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Abstract: Recently, itaconic acid has drawn considerable attention as a novel radical-curing building
block for polyester resins. These bio-based materials have been used in thermal, as well as ultra
violet (UV) curing applications, such as printing inks or coatings. Poly(ester amide)s from itaconic
acid could be very interesting, as the amide group could alter the properties of the resins as well
as cured materials. However, standard polycondensation reactions with diamines are not possible
with itaconic acid as the amines preferably react via an aza-Michael addition at the α,β-unsaturated
double bond. Therefore, alternative and more elaborate synthetic strategies have to be developed.
Herein, we present two different synthetic strategies to poly(ester amide)s from itaconic acid that
circumvent the addition reaction of the amines. This is in both cases done by a pre-reaction to form
stable amide building blocks that are then reacted with itaconic acid or polyesters derived thereof.
The structural composition and the properties of the resin are characterized, and the UV-curing
reactivity is examined. All properties are compared to corresponding polyesters from itaconic acid.

Keywords: poly(ester amide)s; UV-curing polymer resins; photo-DSC; itaconic acid;
bio-based polymers

1. Introduction

Over the last decade, immense research efforts have been undertaken to implement bio-based
monomers as suitable alternative building blocks in polymeric materials [1–4]. This is mostly driven
by the imminent scarcity of fossil resources, as well as the enormous potential to exploit local resources
and therefore reduce the dependency on imported fossil fuels. In addition, increased public awareness
and the desire to move towards a more sustainable economy also create an incentive to find material
solutions from renewable resources. However, besides the sustainability aspect, novel bio-based
building blocks may also exhibit unprecedented structural features that are not economically accessible
from petrochemical feedstock. This, in turn, can lead to new materials with improved properties.

Itaconic acid (IA), also known as methylene succinic acid, has drawn considerable attention in
this context over the last few years [5]. This unsaturated dicarboxylic acid is commercially available
in larger quantities (>80.000 t/a) at a competitive price (<2 €/kg). It is biotechnologically produced
by fermentation of sugar or molasses with the fungi aspergillus terreus [6–8]. The three functional
groups allow for the exploitation of itaconic acid in several different chemical transformations to
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obtain novel monomeric structures. As far as polymer chemistry is concerned, mainly two different
classes of polymers derived from itaconic have been intensively studied. The α,β-unsaturated double
bonds, allows for radical polymerization reactions, which has been exploited in several homopolymers
and co-polymers of itaconic acid with a range of applications [9–13]. As a second pathway, the two
carboxylic acid groups allow for polycondensation reactions to obtain polyesters [14–20]. These have
been used as reactive binder resins for coatings, shape-memory materials, printing inks, etc. [21–25].
In addition, these polyesters have been exploited in post-polymerization modification reactions to
obtain new polymeric structures [26–29].

However, to date, no examples of unsaturated poly(ester amide)s based on itaconic acid have
been reported. This is mostly due to the fact that the synthesis of these polyester amides is by no
means straightforward. The biggest challenge during a standard polycondensation reaction is the
nucleophilic attack of the diamine at the α,β-unsaturated double bond. This aza-Michael addition was
first reported by Paytash et al. in 1950, and it was shown that subsequently leads to the formation of
pyrrolidone rings (Scheme 1). [30] Later, this ring-closing reaction was exploited for the synthesis of
several bio-based polyamides [31] and poly(ester amides). [32] However, polymers of this type cannot
be utilized in radical curing reactions, as the aza-Michael addition results in complete consumption of
the unsaturated double bond.
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Therefore, more sophisticated synthetic procedures have to be developed in order to synthesize
poly(ester amide)s derived from itaconic acid without the consumption of the unsaturated double bond.
This class of unsaturated polymers is of high interest as the amide groups can have a considerable impact
on the properties of the materials before and after curing. Herein, two different synthetic strategies
are presented that allow for the synthesis of unsaturated aliphatic poly(ester amide)s from itaconic.
To the best of our knowledge, this is the first example of this kind of polymeric resins. In addition, the
materials are characterized and examined on their suitability to be utilized as UV-curing polymers in
coating applications.

2. Experimental

2.1. Materials

As an azeotropic solvent, toluene (technical grade) was utilized, which was received from
VWR international and purified by distillation. Itaconic acid (99%) was purchased from ECEM.
1,6-hexanediol (97%) was obtained from Dr. Lobinger Chemie, adipic acid (99%) from Acros.
3,5-Di-tert-butyl-4-hydroxytoluene (Butylated hydroxytoluene (BHT), 99%) and 4-methoxyphenol
(MeHQ, 98%) were received from Fluka Analytical. Titanium butoxide (97%) and zinc acetate dihydrate
(99%) were obtained from Sigma Aldrich. Hexamethylenediamine (>99%), ethane-1,2-diol (>99%)
were purchased from Fluka. Irgacure 1173 was obtained from BASF. FASCAT 4101 was provided by
FASCAT Catalysts. All reagents were used without further purification.

2.2. Methods

The acid value (AV) corresponds to the non-reacted acid groups. It was defined as the number of
milligrams of potassium hydroxide required to neutralize 1 g of sample and was determined according
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to DIN EN ISO 2114 by titrating the remaining carboxylic acid groups of the sample with a solution of
potassium hydroxide in methanol (0.3 mol/L).

UV-curing: For a typical curing experiment, 5% of the photoinitiator (Irgacure 1173) was added
to the resin and mixed until a homogenous liquid was obtained. To reduce air bubbles that have
been formed as a result of the mixing, the resin was heated to 50 ◦C for one hour. The UV-reactive
mixture was then applied on a glass plate with the aid of a metal squeegee with a gap size of 150 µm.
For the curing of the films, a Technigraf 8 Amp equipped with a UV 4/120-2 light (254 nm) UV-oven
was used. The speed of the conveyor belt was set to 5 m/min. To ensure a consistent radiation dose,
the intensity of the oven was measured before and after curing, resulting in average intensity of
500 mJ/cm2. In addition to the films cured, the reactivity of the materials towards UV-induced radical
crosslinking was assessed by photo-DSC.

2.3. Measurements

Nuclear magnetic resonance (NMR) experiments were measured at 400 MHz for 1H NMR on a
Bruker Avance III 400-MHz spectrometer (Bruker, Billerica, MA, USA). Proton shifts are reported in
ppm (δ) downfield from TMS and were determined by reference to the residual solvent peak (CHCl3,
7.26 ppm for hydrogen atoms). A Mettler Toledo DSC3+ STARe System was used for the Photo-DSC
measurements. The system is equipped with a Lightning Cure LC8 lamp, which was set at 70% of its
intensity. The measurements were conducted in 40 µL crucibles without lids. Two similar runs were
conducted with a 30 s break between the two runs. This was done to be able to obtain the integration
of signal only without the influence of the lamp. To get the value of the heat generated during the
curing, the second curve was subtracted from the first. Each run was conducted as follows: 30 s at
25 ◦C, at atmospheric pressure under air with the lamp turned off, then the lamp is started for 10 min.
The break between the curing runs lasts 30 s. A Thermo Scientific Nicolet iS5 FT-IR (Thermo Fischer
Scientific, Waltham, MA, USA) was used to obtained infrared spectroscopy. Viscosity measurements
were conducted on a Bohlin CVO 120 Rheometer. The machine was equipped with a PP40 disc (CP 4◦,
40 mm). Measurements were taken with a shear rate of 50 s−1 for 10 s. For each temperature (25, 37.5,
50, 62.5, 75 ◦C), five measures were taken and the average value was calculated for each temperature.
A Malvern Viscotek GPCmax was utilized to for size-exclusion chromatography (SEC). The instrument
is equipped with triple detection, consisting of a Schambeck RI2012, a refractive index detector, and a
Malvern Dual detector. Two PLgel 5 mm MIXED-C, 300 mm columns from Agilent Technologies at
35 ◦C were utilized for the separation. Chloroform (CHROMASOLV, for HPLC, >99.8%) was used as
the eluent at a flow rate of 1.0 mL min−1. Data acquisition and calculations were performed using
Viscotek OmniSec software version 5.0. The samples were filtered over a 0.2 mm polytetrafluorethylene
(PTFE) filter prior to injection.

2.4. Synthesis of Bio-Based Oligoester (OE)

Typically, itaconic acid (1 eq), 1,6-hexanediol (1.25 eq), BHT (400 ppm) and MeHQ (300 ppm) as
the free radical polymerization inhibitors were charged into a three-necked round-bottomed flask,
which was equipped with a mechanical stirrer and a Dean-Stark apparatus. Using toluene as entrainer,
the mixture was heated to 130 ◦C and kept at this temperature until the complete melt of the monomers.
Then the catalyst, zinc acetate (0.4%), was added, and the mixture was stirred at 180 ◦C. The course of
the reaction was tracked by the analysis of the acid value (AV). When the AV reached a value of less
than 5 mg KOH/g, the toluene was removed under reduced pressure. The polyester was obtained
without any further purification as a yellow viscous liquid.

2.5. Oligoesteramidesynthesis (OEA)

For the oligo(ester amide) (OEA) synthesis, 5 g (28.7 mmol) of adipic acid (AA), 4.98 g (80.36 mmol)
of ethylene glycol (EG) and 0.66 g (5.74 mmol) of hexamethylene diamine (HMDA) with 0.1% (wt%) of
zinc acetate were charged into a two-necked round-bottomed flask. Then the mixture was heated to
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190 ◦C under a stream of nitrogen for 2 h. After cooling, the excess of EG was removed by extraction
with dichloromethane. The OEA was obtained as a very viscous white liquid.

2.6. Transesterification to the Poly(Ester Amide)s (PEAs)

For all transesterification reactions, the OE and a given percentage of OEA (in mol%) were placed
in a two-necked round-bottomed flask and (0.1% wt%) of Ti(OBu)4, 150 ppm of MeHQ and 100 ppm of
BHT were added. Then the reaction mixture was slowly heated to 160 ◦C under a stream of nitrogen
for 4 h. The PEAs were obtained as brown viscous liquids.

2.7. Pseudo One-Pot Synthesis of Poly(Ester Amides)

In a first step, hexamethylene diamine was reacted under nitrogen with an excess of
dimethyladipate at 150 ◦C in the presence of 0.1 wt% of Zn(OAc)2 as a catalyst to obtain bis(esteramide)s.
The consumption of the amine was monitored by means of ATR-FTIR. After the complete consumption
of the free amines, a white waxy solid was obtained. Then itaconic acid, 1,6-hexanediol, BHT (400 ppm),
MeHQ (300 ppm), and Fascat 4101 (0.4 wt%) were added, and the flask was equipped with a mechanical
stirrer and a Dean–Stark apparatus. Using toluene as the entrainer, the mixture was slowly heated to
180 ◦C. The course of the reaction was monitored by analysis of the acid value (AV). When the AV
reached a value of less than 5 mg KOH/g, toluene was removed under reduced pressure. The poly(ester
amide)s were obtained without any further purification as yellow viscous liquids.

3. Results and Discussion

As discussed in the introduction, the biggest challenge in the synthesis of unsaturated poly(ester
amides) derived from itaconic acid is the undesired aza-Michael addition of the diamine at the
α,β-unsaturated double bond of the itaconic acid. To solve this synthetic problem, two different
strategies have been investigated in the course of this study: (1) A first one, based on a transesterification
approach and (2) another one based on an in-situ formation of a bis(ester amide).

3.1. Synthesis of Poly(Esteramide)s Via Transesterification Approach

For the transesterification approach, a standard oligoester itaconate (OE) and an oligo(ester
amide) (OEA) were synthesized separately. Then, the desired poly(ester amide) was obtained by a
transesterification reaction of the two oligomers. This synthetic protocol should prevent the formation
of free amines during the final step due to the high stability of the amide bond, resulting in the
suppression of the undesired side-reaction. The complete synthetic strategy is shown in Scheme 2. It is
noteworthy to mention that a high conversion of the transesterification is necessary to ensure that all
polymer chains have a sufficient amount of unsaturated bonds. This is important to obtain materials
that are reactive enough towards UV-induced radical crosslinking.
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Scheme 2. Overall synthetic pathway to itaconic acid-based poly(ester amide)s (PEA)s.

The synthesis of the itaconic acid-based OE was conducted as described in previous studies [20,25].
A ratio of 1.25:1 (HDO:IA) was chosen to obtain an OE with a lower molecular weight distribution
usually used in UV-curing resin applications.

The synthesis of the OEA was not straightforward. In the first set of experiments, dimethyl
succinate was reacted with hexamethylene diamine (0.2 eq.) and an excess of ethylene glycol (2.8 eq).
However, the use of the succinate leads to the formation of a substantial amount of succinimide instead
of the desired oligo amide (see SI for details and spectra). Therefore, the synthesis was then conducted
starting from dimethyl adipate, as here, the formation of an imide is not possible. An excess of glycol
was used to obtain an OEA with low molecular weight, and therefore, low viscosity suitable for resin
applications. In addition, the excess ensured that the oligomers were OH-terminated to avoid any free
amine groups in the final products, as these would again lead to undesired side-reactions during the
transesterification step. After the reaction, the OEA was purified by extraction with dichloromethane
to remove unreacted ethylene glycol and small dimeric ester fractions. Removal by distillation was
not desired, as this would lead to further polymerization of the OEA. The NMR spectra of the OEA
obtained was free of unreacted ethylene glycol. The amount of amide in the oligomer was found to
be 14%, which was determined by integration of the CH2-signals next to the ester or amide bond,
respectively (6 and 6′’ for the ethylene glycol esters and three for the amide, see Figure 1b). The OEA
was obtained as a white waxy solid.
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In the last step, the OE was reacted with the OEA in different ratios (95/05 to 60/40, see Table 1).
In this transesterification step, the two oligomers were heated to 160 ◦C in the presence of Ti(OBu)4 as
a catalyst. The reaction was conducted under ambient pressure to avoid removal of ethylene glycol
from the system, as this would lead to an increase in molecular weight. This was not desired, as the
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co-polymers should exhibit low enough viscosities that are compatible with coating applications.
The percentage of amide in the final co-polymer was calculated from the integrals of the NMR signals
corresponding to the ester and amide groups.

Table 1. Different compositions and amide content of the PEAs synthetized via the transesterification
method.

Sample PEA Composition OE/OEA % Amide (Theoretical) % Amide a (Determined)

PEA-001 95/5 0.7 n.d. b

PEA-002 90/10 1.4 2.1
PEA-003 80/20 2.8 2.5
PEA-004 70/30 4.2 4.0
PEA-005 60/40 5.6 5.7

aCalculated by the ratio of the ester to amide bonds determined by means of 1H NMR; bdue to the low intensity of
the amide signals, a reliable integration was not possible.

3.2. Synthesis of Poly(Esteramide)S Via In-Situ Formed Bis(Ester Amide)s

As a second possibility, to circumvent the aza-Michael addition, a pseudo-one-pot reaction was
conducted. For this, HMDA was first reacted with an excess of dimethyl adipate until all amine
groups were reacted to the corresponding amide, which was followed by FT-IR. Then, itaconic acid and
HDO were added, and the polycondensation was performed under standard conditions (Scheme 3).
Following this procedure, three PEAs (PEA 101–103) with different amounts of HMDA and, in turn,
different percentages of amide content have been synthesized (Table 2). Again, the feed ratio of
the amine was compared to the composition determined by means of NMR. However, in this case,
the measured amide content is higher for PEA 101 and 102.
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Table 2. Different compositions and amide content of the PEAs synthesized via the pseudo
one-pot approach.

Reference IA DMA HMDA HDO % Amide
(Theoretical)

% Amide a

(Determined)
%

Isomerization b

PEA-101 0.8 0.2 0.068 1.282 2.9 3.8 22
PEA-102 0.7 0.3 0.13 1.22 5.4 7.1 6
PEA-103 0.5 0.5 0.23 1.12 9.1 8.4 40

a Calculated by the ratio of the ester to amide bonds determined by means of 1H NMR; b Calculated by ratio of the
olefinic protons of itaconic and mesaconic acid moiety determined by means of 1H NMR.
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3.3. IR and NMR Analysis

The synthesized copolymers were characterized by FTIR and 1H NMR to confirm their molecular
structures. The FTIR spectra of all PEAs (supplementary materials, Figures S4–S18) clearly show the
characteristic absorption band for ester carbonyl stretching at 1732 cm−1. In addition, the stretching and
deformation bands of the conjugated double bond can be found at 1631 cm−1 and 814 cm−1, indicating
that the unsaturated double bond does not get attacked during the reaction. For PEAs with higher
amide content, the FTIR spectra show two small vibrations at 1538 and 3306 cm−1, corresponding to
the amide and the N-H bonds.

The 1H NMR spectra exhibit all the characteristic signals for PEAs from itaconic acid. Fo series one,
the transesterification can be witnessed by a change of the signals compared to the virgin polyesters and
oligoamides (Figure 1). During the transesterification step, the terminal OH-groups of the hexanediol
undergo a nucleophilic attack on the ester bonds of the oligoamide. As a result, the signals of the CH2

of the terminal hexanediol (signal 9′ at 3.65 ppm) are being reduced with the increasing amount of
oligoamide. In addition, the ratio of the CH2 signals of the hexanediol next to the itaconic acid (signal
4 and 9 at 4.09 and 4.15 ppm) are changing, as new ester bonds with adipic acid are being formed as a
result of the transesterification, which have the same chemical shift as the signals of the ester of the
unconjugated ester group of the itaconic acid. Furthermore, during the reaction, molecules of ethylene
glycol are liberated over time and can also be found in the NMR at 3.73 ppm, which should result in a
slight increase of molecular weight of the PEAs. Finally, the signal of the inhibitors can be seen at 6.75
and 3.76 ppm, respectively.

For the PEAs, synthesized via pseudo-one-pot pathway, the NMR spectra also show the
characteristic signals described for the first series. However, in all three PEAs, two additional
signals appear at 6.80 and 2.32 ppm, which correspond to the mesaconic moieties formed during the
condensation product (Figure 2). The mesaconic moiety can be formed at elevated temperatures by
isomerization of the itaconic ester in the presence of a base (Scheme 4). This isomerization indicates
that during the first step of the reaction, the amine is not completely consumed, and a small amount of
free amine is still present in the second reaction step, which is sufficient to catalyze the isomerization.
Unfortunately, the free amine was not detectable during the reaction by means of FT-IR. The NMR
spectra of the PEA-101 and 102 can be found in the supporting information.
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Scheme 4. Based-catalyzed isomerization of an itaconate ester to the mesaconate ester.

For the PEAs synthesized via pseudo-one-pot pathway, the NMR spectra also show the
characteristic signals described for the first series. Figure 2 shows the NMR spectra of PEA-103.
All other spectra can be found in the supporting information.

3.4. GPC Measurements

To gain some insight on the molecular weight distribution of the PEAs synthesized, all polymers
were subjected to GPC measurements. The molecular weights of the PEAs are obtained in a
gaussian distribution, which is expected for polycondensation reactions. In addition, the PEAs
synthesized possess molecular weights of around 300 to 12,000 g/mol, which is reasonable for
UV-curing resins. However, as the calibration of the measurements had a cutoff of 575 g/mol, Mn,
Mw, and Đ were not calculated, and only the elugram is showed in Figure 3. Furthermore, one of the
major challenges associated with the synthesis of resins for UV-curing applications is the undesired
premature crosslinking of the reactive double bonds during the polycondensation reaction. This leads
to an increase in the molecular weight of the resins and eventually to the gelation of the resins. If such
an undesired side reaction would occur, this could be detected by means of GPC analysis trough the
appearance of a signal at higher molecular weight, as well as a deviation from the gaussian distribution.
In all our cases, no high molecular fraction was observed, indicating that no crosslinking occurred.
In addition, all of the PEAs synthesized have similar molecular weight, with slight differences for the
second series, where the PEAs with the highest amide content have a slightly higher retention volume
and, therefore, lower molecular weight.
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Figure 3. GPC traces of all PEAs synthesized in the course of this study. (a) PEA-001-005;
(b) PEA-101-103.

3.5. Viscosity

In addition to GPC, also the viscosities of the resins were closely examined. For coatings
applications, the viscosity is an important parameter, as depending on the applications, the resins have
to exhibit a certain viscosity to be applicable. If the viscosity is too high, the use of reactive diluents
might be necessary. In general, the viscosity is proportional to the molecular weight. However, in
the case of polyester amides, the hydrogen bonding induced by the amide groups should also lead to
an increase in viscosity. For the PEAs synthesized in this study, the effect can only be seen at amide
contents of more than 5%. As a result, a significant increase in viscosity can only be observed for
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PEA-005 and PEA-103 with a viscosity of 17.3 and 22.4 Pa.s, respectively (Figure 4a,b). The other
PEAs exhibit viscosities of around 6.7–8.2 Pa.s for series one and 4.9–5.9 Pa.s for series two. However,
the viscosity of the PEAs drops significantly with increasing temperature, with only slight differences
of all PEAs at 75 ◦C.
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3.6. UV-Curing Behaviour

To study the reactivity of the synthesized PEAs towards UV-curing, the resins were examined by
means of Photo-DSC after the addition of 5% of Irgacure 1173 as the photoinitiator. In all cases, the rate
of polymerization (ROP) of the PEAs is in the same range as for other UV-curing itaconic acid-based
materials [33]. In addition, the ROP of the PEAs is lower than the one obtained from the neat OE.
In addition, it decreases with increasing amide content (Figure 5 and Table 3). Both observations can
be explained by the fact that the double bond density decreases with an increasing amount of amide.
However, there is a major difference between the reactivity of the first and second series. The PEAs
obtained by the pseudo-one-pot procedure exhibit reduced reactivity, which can be explained by the
lower double bond density, as well as the isomerization to the mesaconate observed by NMR analysis.
The internal double bond of the mesaconate is less reactive towards UV-curing compared to the itaconic
counterpart. However, despite the lower reactivity, the double bond conversion is, in some cases,
higher than for the neat OE. Especially, PEA-003 has a conversion of 71.4% compared to 58% of the
neat OE.

Table 3. Overview over double bond density, enthalpy, rate of polymerization, and conversion.

Copolymers DBD (mmol/g) ∆Htheo (J/g) ∆Hexp (J/g) C (%) RoP (s−1/1000)

OE 4.13 250.3 145.3 58.0 21.4
PEA-001 3.92 237.8 135.6 57.0 19.7
PEA-002 3.71 225.3 143.8 63.8 19.6
PEA-003 3.30 200.2 143.0 71.4 17.4
PEA-004 2.89 175.2 120.8 69.0 16.0
PEA-005 2.48 150.2 87.7 58.4 8.5
PEA-101 3.0 151.7 93.9 61.9 7.7
PEA-102 2.5 103.1 59.3 57.5 6.0
PEA-103 1.7 182.0 93.7 51.5 7.2



Appl. Sci. 2020, 10, 2163 11 of 14
Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 15 

 

Figure 5. Photo-curing of OE and PEAs. (a) rate of polymerization of PEA-001-005; (b) rate of 

polymerization of PEA-101-103; (c) free double-bond conversion PEA-001-005; (d) free double-bond 

conversion PEA-101-103. 

Table 3. Overview over double bond density, enthalpy, rate of polymerization, and conversion. 

The curing of the samples is also visible in the FT-IR spectra before and after curing. Figure 6 

shows the FT-IR spectra of PEA-002. The C=C stretch (1639 cm−1) and C=C deformation (816 cm−1) 

vibrations are significantly reduced after curing. 

Copolymers DBD (mmol/g) ΔHtheo (J/g) ΔHexp (J/g) C (%) RoP (s−1/1000) 

OE 4.13 250.3 145.3 58.0 21.4 

PEA-001 3.92 237.8 135.6 57.0 19.7 

PEA-002 3.71 225.3 143.8 63.8 19.6 

PEA-003 3.30 200.2 143.0 71.4 17.4 

PEA-004 2.89 175.2 120.8 69.0 16.0 

PEA-005 2.48 150.2 87.7 58.4 8.5 

PEA-101 3.0 151.7 93.9 61.9 7.7 

PEA-102 2.5 103.1 59.3 57.5 6.0 

PEA-103 1.7 182.0 93.7 51.5 7.2 

Figure 5. Photo-curing of OE and PEAs. (a) rate of polymerization of PEA-001-005; (b) rate of
polymerization of PEA-101-103; (c) free double-bond conversion PEA-001-005; (d) free double-bond
conversion PEA-101-103.

The curing of the samples is also visible in the FT-IR spectra before and after curing. Figure 6
shows the FT-IR spectra of PEA-002. The C=C stretch (1639 cm−1) and C=C deformation (816 cm−1)
vibrations are significantly reduced after curing.
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In addition to the photo-DSC study, the resins with 5% photo initiator were also applied as films
and cured with a radiation dose of 500 mJ/cm2. The number of curing runs needed to obtain tack-free
surface was noted. For the first series, all films, but the last were fully cured after five curing runs.
However, only PEA001-003 exhibited a non-sticky surface after curing. The films of the second series
were all not fully tack-free after curing (Table 4). This could be a result of the lower reactivity towards
UV-curing due to the isomerization of the double bond. Compared to polyester from itaconic acid
reported earlier, the reactivity towards UV-curing is lower, especially at high amide content [25].
Figure 7 shows the films obtained from PEA-001 and 003.

Table 4. Curing behavior of PEAs.

PEA No. of Curing Runs Surface Appearance

PEA-001 5 dry
PEA-002 5 dry
PEA-003 5 dry
PEA-004 5 sticky
PEA-005 10 very sticky
PEA-101 5 sticky
PEA-102 5 sticky
PEA-103 10 sticky
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4. Conclusions

In this paper, the first successful synthesis of poly(ester amide)s from itaconic acid is described
by two different synthetic approaches. The first series was synthesized via transesterification of an
oligoamide and an oligoester that have been separately prepared before. The second series was
obtained by a pseudo-one-pot reaction was the diamine was first reacted with dimethyl adipate to
obtain the corresponding bis(ester amide). Then IA and HDO were added, and the polycondensation
was performed. With both approaches, the aza-Michael addition on the unsaturated double bond
followed by a ring formation was suppressed. However, the second synthetic approach led to a
significant amount of isomerization from the itaconate to the corresponding mesaconate. The PEA
resins were fully characterized and their reactivity towards UV-induced crosslinking was examined by
means of Photo-DSC. Even though all PEAs show a reactivity towards UV-curing, all PEAs had a lower
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rate of polymerization, and films cast were all slower to cure compared to the neat oligoester without
any amide moieties. In addition, the viscosity increases significantly especially at amide contents higher
than 5 wt%, which can be attributed to the hydrogen bonds between the amide groups. Therefore,
these class of bio-based PEAs might not be able to compete with standard polyesters derived from
itaconic acid in UV-curing applications. However, in other applications where an increased interaction
of the polymer chains is desired, the polymer resins presented in this work might be better suited.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/6/2163/s1,
Figure S1—S18.
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