schemes, Li et al. [101] propose an overlapping network
coding with unequal generation sizes. Sizes vary from a minimum, which achieves the maximum
information flow of the network, to a maximum that is constrained by the buffer size or by the decoding
complexity, namely, Gaussian elimination can be applied computationally. Pieces per generation
are selected randomly from all the original pieces with replacement such that overlapping among
generation is allowed. Sequential and random scheduling policies are merged and applied. For each
generation, a fixed number of pieces are transmitted sequentially such that small generations can be
decoded and subsequently help large generations for earlier decodability. Next, random scheduling is
applied among generations for the remaining pieces. Experimental results show that the proposed
scheme achieves the minimum overhead (10%) compared to disjointed generations (60%), head-to-toe
(40%), and random annex (20%) codes. However, the disjointed generations code achieves the
minimum decoding complexity. The overall better overhead-complexity trade-off is achieved by
the proposed scheme.

The previous studies show clearly the benefit of overlapping coding over disjoint generation,
in terms of downloading time and decoding rate, by mathematical analysis and simulation. However,
only two studies [91,100] consider P2P networks. Table 6 summarizes the most important studies
related to generations overlapping network coding.

Table 6. Overlapping network coding approaches and their characteristics.

Reference Approach Main Findings Verification
Method

Network
Topology Performance Metrics

Silva et al. [91]
Proposing first P2P overlapping
coding scheme by introducing
grid and diagonal structures.

- The proposed scheme can mainly
reduce network overhead by up to 70%. Simulation Mesh - Decoding complexity

overhead trade-off.

Heidarzadeh et al. [96]
Proposing head-to-toe
overlapping scheme over line
network topology

- Overlapping can reduce network
overhead for line networks.
- Overlapping is appropriate for
multimedia streaming.

Numerical
Simulation

Line
networks
overlay

- Decoding probability.

Li et al. [98]
Proposing random overlapping
by attaching an annex to the
base generation.

- The optimal overlap size to achieve
the highest throughput is around the
half of the generation size.
- Random-Annex coding outperforms
both head-to-toe and disjoint
generations coding.

Numerical
Simulation Point-to-point

- Probability of
Decoding failure.
- Throughput.

Tang et al. [99]
Proposing and modeling
generations overlapping as an
expander graph (EOC).

- The best number of generations to
overlapped varies between 3 to the
generation size.
- EOC decoder decodes faster than
random annex and head-to-toe.

Numerical
simulation Point-to-point - Throughput.

- Decoding rate.

Joshi et al. [100]
Proposing deterministic
structures of overlapping and
consider round-robin scheduling

- The upper bound limit of the optimal
overlapping is O(logn).
- Deterministic overlapping structures
avoid network overhead and index
complexity of random structure (EOC).
- Proposed schemes minimize the
expected download time compared to
random annex.

Numerical
Simulation Mesh -Download time.

Li et al. [101]

Proposing overlapping with
unequal generations’ sizes based
on degree distribution and merge
both sequential and random
scheduling

- Proposed scheme achieves the
minimum overhead whereas
independent generations codes achieve
the minimum decoding complexity.
- Among the overlapping schemes,
the best overhead-complexity trade-off
is achieved by the proposed scheme.

Numerical
Simulation Point-to-point - Decoding rate.

- Overhead.

5. Discussion

In this section, we discuss the approaches that are surveyed in the previous section. Avalanche is
the first network coding based P2P file sharing system that improves in terms of communication
but adds huge overhead in terms of computation. All subsequent studies attempt to decrease the
computation overhead. In a sparse network coding scheme, the studies suggest that the network
coding may be applied into some pieces rather than be applied on all the file pieces. However, whether
these pieces should be selected randomly or deterministically is not clear. Furthermore, whether two
original pieces or more are sufficient for encoding is not verified.
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In generation based scheme, the studies agree that the network coding should be applied per
generation rather than on all file data. However, the optimal size of a generation and subsequently to
how many generations the file should be partitioned is not agreed upon. The arguments that generation
coding outperforms sparse coding [62,67] are not supported. Moreover, there is a conflict about the
scheduling policy among generations: random, sequential, round-robin, or rarest-first. In terms of
network overhead, disjointed generation coding incurs additional overhead that is each encoded piece
is sent with the generation sequence it belongs to. On the other hand, overlapping generations coding
adds even more additional overhead, which is the sequences of the overlapping generations.

Alternatively, the combined network coding scheme attempts to mix the features of generation
coding and sparse coding and get rid of their limitations. The studies for this scheme are limited and
do not agree upon the optimal generation size and encoding size.

Based on the extensive survey, the discussion, and our partial simulation, Table 7 compares the
coding approaches in terms of robustness to churn, decoding speed, and network overhead. More stars
“?” means greater robustness to churn, whereas the more arrows ↑means greater network overhead.
The comparison is approximated, and we believe that, for more precise comparison, specific variations
of each schemes should be simulated.

Table 7. Comparison of network coding approaches.

Robustness
to Churn Decoding Speed Network

Overhead

Full Coding ? ? ? ? ? Constant: very slow (infeasible) ↑

Sparse Coding ??
Variant: slow at the beginning to quick
at the end. ↑

Generation Coding ? ? ?
Constant: based on generation size
(moderate usually). ↑↑

Combined Coding ? ? ?
Variant: moderate at the beginning to
quick at the end. ↑↑

Overlapping
Coding ? ? ??

Variant: moderate at the beginning to
very quick at the end. ↑↑↑

After this discussion, it can be stated that using network coding in P2P file sharing networks
is a trade-off process, a trade-off between communication and computation, a trade-off between
computation and content availability, and a trade-off between the size of the finite field and the linear
dependency of the encoded packets. The studies agree in certain aspects. For example, the studies
suggest the use of generation coding or sparse coding algorithms and their variations rather than
the use of full coding. However, they conflict in other aspects such as determining the optimal
generation size or determining the encoding size in the case of sparse coding. Furthermore, the studies
show a solution for special topologies with special characteristics, while they do not propose a
general framework.

6. Conclusions

In this paper, we survey network coding based P2P file sharing systems. This survey paper
summarizes, assesses, and compares the most recently used techniques to improve P2P content
distribution systems performance using network coding. Furthermore, we present a classification of
the main network coding based P2P file sharing systems which include full coding, generation coding,
sparse coding, combined coding, and overlapping coding. The extensive survey shows that applying
network coding on P2P file sharing systems is a trade-off process. The challenges of network coding
can be alleviated, but not completely vanished. These challenges are still a hot research topic.
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