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Featured Application: A new method of coupling and decoupling measurement is proposed to
obtain complete geometric errors of multi-axis machine tools. It solves the problem of ignoring
items of small angle errors in the traditional measurement method.

Abstract: Precision and ultra-precision machining technology rely mainly on the machine tools’
accuracy. To improve it, the measurement, calculation, prediction and control of geometric errors
are critical. The traditional measurement methods have lower precision because of ignoring small
angle errors. To obtain complete geometric errors of multi-axis machine tools, this paper proposes a
new method of coupling and decoupling measurement. Specifically, we used a laser interferometer
and dial indicators to measure 36 items of complete geometric errors of multi-axis machine tools.
A homogeneous transformation matrix (HTM) was applied to model the error transfer route. The
transfer law of complete errors for each machining point was explored and derived. Furthermore, we
selected and calculated integrated errors of 36 machining points. Finally, we proved the correctness
of the method by comparing the measurement result of a ball bar test and coupling and decoupling
measurement of geometric errors. We found that items of small geometric angle errors have a greater
impact on machining accuracy than those of geometric displacement errors. Complete geometric
errors measured via the coupling and decoupling measurement method can evaluate integrated
errors more precisely and comprehensively.

Keywords: complete geometric errors; coupling and decoupling; homogeneous transformation matrix

1. Introduction

In the past 10 years, the increasing interest in precision manufacturing engineering has
heightened the need of advanced manufacturing technology. Precision manufacturing mainly includes
precision and ultra-precision machining technology and manufacturing automation. The former
pursues the precision of machining and the limit of surface quality, while the latter includes the
automation of product design, manufacturing and management. Many parts and components used in
aviation, aerospace, ships and cars are machined thorough precision and ultra-precision machining
technology. As the hardware foundation of modern advanced manufacturing industry, the machining
accuracy of multi-axis machine tools plays a critical role in developing and improving advanced
manufacturing technology.

The errors discussed in this paper are the difference between the expected values of geometric
dimension and the obtained measurement results. The geometrical deviations of a part resulting
from successive machining set-ups originate from multiple error sources [1,2], such as positioning
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deviation [3], fixture errors, datum errors and machine tool errors [4]. Therefore, geometric errors of
the machine tools constitute a large portion of the total machining error [5]. In terms of the geometric
error analysis, Samper and Giordano proposed several error analysis models, such as 3D tolerancing
models [6,7], a form defects expression method based on natural mode shapes of a discretized feature [8],
and 2D and 3D assemblies modeling considering form errors of plane surfaces [9]. Grandjean described
the form errors modeling in the assembly process [10]. Considering the variations and uncertainties
of geometrical variations, Desrochers and Clément built a novel tolerance analysis representation
model [11,12] and broadened the scope of the Jacobian-Torsor model [13]. In addition, Abenhaim
and Desrochers investigated the profile measurements repeatability [14]. Ameta compared several
tolerance analysis methods in common use [15,16] and constructed Tolerance-Maps to model the
composite positional tolerancing [17]. In terms of the measurement instrument of geometric error,
Chen used an auto-tracking laser interferometer to measure the geometric error of machine tools [18].
Peng used a double ball bar to measure geometric errors of the rotary axis on a multi-axis machine
tool based on kinematic analysis [19–21]. Ibaraki used a laser scanning device to analyze sensitivity of
machine geometric errors measurement [22,23]. Precision optics devices are recently and gradually
applied to measure geometric errors of machine tools [24,25]. In terms of the measurement method,
Yang applied the radial basis function (RBF) neural network approach to measure and compensate for
geometric displacement errors [26]. Min applied machine vision to measure screw thread geometric
errors [27]. Yang applied differential motion matrices to identify position-independent geometric
errors of five-axis serial machine tools [28]. Lee researched the optimal on-machine measurement of
position-independent geometric errors for rotary axes in five-axis machines with a universal head [29].
Comparison results of direct and indirect methods for geometric error measurement [30,31] indicate
that because of ignoring angle errors, researches above lack completeness of geometric errors [32]. For
example, Chen designed a novel six-degree-of freedom geometric error measurement system for a
linear stage [33]. Hsieh designed a geometric error measurement system for linear guideway assembly
and calibration [34].

At present, the measurement precision of most geometric errors is lower because of ignoring
the items of small angle errors. To form a better view of the formation, measurement, transfer and
integration process of geometric errors, we proposed a new measurement method to measure complete
geometric errors of multi-axis machine tools.

Applying the coupling and decoupling measurement method proposed in this paper, we used
laser interferometer and dial indicators to measure 36 items of complete geometric errors of multi-axis
machine tools in Section 2. We investigated the motion transfer route of a multi-axis machine tool
and applied a homogeneous transformation matrix (HTM) to model it. The transfer law of complete
errors for each machining point was explored and derived in Section 3. Furthermore, we selected and
calculated integrated errors of 36 machining points. Finally, we proved the correctness of the method
by comparing the measurement result of a ball bar test and the result of coupling and decoupling
measurement of geometric errors. Based on that, we evaluated the influences of displacement and
angle errors on machining errors of multi-axis machine tools in Section 4. This paper proposes a new
measurement method of complete geometric errors of multi-axis machine tools. The specific content
and steps are shown in Figure 1. The paper is summarized in Section 5. Measurement data is shown in
the Appendix A.
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2. Measurement of Complete Geometric Errors

Most geometric errors are generated from the manufacturing and assembly stages. As the
basis and premise of precision production, the measurement and control of geometric errors are of
important significance. The measurement of geometric errors for a multi-axis machine tool relies
on a variety of measurement methods, techniques and tools. Its control process aims to establish a
transfer and mapping model from geometric errors to machining errors, and to research its quantitative
transfer process.

Traditional measurement methods generally ignore small geometric angle errors. The resultant
geometric error items are thus incomplete. Furthermore, the calculation and compensation accuracy
of machining errors is lower. Due to the coupling between geometric error items, the coupling and
decoupling measuring method is proposed in this paper to obtain complete geometric error items.

2.1. Complete Geometric Errors of Multi-Axis Machine Tools

Complete geometric errors of multi-axis machine tools include geometric size, shape and position
errors, which are displacement and angle errors or their coupling, in the final analysis. Although the
orientation error caused by the inaccurate positioning of a workpiece and fixture is also one of the
main errors in machined parts, it is mainly considered in the process of machining. Therefore, the
orientation error is not taken into account in this paper. There are 6 items of geometric errors for each
axis (translating or rotating axis): 3 items of geometric displacement errors and 3 items of geometric
angle errors [35], as shown in Figure 2. Complete geometric errors of multi-axis machine tools include
36 items, as shown in Table 1. Among them, items of geometric errors are coupled with each other,
except axial displacement errors.
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Table 1. Geometric errors of multi-axis machine tools.

X-Axis Y-Axis Z-Axis A-Axis B-Axis C-Axis

Displacement
errors

δxx δyx δzx δAx δBx δCx
δxy δyy δzy δAy δBy δCy
δxz δyz δzz δAz δBz δCz

Angle errors
εxx εyx εzx εAx εBx εCx
εxy εyy εzy εAy εBy εCy
εxz εyz εzz εAz εBz εCz

2.2. Measurement of Axial Displacement Errors

As Table 1 shows, δxx, δyy, δzz, δAx, δBy and δCz are the axial geometric errors of the X, Y, Z, A, B
and C-axis, respectively. They are measured by a laser interferometer (Renishaw XL-80 laser system,
resolution: 0.01 µm). The measurement of axial geometric displacement errors δxx is shown in Figure 3.
The measurement points on the X-axis and A-axis are shown in Figure 4, where the points on the
A-axis are at the end face.
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As is shown in Figure 4, for the translation axes: X, Y and Z-axis, the axial geometric displacement
errors of each point are obtained via recording the time difference between the laser interferometer
transmitting and receiving infrared rays. The errors between the ideal position and the actual position
of the points to be calculated, as in Equation (1):

δi
xx = pi(i = 1, 2, . . . , m). (1)
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Because there is no translation on the rotation axes: A, B, C-axis, their axial geometric errors are
obtained as Equation (2):

δAx =
n∑

i=1

pi/n(i = 1, 2, . . . , n). (2)

2.3. Measurement of Coupled Geometric Errors

The translation rails of a multi-axis machine tool are generally planar, and their shape and position
errors are coupled by transverse and longitudinal geometric displacement and angle errors, as shown
in Figure 5.
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As is shown in Figure 5, in the XOY plane, coupling geometric error items of δxz along X and Y
direction cause shape errors. Coupling geometric error items of εxx and εxy causes position errors;
they can be decoupled in the XOZ and YOZ plane, as shown in Figure 6. The decoupling steps are
as follows:

1. Set m and n points along the X and Y direction and measure shape errors of these m × n points.
2. Set the cross-sectional plane along each transverse and longitudinal line.
3. Fit shape errors along each transverse and longitudinal line.
4. Decouple error items of εxx and δxz in the YOZ cross-sectional plane, and εxy and δxz in the

XOZ plane.
5. The tilt angles of the fitting line are angle error items of εxx and εxy. The difference between the

shape errors and fitting values along each transverse and longitudinal line is the displacement
errors item of εxx, as shown in Figure 7.
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According to the figure above,
pi· =

n∑
j=1

pi j/n(i = 1, 2, . . . , m)

p· j =
m∑

i=1
pi j/n( j = 1, 2, . . . , n)

, (3)

 ki· = tan εi
xx

k· j = tan ε j
xy

, (4)

where ki· and k· j are the slopes of the fitting lines in the transverse and longitudinal cross-sectional
planes, respectively.

In XOZ plane, the decoupling displacement and angle errors are obtained as Equations (5)–(7):

δi
xz =

n∑
j=1

(pi j − ki·y j)/n(i = 1, 2, . . . , m), (5)

εi
xx = arctanki·(i = 1, 2, . . . , m), (6)

εi
xy =

n∑
j=1

(arctank· j)/n(i = 1, 2, . . . , m). (7)

In YOZ plane, the decoupling displacement and angle errors are obtained as Equations (8)–(10):

δi
xy =

n∑
j=1

(pi j − k· jxi)/n(i = 1, 2, . . . , m), (8)

εi
xx = arctanki·(i = 1, 2, . . . , m), (9)

εi
xz =

n∑
j=1

(
arctank· j)/n (i = 1, 2, . . . , m). (10)

Geometric error item of εi
xx (Equation (11)) is derived from Equation (6) and Equation (9):

εi
xx = (εi

xx(XOY) + εi
xx(XOZ))/2. (11)

Finally, complete geometric errors of the X-axis are all obtained (Equations (1), (5), (7), (8), (10),
and (11)). Similarly, complete geometric errors of the Y-axis and Z-axis can be measured by the same
method and steps.

For the rotation axes: A, B and C-axis, considering that the final result is still expressed in the form
of three-dimensional coordinates, we convert the cylindrical surfaces into partial planes to avoid the
complex calculation process of transforming from 3D coordinates to cylindrical coordinates and then
from cylindrical coordinates to 3D coordinates, as shown in Figure 8. By converting the cylindrical
surfaces into partial planes, the geometrical shape defects of the surface will be transferred to the plane.
Therefore, the transformed plane geometric defects described by measuring points are approximate
to the geometrical shape defects of the surface. The coupled geometric errors of rotation axes can be
measured by the coupling and decoupling method for planes ultimately, as shown in Figure 9. The
measuring equipment is a dial indicator (TESA lever-type dial indicator S1, value of a scale division:
0.001 mm). The measurement data is shown in the Appendix A.
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3. Geometric Error Transfer Modeling

Machining errors of the manufacturing process are the result of geometric error coupling,
transferring and integrating. In addition to the measurement of geometric errors, the modeling of the
transfer process is also particularly important. Homogeneous coordinate transformation theory can
mathematically represent the rigid spatial motion without singularity. Based on the HTM, the transfer
model is established in this paper.

The multi-axis machine tool that was investigated is a high-efficiency grinding machine, as shown
in Figure 10. Its physical and structure diagram is shown in Figure 11. The displacement and angle
stroke parameters of each axis are as follows:

X (0–440) (mm) Y (0–220) (mm) Z (0–440) (mm)
A (−45–45) (Degree/◦) B (0–360) (Degree/◦) C (0–360) (Degree/◦)
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The geometric error transfer route is shown in Figure 12. MCS, XCS, YCS, ZCS, ACS, BCS, CCS,
WCS, and TCS represent the reference coordinate system of the machine tool, X-axis, Y-axis, Z-axis,
A-axis, B-axis, C-axis, the workpiece and the tool, respectively.

Appl. Sci. 2020, 10, x 9 of 19 

 
Figure 10. Multi-axis machine tool that was investigated. 

 
Figure 11. Decomposition of the geometric error transfer route. 

 
Figure 12. Geometric error transfer route. 

The geometric error transfer route is shown in Figure 12. MCS, XCS, YCS, ZCS, ACS, BCS, CCS, 
WCS, and TCS represent the reference coordinate system of the machine tool, X-axis, Y-axis, Z-axis, 
A-axis, B-axis, C-axis, the workpiece and the tool, respectively. 

3.1. Geometric Error Transfer Modeling based on HTM 

According to the Figure 12, the homogeneous coordinates of the workpiece and the tool are 
obtained as Equations (12) and (13): 

[ ]Tideal ideal
W C w w wT T x y z=

, and (12) 

Figure 12. Geometric error transfer route.



Appl. Sci. 2020, 10, 2164 10 of 19

3.1. Geometric Error Transfer Modeling based on HTM

According to the Figure 12, the homogeneous coordinates of the workpiece and the tool are
obtained as Equations (12) and (13):

Tideal
W = Tideal

C

[
xw yw zw

]T
, and (12)

Tideal
T = Tideal

X Tideal
Z Tideal

A Tideal
Y Tideal

B


xt

yt

zt

, (13)

where Tideal
X , Tideal

Y , Tideal
Z , Tideal

A , Tideal
B , Tideal

C , Tideal
W and Tideal

T respectively represent the ideal homogeneous

coordinates of X-axis, Y-axis, Z-axis, A-axis, B-axis, C-axis, the workpiece and tool.
[

xw yw zw
]T

and
[

xt yt zt
]T

represent the relative coordinates of the tool in the B-axis and the workpiece in the
C-axis respectively.

Especially, when the relative motion of the tool and workpiece is in the ideal path, their
homogeneous coordinates are obtained as Equation (14):

Tideal
W = Tideal

T . (14)

As is analyzed in Section 2, due to the geometric errors during the actual machining process, the
points on each axis deviate from the ideal position. The resultant actual homogeneous coordinates of
the workpiece and tool under actual conditions are obtained as Equations (15) and (16):

Tactual
W = Tactual

C [ xw yw zw ]
T

, (15)

Tactual
T = Tactual

X Tactual
Z Tactual

A Tactual
Y Tactual

B


xt

yt

zt

, (16)

where Tactual
X , Tactual

Y , Tactual
Z , Tactual

A , Tactual
B and Tactual

C represent the actual homogeneous coordinates of
X-axis, Y-axis, Z-axis, A-axis, B-axis and C-axis, respectively.

The difference between the actual homogeneous coordinates of the workpiece and tool is the
coordinates of the actual machining point pi (xi, yi, zi), which can be expressed as (Equation (17)):

Cpi = Tactual
W − Tactual

T (17)

The machining error of the point p0 (x0, y0, z0) to be machined on the relative motion trajectory of
the tool and workpiece is obtained as Equation (18):

Ep0 = Cpi −Cp0 , (18)

where Cp0 and Cpi represent the coordinates of the ideal and actual machining point, respectively.
The initial homogeneous transformation matrices of each axis under ideal conditions and complete

geometric errors are obtained as Equations (19)–(30):

Tideal
X =


1 0 0 xi
0 1 0 0
0 0 1 0
0 0 0 1

, (19)



Appl. Sci. 2020, 10, 2164 11 of 19

Tideal
Y =


1 0 0 0
0 1 0 yi
0 0 1 0
0 0 0 1

, (20)

Tideal
Z =


1 0 0 0
0 1 0 0
0 0 1 zi
0 0 0 1

, (21)

Tiedal
A =


1 0 0 0
0 cosαi − sinαi 0
0 sinαi cosαi 0
0 0 0 1

, (22)

Tideal
B =


cos βi 0 sin βi 0

0 1 0 0
− sin βi 0 cos βi 0

0 0 0 1

, (23)

Tideal
C =


cosγi − sinγi 0 0
sinγi cosγi 0 0

0 0 1 0
0 0 0 1

, (24)

Tactual
X =


cos εxy cos εxz sin εxx sin εxy cos εxz − cos εxx sin εxz sin εxx sin εxz + cos εxx sin εxy cos εxz xi + δxx

cos εxy sin εxz cos εxx cos εxz + sin εxx sin εxy sin εxz cos εxx sin εxy sin εxz − sin εxx cos εxz δxy

− sin εxy sin εxx cos εxy cos εxx cos εxy δxz

0 0 0 1

, (25)

Tactual
Y =


cos εyy cos εyz sin εyx sin εyy cos εyz − cos εyx sin εyz sin εyx sin εyz + cos εyx sin εyy cos εyz δyx

cos εyy sin εyz cos εyx cos εyz + sin εyx sin εyy sin εyz cos εyx sin εyy sin εyz − sin εyx cos εyz yi + δyy

− sin εyy sin εyx cos εyy cos εyx cos εyy δyz

0 0 0 1

, (26)

Tactual
Z =


cos εzy cos εzz sin εzx sin εzy cos εzz − cos εzx sin εzz sin εzx sin εzz + cos εzx sin εzy cos εzz δzx

cos εzy sin εzz cos εzx cos εzz + sin εzx sin εzy sin εzz cos εzx sin εzy sin εzz − sin εzx cos εzz δzy

− sin εzy sin εzx cos εzy cos εzx cos εzy zi + δzz

0 0 0 1

, (27)

Tactual
A =


cos εAy cos εAz sin(αi + εAx) sin εAy cos εAz − cos(αi + εAx) sin εAz sin(αi + εAx) sin εAz + cos(αi + εAx) sin εAy cos εAz δAx
cos εAy sin εAz cos(αi + εAx) cos εAz + sin(αi + εAx) sin εAy sin εAz cos(αi + εAx) sin εAy sin εAz − sin(αi + εAx) cos εAz δAy
− sin εAy sin(αi + εAx) cos εAy cos(αi + εAx) cos εAy δAz

0 0 0 1

, (28)

Tactual
B =


cos(β+ εBy) cos εBz sin εBx sin(β+ εBy) cos εBz − cos εBx sin εBz sin εBx sin εBz + cos εBx sin(β+ εBy) cos εBz δBx

cos(β+ εBy) sin εBz cos εBx cos εBz + sin εBx sin(β+ εBy) sin εBz cos εBx sin(β+ εBy) sin εBz − sin εBx cos εBz δBy

− sin(β+ εBy) sin εBx cos(β+ εBy) cos εBx cos(β+ εBy) δBz

0 0 0 1

, (29)

Tactual
C =


cos εCy cos(γ+ εCz) sin εCx sin εCy cos(γ+ εCz) − cos εCx sin(γ+ εCz) sin εCx sin(γ+ εCz) + cos εCx sin εCy cos(γ+ εCz) δCx
cos εCy sin(γ+ εCz) cos εCx cos(γ+ εCz) + sin εCx sin εCy sin(γ+ εCz) cos εCx sin εCy sin(γ+ εCz) − sin εCx cos(γ+ εCz) δCy

− sin εCy sin εCx cos εCy cos εCx cos εCy δCz
0 0 0 1

, (30)

where xi, yi and zi represent the displacement of the X-axis, Y-axis and Z-axis respectively. α, β and γ
represent the rotation angle of the axes A-axis, B-axis and C-axis, respectively.

3.2. Forward and Inverse Kinematics Solutions

Forward and inverse kinematics aims to study the process of motion transfer, which is the
significant basis of deriving the complete geometric errors law. Their solutions are essential for
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exploring the relationship between the machining posture of the tool and workpiece and the translation
and rotation position of each axis.

(1) The forward kinematics solution
Forward kinematic solution aims to determine the machining point according to the motion

of each axis. In this way, the complete geometric errors measured in Section 2 are integrated and
converted into machining errors corresponding to the translation and rotation position of each axis.

According to Equations (12), (13), and (19)–(24), the position of the tool and workpiece are obtained
by Equations (31) and (32):

Tideal
W =


xw cosγi − yw sinγi
xw sinγi + yw cosγi

zw

1

, (31)

Tideal
T =


xt cos βi + yt sinαi sin βi + zt cosαi sin βi + xi

yt cosαi − zt sinαi + yi
−xt sin βi + yt sinαi cos βi + zt cosαi cos βi + zi

1

, (32)

where the coordinates of the workpiece (xw, yw, zw) relative to the C-axis and the tool (xt, yt, zt) relative
to the B-axis are determined directly by the machine structure. Moreover, (xw, yw, zw) is (0, 0, 400) and
(xt, yt, zt) is (200, 0, 0).

With respect to the translation and rotation motion of each axis, the coordinates of the machining
point are derived as below (Equation (33)) from Equations (17), (31), and (32). Since (xw, yw, zw) and
(xt, yt, zt) are known, the forward kinematics solution pm (xm, ym, zm) is obtained as Equation (33):

200 cos βi + xi − 200 cosγi = xm

yi = ym

−200 sin βi + zi − 400 = zm

. (33)

(2) The inverse kinematics solution [36]
The inverse kinematics solution aims to determine the translation and rotation motion of each

axis according to the coordinates (x0, y0, z0) of the point p0 to be machined in the ideal relative motion
trajectory of the tool and workpiece, which is more significant than the forward kinematics solution in
the machine design stage. Similarly, its inverse kinematics equation is obtained as follows in Equation
(34): 

xt cos βi + yt sinαi sin βi + zt cosαi sin βi + xi − xw cosγi + yw sinγi = x0

yt cosαi − zt sinαi + yi − xw sinγi − yw cosγi = y0

−xt sin βi + yt sinαi cos βi + zt cosαi cos βi + zi − zw = z0

. (34)

Obviously, there are six unknown numbers: xi, yi, zi, αi, βi, γi, which cannot be solved from the
3 equations above. Actually, for the multi-axis grinding machine tool investigated in this paper, the
A-axis only participates in the positioning process, not in the machining process. Thus αi is set as
constant α according to the thickness d and helix angle β of the gear to be machined. Because the
B-axis and the C-axis keep rotating in the whole machining process, their mean values are selected as
the calculation factor. Finally, the inverse kinematics solution is solved as:

200 cos β+ xi − 200 cosγ = xm

yi = ym

−200 sin β+ zi − 400 = zm

. (35)
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4. Calculation of Integrated Geometric Errors

For each axis, 12 points are selected and their complete geometric errors are measured in this
paper. In this way, the integrated geometric errors of near 3 million (126) machining points are obtained.
Limited to the length of the paper, as an example, this paper only performs integrated error calculation
for the 36 machining points as shown in Figure 13.
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Figure 13. Machining points to be calculated.

Take pi (xi, yi, zi, αi, βi, γi) = (0, 0, 0, 0, 0, 0) as an example; its complete geometric errors (δx, δy,
δz, εx, εy, εz) are obtained as follows:

X:( −1.2, 3.0, 4.2, 1.25, 0.85943, 0.61593) A:( −2.4, −4.0, −6.2, 1.0, −0.862, 0.563)
Y:( −3.8, 1.0, 6.4, 0.63584, 0.56, 0.27658) B:(5.6, 0.5, −4.4, −0.267, 0.87, −0.581)
Z:( −3.4, −5.6, 0.2, 0.33456, 0.42638, 0.06) C:( −4.2, −2.4, 3.2, 0.264, −0.795, 0.4)

According to Equations (15)–(18), and (25)–(30), its actual HTMs and integrated error are obtained
as follows in Equations (36)–(44):

Tactual
X =


0.99983 −0.01064 0.01508 −0.0012
0.01075 0.99992 −0.00703 0.0030
−0.01500 0.00724 0.99986 0.0042

0 0 0 1

, (36)

Tactual
Y =


0.99997 −0.00475 0.00658 −0.0038
0.00483 0.99993 −0.01107 0.0010
−0.00653 0.01110 0.99992 0.0064

0 0 0 1

, (37)

Tactual
Z =


0.99997 0.00219 0.00743 −0.0034
−0.00215 0.99998 −0.00586 −0.0056
−0.00744 0.00584 0.99996 0.0002

0 0 0 1

, (38)

Tactual
A =


0.99984 −0.00982 −0.01505 −0.0024
0.00982 0.99995 0.00043 −0.0040
0.01504 −0.00058 0.99989 −0.0062

0 0 0 1

, (39)
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Tactual
B =


0.99983 0.01007 0.01523 0.0056
−0.01014 0.99994 0.00451 0.0005
−0.01518 0.00466 0.99987 −0.0044

0 0 0 1

, (40)

Tactual
C =


0.99988 −0.00705 −0.01384 −0.0042
0.00698 0.99996 −0.00470 −0.0024
−0.01387 0.00461 0.99989 0.0032

0 0 0 1

, (41)

Tactual
t =


0.99971 −0.00836 0.02257 −0.00454
0.00865 0.99988 −0.01281 −0.00264
−0.02245 0.01305 0.99967 0.0044

0 0 0 1




200
0
0
1

 =


193.93746
1.72736
−4.4856

1

, (42)

Tactual
w =


0.99988 −0.00705 −0.01384 −0.0042
0.00698 0.99996 −0.00470 −0.0024
−0.01387 0.00461 0.99989 0.0032

0 0 0 1




0
0

400
1

 =

−5.5402
−1.8824
399.9592

1

, and (43)

E =


200

0
−400

0

−


193.93746
1.72736
−4.4856

1

+

−5.5402
−1.8824
399.9592

1

 =


0.52234
−3.60976
−4.5264

0

. (44)

Similarly, geometric errors of all machining points selected are obtained as shown in Figure 14.
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In the traditional measurement method, the small geometric angle errors are not taken into
consideration; they are calculated as 0. The integrated geometric error is expressed as Equation (44).
The first term in Equations (44) and (45) is the expected relative distance of the workpiece from the
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tool. The second item is the actual geometric position of the workpiece, and the third item is the actual
geometric position of the tool.

E =


200

0
−400

0

−


199.9948
−0.0051
0.0002

1

+

−0.0042
−0.0024
400.0032

1

 =


0.001
0.0027
−0.0002

0

 (45)

Compared with the measurement method of the ball bar test, not taking the small geometric angle
errors into consideration, as shown in Figure 15, the calculation result (Equation (44)) of integrated
geometric errors by the coupling and decoupling measurement method shows the same result (0.1
mm). The correctness of the method proposed in this paper is proved.
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As is shown in Equations (41) and (42), the positions of the tool relative to the B-axis and the
workpiece relative to the C-axis, the relative coordinates of (xt, yt, zt) and (xw, yw, zw), are the cardinality
of geometric error transfer, which indicates that the larger the sizes of the machine tool structures are,
the larger the integrated geometric errors are.

However, as is shown in Equation (43) and Figure 14, once complete geometric errors including the
small geometric angle errors are taken into consideration, the integrated geometric errors of machining
points will reach a higher level (1 mm), which indicates that small geometric errors have an inevitable
impact on the precision of the multi-axis machine tool. Thus, the measurement and consideration of
complete geometric errors is significant and necessary.

5. Conclusions

Complete geometric errors of multi-axis machine tools are measured by the coupling and
decoupling method proposed in this paper. Based on the HTM, the transfer law of geometric errors
is researched. The correctness of the coupling and decoupling measurement method is proved via
the comparison result with the traditional method. The geometrical error transfer modeling can be
referred to other similar researches. The calculation result of integrated geometric errors considering
the small angle errors shows that:

(1) Considering complete geometric errors, actual integrated geometric errors of multi-axis
machine tools investigated have a higher level (1 mm), about 10 times, than the result of the traditional
measurement method.
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(2) The impact of items of small geometric angle errors is more significant than that of items of
geometric displacement errors.

(3) The larger the sizes of the machine tool structures are, the larger the integrated geometric
errors are.
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Appendix A

The axial displacement errors δxx, δyy, δzz, δAx, δBy, δCz are measured by the laser interferometer. In
accordance with the recommendation of GUM (Guide to the Expression of Uncertainty in Measurement),
we used Type B evaluation method to calculate the expanded uncertainty U95 = 0.022 µm. The coupled
geometric errors δxy, δxz, εxx, εxy, εxz, δyx, δyz, εyx, εyy, εyz, δzx, δzy, εzx, εzy, εzz, δAy, δAz, εAx, εAy,
εAz, δBx, δBz, εBx, εBy, εBz, δCx, δCy, εCx, εCy, εCz are measured by the dial indicator. In accordance
with the recommendation of GUM, we used the Type B evaluation method to calculate the expanded
uncertainty U95 = 1.2 µm.

Table A1. Complete geometric errors of the X-axis.

i 1 2 3 4 5 6 7 8 9 10 11 12

xi 0 40 80 120 160 200 240 280 320 360 400 440
δxx(µm) −1.2 1.6 3.2 4.0 6.2 3.2 1.4 2.4 4.2 6.2 7.4 3.5
δxy(µm) 3.0 1.4 0.6 −2.2 −2.8 −3.2 −1.4 1.6 1.8 2.6 0.4 0.1
δxz(µm) 4.2 1.8 2.6 −1.4 −2.6 −3.8 −1.4 2.8 1.6 3.6 1.2 0.7
εxx(◦) 1.25 1 1.25 0.75 0.63 −0.25 −0.5 −0.25 0.13 0.5 0.6 0.4

εxy(◦) 0.85943

εxz(◦) 0.61593

Table A2. Complete geometric errors of the Y-axis.

i 1 2 3 4 5 6 7 8 9 10 11 12

Yi(mm) 0 20 40 60 80 100 120 140 160 180 200 220
δyx(µm) −3.8 2.4 2.6 −4.4 −4.2 −3.2 −2.2 4.0 −4.0 4.2 −3.4 −1.0
δyy(µm) 1.0 0 1.4 4.2 6.6 2.2 0.8 3.4 5.4 5.8 3.0 3.0
δyz(µm) 6.4 2.2 −4.2 −1.8 −2.0 4.6 4.4 5.6 8.4 5.2 3.2 2.9

εyx(◦) 0.63584

εyy(◦) 0.56 0.07 0.35 0.27 0.85 0.48 −0.22 0.11 0.87 0 0.77 0.37

εyz(◦) 0.27658
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Table A3. Complete geometric errors of the Z-axis.

i 1 2 3 4 5 6 7 8 9 10 11 12

zi 0 40 80 120 160 200 240 280 320 360 400 440
δzx(µm) −3.4 3.6 1.2 −2.4 −2.6 0.8 7.2 4.8 −2.8 0.6 0.8 0.7
δzy(µm) −5.6 5.4 −6.8 −2.2 6.2 −6.0 7.6 −2.6 0.2 2.8 0.8 −0.0
δzz(µm) 0.2 −2.2 −3.8 −3.4 −2.4 −2.6 −3.4 0.6 0.8 −3.4 0.6 −1.7

εzx(◦) 0.33456

εzy(◦) 0.42638

εzz(◦) 0.06 −0.45 -0.89 −0.26 −0.05 −0.19 0.59 0.35 −0.42 −0.86 0.77 −0.12

Table A4. Complete geometric errors of the A-axis.

i 1 2 3 4 5 6 7 8 9 10 11 12

αi (◦) 0 30 60 90 120 150 180 210 240 270 300 330

δAx(µm) −2.4

δAy(µm) −4.0 −2.8 −3.2 −1.6 −1.8 −1.4 5.2 -5.8 3.2 1.6 0.4 −0.9
δAz(µm) −6.2 −5.8 0.6 0.6 −4.2 4.0 3.6 2.8 −5.0 −3.8 −1.8 −1.3
εAx(◦) 1 −0.02 −0.43 0.71 −0.76 −0.73 0.55 −0.93 −0.31 −0.32 −0.05 −0.03

εAy(◦) −0.862

εAz(◦) 0.563

Table A5. Complete geometric errors of the B-axis.

i 1 2 3 4 5 6 7 8 9 10 11 12

βi(◦) −45 −37.5 −30 −22.5 −15 −7.5 0 7.5 15 22.5 30 37.5
δBx(µm) −4.2 −1.6 −2.2 −2.4 4.8 −3.6 5.6 1.6 0.6 2.2 0.8 0.1

δBy(µm) 0.5

δBz(µm) 2.6 −0.4 0.2 2.2 −3.2 −2.8 −4.4 −3.6 −3.4 −1.8 4.0 −0.9

εBx(◦) −0.267

εBy(◦) 0.62 −0.17 0.94 0.88 0.45 0.75 0.87 0.24 0.16 0.48 0.20 0.49

εBz(◦) −0.581

Table A6. Complete geometric errors of the C-axis.

i 1 2 3 4 5 6 7 8 9 10 11 12

γi(◦) 0 30 60 90 120 150 180 210 240 270 300 330
δCx(µm) −4.2 2.8 7.8 0.8 3.4 1.6 0.6 −6.4 −1.2 −5.6 5.4 0.4
δCy(µm) −2.4 −3.2 0.4 1.6 2.8 4.8 −2.2 0.2 1.0 −3.6 1.8 0.1

δCz(µm) 3.2

εCx(◦) 0.264

εCy(◦) −0.795

εCz(◦) 0.4 0.2 −0.1 −0.5 0.4 0.3 −0.3 0.4 −0.5 0.1 −0.2 0.0
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