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Abstract: A one-pot, single-step, and an atom-economical process towards the synthesis of highly
functionalized spirooxindoles analogues was efficiently conducted to produce a satisfactory chemical
yields (70–93%) with excellent relative diastereo-, and regio-selectivity. An in vitro antiproliferative
assay was carried out on different cancer cell lines to evaluate the biological activity of the synthesized
tetrahydro-1’H-spiro[indoline-3,5’-pyrrolo[1,2-c]thiazol]-2-one 5a–n. The prepared hybrids were
then tested in vitro for their antiproliferative effects against three cancer cell lines, namely, HepG2
(liver cancer), MCF-7 (breast cancer), and HCT-116 (colon cancer). The spirooxindole analogue 5g
exhibited a broad activity against HepG2, MCF-7, and HCT-116 cell lines of liver, breast, and colorectal
cancers when compared to cisplatin. Modeling studies including shape similarity, lipophilicity scores,
and physicochemical parameters were calculated. The results of this study indicated that spirooxindole
analogue 5g retained a good physiochemical parameters with acceptable lipophilicity scores.

Keywords: spirooxindole; 1,3-dipolar cycloaddition; eco-friendly chemistry; ROCS; shape alignment;
lipophilicity; anticancer activity

1. Introduction

The design of highly complex spiro-heterocycles with multifunctional and potential pharmaceutical
efficacy has attracted considerable attention from synthetic and medicinal chemists [1]. One of the
most privileged aza-heterocyclic scaffolds is spiro[pyrrolidine-oxindole] [2], which is present in natural
products and useful as a building block for the synthesis of significant biologically active compounds.
This class of aza-heterocyclic compounds has gained great interest, owing to several reports of
its pharmaceutical potency, including anticancer [3], antitumor [4], 5-HT3 receptor antagonist [5],
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acetylcholinesterase-inhibitory [6], antibacterial [7], antibiotic [8], and MDM2–p53 inhibitor [9] effects;
selective cyclooxygenase COX-1 with TNF-α and IL-6 inhibitors [10]; and potential hypoglycemic dual
inhibitory activity against α-amylase and α-glucosidase [11] (Figure 1). To date, prolonged efforts
have been exerted to expand divergent complexity and to develop efficient synthetic routes for these
valuable privileged aza-heterocyclic scaffolds, which would remarkably enhance their bioactivity [1,12].
In particular, [3+2] cycloaddition is one of the most efficient synthetic approaches to produce these
valuable scaffolds with stereoselective method and high yield [13]. To extend our previous research,
we explored the effect of halogen substitution on the isatin ring.
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Figure 1. Natural (Spirotryprostatin A and B) and other synthetic spirooxindole scaffolds with high
biological importance and structure-activity relationship.

Our previous studies [9] revealed that the presence of dihalide substitution on acyl moiety
substantially increased the anticancer activity of the resulting product(s). Moreover, it was
reported [9] that chlorinated indole moiety retained better activity, as illustrated in Figure 1a.
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Subsequently, this study was designed to introduce two bromo atoms on the indole ring, presumably to
enhance the activity of the examined spirooxindole compounds shown in Figure 1. The aza-heterocyclic
compounds were prepared via a multicomponent eco-friendly strategy using oxindole as a core
structure. The resulting hybrids were biologically evaluated using an in vitro antiproliferative assay
against three different cell lines for liver, breast, and colorectal cancer. In addition, molecular properties
and lipophilicity studies were conducted to get insight about “drug properties consideration” and to
discover the compounds’ structure-property relationship (SPR).

2. Results and Discussion

2.1. Synthesis of 5a–n

The requisite spirooxindoles analogous were prepared by a multicomponent reaction (Scheme 1).
The advantages of this efficient method were low-cost and readily available synthons for the synthesis
of highly divergent compounds with high-importance applications. Fourteen analogues were
prepared through the reactions of bis-benzylidine 1a–n, which had been prepared according to
our previous publication [9] with thioproline and 5,7-dibromoisatin, to afford the requisite target
compounds. The chemical features of the requisite compounds were assigned based on HNMR,
CNMR, IR, and CHN analysis.
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According to Scheme 2 and based on our previous study [9], the reaction proceeds via one pot
reaction, in which initially 5,7-dibromoisatin 2 reacted with thioproline 3 affording the azomethine ylide
after the removal of carbon dioxide from the intermediate. Subsequently, the azomethine ylide reacted
with the bis-benzylidine 1a–n to provide the target compounds in a regioselective and diastereoselective
manner. The reaction proceeded via path A regio-selectively to afford the regioisomer products 5a–n,
while the second regio-isomers 5a–n’ did not occur (path B). There are possible diastereoselective
products that could be formed, but in this case only diastereoselective compounds 5a–n occurred via
the path C not D.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 10 

According to Scheme 2 and based on our previous study [9], the reaction proceeds via one pot 
reaction, in which initially 5,7-dibromoisatin 2 reacted with thioproline 3 affording the azomethine 
ylide after the removal of carbon dioxide from the intermediate. Subsequently, the azomethine ylide 
reacted with the bis-benzylidine 1a–n to provide the target compounds in a regioselective and 
diastereoselective manner. The reaction proceeded via path A regio-selectively to afford the 
regioisomer products 5a–n, while the second regio-isomers 5a–n’ did not occur (path B). There are 
possible diastereoselective products that could be formed, but in this case only diastereoselective 
compounds 5a–n occurred via the path C not D. 

 
Scheme 2. Plausible reaction mechanism of the synthesized compounds. 

2.2. Biological Activity 

The compounds were subjected to an initial evaluation for potential cytotoxic activity against 
different cancer cell lines, namely, HepG2, MCF-7, and HCT-116 cells, at 50 µM. Cell viability was 
measured using MTT assay. Among the screened 14 compounds, 3 (5h, 5i, and 5j) did not show any 
cytotoxic activity against HepG2 cells. The concentration of the active compounds that killed 50% of 
the cells (IC50) was evaluated against HepG2 cells. Compound 5g (IC50 = 5.00 ± 0.66 µM) was the most 
potent active compound, showing more potent activity than that of the standard chemotherapeutic 
drug cisplatin (IC50 = 9.00 ± 0.76 µM) (Table 1). Moderate anticancer activity against HepG2 cells was 
observed for compounds 5a and 5m (IC50 = 10.00 ± 0.47 and 17.00 ± 0.68 µM, respectively). 

The same three inactive compounds (5h, 5i, and 5j) did not show activity against MCF-7 or HCT-
116 cells (Table 1). The other 11 tested compounds (IC50 ≤ 9.00 µM) showed superior activity to that 
of cisplatin (IC50 = 9.00 ± 0.29 µM) against MCF-7 cells (Table 1); only compounds (5c, 5f, 5g, and 5l) 
(IC50 < 3.00 µM) were more potent than cisplatin (IC50 = 3.00 ± 0.24 µM) against colon cancer cells 
(Table 1). The present study showed that compound 5g retained broad anticancer activity against the 
three tested cell lines of liver, breast, and colorectal cancers; HepG2, MCF-7, and HCT-116 cells, 
respectively. 

Table 1. Results of anticancer activity against HepG2, MCF-7, and HCT-116 cells. 

Compound R 
Cancer Type/Cell Line  

Liver 
HepG2 (IC50 a, µM) 

Breast 
MCF-7 (IC50, µM) 

Colon 
HCT-116 (IC50, µM) 

Scheme 2. Plausible reaction mechanism of the synthesized compounds.

2.2. Biological Activity

The compounds were subjected to an initial evaluation for potential cytotoxic activity against
different cancer cell lines, namely, HepG2, MCF-7, and HCT-116 cells, at 50 µM. Cell viability was
measured using MTT assay. Among the screened 14 compounds, 3 (5h, 5i, and 5j) did not show any
cytotoxic activity against HepG2 cells. The concentration of the active compounds that killed 50% of
the cells (IC50) was evaluated against HepG2 cells. Compound 5g (IC50 = 5.00 ± 0.66 µM) was the most
potent active compound, showing more potent activity than that of the standard chemotherapeutic
drug cisplatin (IC50 = 9.00 ± 0.76 µM) (Table 1). Moderate anticancer activity against HepG2 cells was
observed for compounds 5a and 5m (IC50 = 10.00 ± 0.47 and 17.00 ± 0.68 µM, respectively).

The same three inactive compounds (5h, 5i, and 5j) did not show activity against MCF-7 or
HCT-116 cells (Table 1). The other 11 tested compounds (IC50 ≤ 9.00 µM) showed superior activity
to that of cisplatin (IC50 = 9.00 ± 0.29 µM) against MCF-7 cells (Table 1); only compounds (5c, 5f,
5g, and 5l) (IC50 < 3.00 µM) were more potent than cisplatin (IC50 = 3.00 ± 0.24 µM) against colon
cancer cells (Table 1). The present study showed that compound 5g retained broad anticancer activity
against the three tested cell lines of liver, breast, and colorectal cancers; HepG2, MCF-7, and HCT-116
cells, respectively.
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Table 1. Results of anticancer activity against HepG2, MCF-7, and HCT-116 cells.

Compound R

Cancer Type/Cell Line

Liver
HepG2 (IC50

a, µM)
Breast

MCF-7 (IC50, µM)
Colon

HCT-116 (IC50, µM)

4b
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2.00 ± 0.50 NT 3.00 ± 0.50 

4d 

 

0.85 ± 0.20 NT 2.00 ± 0.60 

4f 
 

0.80 ± 0.10 NT 3.00 ± 0.50 

4i 

 

2.40 ± 1.00 NT 8.00 ± 0.30 

4j 
 

>50.00 NT 14.50 ± 1.50 

4k 
 

>50.00 NT 19.00 ± 2.00 

4l 

 

0.90 ± 0.10 NT 1.57 ± 0.30 

4m 
 

2.40 ± 0.40 NT 5.00 ± 0.30 

4n 
 

0.90 ± 0.20 NT 2.90 ± 0.40 

5a 
 

10.00 ± 0.47 6.00 ± 0.13 4.50 ± 0.05 

5b 
 

30.00 ± 0.38 5.50 ± 0.47 5.00 ± 0.30 

5c 
 

25.00 ± 0.09 3.00 ±1.26 2.90 ± 0.25 

5d 

 

>50.00 ± 0.28 9.00 ± 0.05 8.50 ± 0.10 

5e 

 

22.00 ± 1.02 3.00 ± 0.32 5.00 ± 0.12 

5f 
 

50.00 ± 0.38 2.50 ± 1.66 2.20 ± 0.15 

5g 

 

5.00 ± 0.66 4.00 ± 0.29 2.80 ± 0.20 

5h 
 

NA b NA NA 

5i 

 

NA NA NA 

5j 
 

NA NA NA 

3.57 ± 0.50 NT c 8.00 ± 1.20

4c
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Table 1. Cont.

Compound R

Cancer Type/Cell Line

Liver
HepG2 (IC50

a, µM)
Breast

MCF-7 (IC50, µM)
Colon

HCT-116 (IC50, µM)
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a IC50 (µM) was evaluated using MTT assay and ± is the standard deviation from three independent 
experiments.  
b NA: means that the tested compound did not show anticancer activity at 50 µM.  
c NT: did not tested against the MCF-7 cells. 

2.3. Effect of the Dibromo on the Anticancer Activity 

The structure-activity relationship between the previously reported spirooxindole analogues 4b, 
4c, 4d, 4f, and 4i-n [9] and the diboromo-substituted spiroxindoles 5b, 5c, 5d, 5f, and 5i-n is described. 
In fact, the IC50 values of Table 1 clearly show that the replacement of the H atoms of the previously 
reported compounds 4b, 4c, 4d, 4f, and 4i-n with that of its analogues with the Br produced a 
significant decrease in the inhibitory growth effect on the HEPG2 cell line. On the other hand, 
compounds 5b, 5c, 5f, 5k, and 5m (dibromo-substituted) showed better activity against HCT-116 cells 
than their dibromo-unsubstituted indole counterparts. Compounds 5d, 5l, and 5n showed less 
activity than the compounds 4d, 4l, and 4n, respectively. Compounds 5i and 5j were not active and 
compounds 4i and 4j presented some activity (Table 1). 

2.4. Shape Alignment by Rapid Overlay Chemical Structure (ROCS) Analysis 

Shape and electrostatic potential are two fundamental molecular descriptors for computational 
drug discovery, because in protein ligand binding, the shape of a ligand has to conform in large 
degree to the shape of a protein binding site. The electrostatic potentials presented in the binding site 
have to complement the electrostatic potential of the protein. Accordingly, it is very important to 
model and understand protein ligand bindings correctly. The 3D shape structure exhibits good 
neighborhood behavior, in which high similarity in shape reflects high similarity in biology. Shape 
similarity can have different applications, such as virtual screening, lead-hopping, molecular 
alignment, pose generation, and predictions. 

ROCS is a tool used in shape similarity studies. ROCS requires a query, which is an active 
molecule with some biological activities in at least one 3D conformation. It also requires a database 
of the molecules of the compounds of interest. Consistent with these standards, our compounds 
(database set) showed similarity to standard compound BI-0225 (Figure 2). Compound 5g showed 
high similarity to BI-0225 in terms of its oxindole moiety and oxoindole ring. 
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2.3. Effect of the Dibromo on the Anticancer Activity

The structure-activity relationship between the previously reported spirooxindole analogues
4b, 4c, 4d, 4f, and 4i-n [9] and the diboromo-substituted spiroxindoles 5b, 5c, 5d, 5f, and 5i-n is
described. In fact, the IC50 values of Table 1 clearly show that the replacement of the H atoms of
the previously reported compounds 4b, 4c, 4d, 4f, and 4i-n with that of its analogues with the Br
produced a significant decrease in the inhibitory growth effect on the HEPG2 cell line. On the other
hand, compounds 5b, 5c, 5f, 5k, and 5m (dibromo-substituted) showed better activity against HCT-116
cells than their dibromo-unsubstituted indole counterparts. Compounds 5d, 5l, and 5n showed less
activity than the compounds 4d, 4l, and 4n, respectively. Compounds 5i and 5j were not active and
compounds 4i and 4j presented some activity (Table 1).

2.4. Shape Alignment by Rapid Overlay Chemical Structure (ROCS) Analysis

Shape and electrostatic potential are two fundamental molecular descriptors for computational
drug discovery, because in protein ligand binding, the shape of a ligand has to conform in large degree
to the shape of a protein binding site. The electrostatic potentials presented in the binding site have to
complement the electrostatic potential of the protein. Accordingly, it is very important to model and
understand protein ligand bindings correctly. The 3D shape structure exhibits good neighborhood
behavior, in which high similarity in shape reflects high similarity in biology. Shape similarity can have
different applications, such as virtual screening, lead-hopping, molecular alignment, pose generation,
and predictions.

ROCS is a tool used in shape similarity studies. ROCS requires a query, which is an active
molecule with some biological activities in at least one 3D conformation. It also requires a database
of the molecules of the compounds of interest. Consistent with these standards, our compounds
(database set) showed similarity to standard compound BI-0225 (Figure 2). Compound 5g showed
high similarity to BI-0225 in terms of its oxindole moiety and oxoindole ring.
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Figure 2. Shape similarity of 5g with BI-0252 as analyzed by Rapid Overlay Shape Chemical Structure
(ROCS) and visualized by VIDA application.

2.5. Predicted Pharmacokinetics and Pharmacodynamics Parameters

Absorption, distribution, metabolism, excretion, and toxicity (ADMET) prediction for drug
candidates is mandatory in the drug design process, as these parameters contribute to determining the
failure of approximately 60% of all drugs in the development and approval phases. It is well-known
that ADMET prediction is performed at the last stage of the drug development process with high cost
and effort. At present, ADMET is determined at the beginning of drug discovery stages in order to
eliminate molecules with poor ADMET properties from the drug discovery pipeline with the aim to
save research costs. In this regard, computational tools were used to predict ADMET properties in this
study [14].

The Caco-2 cell, percentage of human intestinal absorption (HIA), and skin permeability models
have all been suggested as reliable in vitro models to estimate oral drug absorption and transdermal
delivery [15]. Drug penetration to the blood brain barrier (BBB) provides insight into drugs that act on
the central nervous system and on plasma protein binding (PPB). Compared to the other compounds,
5g showed the lowest BBB penetration value (0.017) and a low value in the Caco-2 cell model (18.80).
All compounds showed high PPB and HIA values, as well as very low skin permeability values in the
range of −1.80 to −2.79 (Table 2).

Table 2. Predicted pharmacokinetic and pharmacodynamic parameters of the most active compounds.

#

Lipinski’s Rule PreADMET [16] Prediction

MW LogP
[17] HBD HBA BBB PPB HIA Caco-2

Value
Skin

Permeability

Drug-Likeness
Model Score

[17]

5a 607.98 5.02 1 4 0.39 100.00 97.99 39.51 −2.45 0.36

5b 636.01 5.82 1 4 0.95 94.44 98.03 41.48 −2.28 0.60

5c 679.25 6.44 1 4 1.64 100.00 98.04 44.04 −2.49 0.83

5e 646.34 5.56 1 4 0.51 100.00 97.99 40.35 −2.75 0.63

5f 768.15 6.72 1 4 1.96 100.00 97.96 46.69 −2.15 0.71

5g 700.35 4.47 1 8 0.017 100.00 98.94 18.80 −2.46 0.44

5l 768.15 6.72 1 4 1.69 100.00 97.96 46.60 −2.15 0.63

5m 646.34 5.56 1 4 0.49 100.00 97.99 40.35 −2.79 0.72

5n 746.34 7.49 1 4 3.33 100.00 98.03 48.45 −1.80 0.47

HBD, hydrogen bond donor; HBA, hydrogen bond acceptor; BBB, blood brain barrier; PPB, plasma protein binding;
HIA, percentage human intestinal absorption; Caco-2 value, permeability to Caco-2 (human colorectal carcinoma)
cells in vitro.
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2.6. Ligand Efficiency (LE) and Lipophilic Efficiency (LipE)

In the current study, for optimization assessment, LE was calculated [18]. The parameter LE
has a crucial role in “lead optimization for drug-like candidate” properties [19]. Compounds with
the highest activity were selected for evaluation against sensitive cancer cell lines (breast and colon
cancer cells).

LE was calculated using the following equation [20]:

LE = (pIC50 × 1.37)/NHA

IC50 = half-maximal inhibitory concentration (in terms of molar concentration);
NHA = non-hydrogen atom.

The compounds had an LE value in the range of 0.19–0.26 except for compound 5n (Table 3).
All compounds exhibited higher LE values in breast cancer cells than in colon cancer cells,
especially compounds 5c, 5e, and 5l (LE = 0.26), all of which were structural isomers.

The recommended LE value should be in the range of 0.3. The acceptable LE value should be
higher than 0.3.

2.7. Lipophilic Efficiency (LipE) or Ligand Lipophilic Efficiency (LEE)

Lip E or LLE is an avenue to determine compound affinity with respect to its lipophilicity.
Nowadays, the lipophilic efficiency (LipE) index (LEE), which includes lipophilicity and potency,

is becoming more and more popular in drug design. It allows for the normalization of observed
potency with changes in the lipophilicity, and it is considered an effective and practical tool for keeping
lipophilicity under control to avoid any “molecular obesity”.

LipE or LLE is calculated as the difference between the potency and log P as illustrated in the
following equation:

Lip E = pIC50 - cLog P

According to data revealed in Table 3, compound 5g showed best value in comparison to other
derivatives between both cell lines.

Table 3. Summary of ligand efficiency scores for the target compounds.

Compounds R NHA cLog
P

Breast Cancer Cells Colon Cancer Cells

pIC50 LE LipE
(LEE) pIC50 LE LipE

(LEE)

5a
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Table 3. Cont.

Compounds R NHA cLog
P

Breast Cancer Cells Colon Cancer Cells

pIC50 LE LipE
(LEE) pIC50 LE LipE

(LEE)

5g
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Compounds R NHA cLog P 
Breast Cancer Cells Colon Cancer Cells 

pIC50 LE 
LipE 
(LEE) 

pIC50 LE 
LipE 
(LEE) 

5a  
 

35 5.02 5.22 0.2 0.20 5.34 0.2 0.32 

5b  
 

37 5.82  5.26 0.19 -0.56 5.3 0.2 -0.52 

5c  
 

37 6.44 5.52 0.26 -0.92 5.53 0.26 -0.91 

5e 

 

37 5.56 5.52 0.26 -0.04 5.3 0.2 -0.26 

5f 
 

37 6.72 5.6 0.2 -1.12 5.66 0.21 -1.06 

5g  

 

41 4.47 5.39 0.22 0.92 5.55 0.19 1.08 

5l  

 

37 6.72 5.52 0.26 -1.2 5.55 0.2 -0.17 

5m  
 

37 5.56 5.34 0.2 -0.22 5.39 0.2 -0.17 

41 4.47 5.39 0.22 0.92 5.55 0.19 1.08

5l
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2.8. Structure-Activity Relationship

The activity of the 2,4-dichloro derivative (compound 5c or 4c ) was better than those of the
4- chloro analogues (compound 5d or 4d respectively), emphasizing the geometrical role of aryl
moieties in the activities of the compounds. This result was consistent with that of our previous studies,
which indicated the effect of such substitution patterns and showed that the 2,4-dichloro substitution
was favorable to the activities of the compounds [19,20].

Hetero aryl (compound 5k, 5j), bulky (compound 5i), or EDG (5h) reduced the activity indicated
the site which was adopted by aryl groups in the side chain. The substitution site on both phenyl rings
was important in the activity and physicochemical parameters of the compounds. This was clearly
observed in compounds 5c, 5e, and 5l compared to compounds 5f and 5m. Strong EWG (5g) exhibited
the best activity.

3. Materials and Methods

General information of the equipment used in the synthesis and the characterization of the
compounds can be found in the supplementary materials. Additionally, the anticancer activity along
with shape alignment and ROCS can be found in the supplementary materials.

4. Conclusions

In summary, we synthesized a series of new spirooxindole analogues based on di-substituted
isatin. The anticancer activity of the compounds against three different cancer cell lines was explored.
Among the analogues, the compound spirooxindole analogue 5g had an inhibitory growth potency in
HCT116 similar to that of cisplatin, but it is ca. 1.8 (in HepP2) or 2.25 (in MCF7) times more potent
than the reference drug, and also showed good physicochemical parameters and lipophilicity value.
Further investigation of the mechanism of action of compound 5g is required.
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