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Featured Application: A novel strategy is proposed to address open-circuit fault diagnosis of grid
side full-scale power converters of wind turbines.

Abstract: The power converter is a significant device in a wind power system. The wind turbine will
be shut down and off grid immediately with the occurrence of the insulated gate bipolar transistor
(IGBT) module open-circuit fault of the power converter, which will seriously impact the stability
of grid and even threaten personal safety. However, in the existing diagnosis strategies for the
power converter there are few single and double IGBT module open-circuit fault diagnosis methods
producing negative results, including erroneous judgment, omissive judgment and low accuracy.
In this paper, a novel method to diagnose the single and double IGBT modules open-circuit faults of
the permanent magnet synchronous generator (PMSG) wind turbine grid-side converter (GSC) is
proposed: Primarily, by collecting the three-phase current varying with a wind speed of 22 states,
including a normal state and 21 failure states of PMSG wind turbine GSC as the original signal data.
Afterward, the original signal data are decomposed by using variational mode decomposition (VMD)
to obtain the mode coefficient series, which are analyzed by the proposed method base on fault
trend feature for extracting the trend feature vectors. Finally, the trend feature vectors are utilized
as the input of the deep belief network (DBN) for decision-making and obtaining the classification
results. The simulation and experimental results show that the proposed method can diagnose the
single and double IGBT modules open-circuit faults of GSC, and the accuracy is higher than the
benchmark models.

Keywords: power converter; fault diagnosis; intelligent algorithm; variational mode decomposition;
deep belief network

1. Introduction

The capacity of power converters in recent years has steadily grown in step with the increased
size of large wind turbines; correspondingly, the load capacity of components of the converter have
improved evidently and the electrical structure is more complex, which is bound to raise the failure
rate greatly [1,2]. Meanwhile, the wind farms are mostly built in areas with abundant wind resources
and complicated climate [3,4]. The operational environmentof the power converter is extremely harsh,
and the failure rate is high [5]. The core device of the power converter of wind turbine is the power
switching component—insulated gate bipolar transistor (IGBT) module [6]. A lot of harmonics and

Appl. Sci. 2020, 10, 2146; doi:10.3390/app10062146 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-8105-1023
http://www.mdpi.com/2076-3417/10/6/2146?type=check_update&version=1
http://dx.doi.org/10.3390/app10062146
http://www.mdpi.com/journal/applsci


Appl. Sci. 2020, 10, 2146 2 of 19

interharmonics will be produced if the IGBT module in a power converter has a short-circuit or
open-circuit, which will impact the power quality and pollute the grid [7–10]. Then, the wind turbine
would be shut down and off grid immediately, in which case seriously impacting the stability of the
grid and even threatening personal safety [11]. The existing research has matured for the short-circuit
fault of the power converter, and there are corresponding modules for protection [12,13]. Though there
are a few achievements for the IGBT module open-circuit fault of the power converter over the
years, there are few single and double IGBT modules open-circuit fault diagnosis methods producing
negative results including erroneous judgment, omissive judgment and low accuracy. Moreover, due
to the capability of the protection module, the short-circuit fault will turn into an open-circuit fault.
Therefore, the open-circuit fault diagnosis of wind turbine power converter is crucially significant;
its essence is to diagnose the power switching component, such as the IGBT module [14,15].

Over the past decade, a number of studies have been made concerning open-circuit fault diagnosis
of the IGBT module in the power converter [16–21], which can be divided into qualitative fault
diagnosis and quantitative fault diagnosis. Qualitative fault diagnosis includes fault tree analysis
method and expert system method, whose basic idea is to build a knowledge base by using the effective
experience and expertise accumulated by experts in the case of open-circuit fault of the power converter,
and to determine the diagnosis results and fault causes according to certain logic reasoning for the fault
status. Quantitative fault diagnosis includes the current detection method and the voltage detection
method, which analyze and compare the current, voltage and other operating electrical parameters
of power converter, and set thresholds when necessary, so as to make a decision and classification.
The method of qualitative fault diagnosis is intuitionistic and easy to understand with clear thinking
and strong logic. However, with the increasing complexity of power converter systems, the knowledge
base is not comprehensive enough and the logic reasoning process is extremely complex, which makes
the process of diagnosis and search difficult and the accuracy of fault diagnosis low. In order to
improve the efficiency and accuracy of fault diagnosis, a combination of qualitative fault diagnosis and
quantitative fault diagnosis is usually used. As stated in [22], the zero current periods are registered
in each converter phase circuits. The open-circuit faults are identified calculating the average values
of differences between predicted and measured phase currents. This method is insensitive to load
changes but out of the high power application. [23] proposes an approach, which is based on the
absolute normalized Park’s current vector. This method can detect multiple open-circuit switch faults.
But, this method is also prone to false alarm or failure alarm when the load changes abruptly. In [24],
wavelet transform is used to preprocess load current signals, and open-circuit faults are diagnosed
by the processed currents based on back propagation neural network (BPNN) and classification and
regression trees (CART). As stated in [25], the fault diagnosis strategy utilizes the average values of the
voltage to quickly identify failures position and devices.However, the direction of the inductor current
on the primary side has to be considered first of all.

The rest of this paper is organized as follows. In Section 2, the focused topology of the
GSC of PMSG wind turbine and IGBT modules open-circuit faults are addressed and analyzed.
Afterward, the mathematical models of VMD, trend feature analysis method and DBN model are
established and described in Section 3, respectively. Sections 4 and 5 deal with the analytical calculation
of numerical simulation and experiment, some comparison results of fault diagnosis methods are
shown in the end of the sections. The concluding remarks are drawn in Section 6.

2. Topological Graph and Fault Analysis

Up to now, the doubly fed induction generator (DFIG) and PMSG wind turbines equipped
with partial scale and full scale power converters, respectively, have occupied the majority of the
wind power market [26,27]. Initially, the DFIG became attractive due to the controllability of active
and reactive power, having the mature technology and low cost. However, the grid code has been
regularly updated, and become stricter and stricter with the steady increase of wind power penetration.
Therefore, more and more wind farm operators turn to using the PMSG wind turbine equipped with
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full scale power converter, due to the better low-voltage ride-through capability, higher efficiency and
power density [28,29].

2.1. GSC Modeling

Although various power switching components can be used to match a full scale power converter,
this paper only focuses on the GSC with the back to back dual pulse width modulation (PWM) structure,
as it is the most used structure in the wind turbine industry. Figure 1 shows the topological graph of
the GSC.
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In the Figure 1, the DC-Link is mainly consisted of shunt capacitors (C1 and C2),
whose two-terminal provides a stable direct current (DC) voltage to GSC. The GSC is mainly composed
of 6 IGBT modules. Every two IGBT modules compose phase A, B and C, respectively. Through PWM
control strategy, the DC voltage is transformed into sinusoidal alternating current with required
equivalent frequency and amplitude. Afterward, the harmonic and peak are suppressed and filtered
by the filter, and the power is fed to the grid via the transformer.

For the full scale power converter of PMSG wind turbine, the key of grid connection is the GSC
control strategy, which generally needs to meet two basic principles: first, to maintain the stability
of DC-Link voltage. The second is to realize the control of output phase current. The relationship
between the output power of the full scale converter and the wind speed can be expressed as follows:

PGSC ≈
1
2
ρAv3Cpk (1)

where PGSC is the output power of GSC, ρ is the air density in kg/m3, A is the sweep area of the
blades in m2, v is the wind speed in m/s, Cp is the power coefficient of the blade, k is the power
conversion coefficient.

When the control strategy of the GSC and the load parameters are certain, the effective value of the
output line voltage UAB/BC/CA and the phase current IA/B/C can be calculated by the DC-Link voltage:

UAB/BC/CA =

√
1

2π

∫ 2π

0
u2

AB/BC/CAdωt = 0.816Ud, (2)

IA/B/C =
PGSC

√
3UAB/BC/CA cosϕ

, (3)

where uAB/BC/CA is the output line voltage of GSC; Ud is the DC-Link voltage; cosϕ is power factor of
a phase load. In the actual operation of wind turbine, the voltage Ud, UAB/BC/CA are constant by the
function of control strategy of converter. As can be observed from (1) to (3), phase current IA/B/C of
GSC is nearly a cubic function of the wind speed v when the other parameters are invariant. It can be
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stated that the phase current is random and unstable. Thus, it is difficult to diagnose the open-circuit
fault, which is also one of the most significant differences between the wind turbine converter and
other converters.

2.2. Faults Analysis with GSC

Most of the existing open-circuit fault diagnosis strategies of power converter are only concerning
the single open-circuit failure state. However, the larger current or peak of voltage would break down
another IGBT module, result in a double open-circuit faults of the IGBT modules, if the system failed
to respond in time to cut off the electric energy transmission after the occurrence of single open-circuit
fault. Therefore, this paper is considering the single and double IGBT modules open-circuit faults of
GSC. Then, there are 21 open-circuit failure states and 1 normal operating state for the 6 IGBT models
of GSC. The code of IGBT modules open-circuit fault of GSC is shown in Table 1.

Table 1. Code of open-circuit fault of insulated gate bipolar transistor (IGBT) modules.

Fault Type Description T6 T5 T4 T3 T2 T1 Coding Number

Normal 0 0 0 0 0 0 1

Single open-circuit

0 0 0 0 0 1 2
0 0 0 0 1 0 3
0 0 0 1 0 0 4
0 0 1 0 0 0 5
0 1 0 0 0 0 6
1 0 0 0 0 0 7

Double open-circuit in the same phase
0 0 1 0 0 1 8
0 1 0 0 1 0 9
1 0 0 1 0 0 10

Double upper open-circuit in the different phases
0 0 0 1 0 1 11
0 1 0 0 0 1 12
0 1 0 1 0 0 13

Double lower open-circuit in the different phases
0 0 1 0 1 0 14
1 0 0 0 1 0 15
1 0 1 0 0 0 16

Upper and lower open-circuit in the different phases, respectively

0 0 0 0 1 1 17
0 0 0 1 1 0 18
0 0 1 1 0 0 19
0 1 1 0 0 0 20
1 1 0 0 0 0 21
1 0 0 0 0 1 22

Where T1, T2, T3, T4, T5 and T6 represent the corresponding IGBT modules in Figure 1. The value
of Ti (i = 1, 2, . . . , 6) are the states of IGBT modules. When the value of Ti is equal to 0, it means that Ti is
operating normally at this time. When the value of Ti is equal to 1, it means that Ti is open-circuit fault
at this time. The 1 to 22 are the coding number correspond to the each failure state of the IGBT modules.
For instance, code 2 corresponds to 000001, which means that the T1 IGBT module is single open-circuit,
other IGBT modules are normal at this time. Code 21 corresponds to 110000, which means that the
T5 and T6 IGBT modules are double open-circuit, other IGBT modules are normal. According to the
Table 1, technicians can clearly locate which IGBT modules in the GSC have open-circuit faults.

3. Fault Diagnosis Method

3.1. VMD Modeling

The target of VMD is to decompose a real valued input signal f into a discrete number of
sub-signal uk, that have specific sparsity properties while reproducing the input. Each mode uk is
assumed to be mostly compact around a center pulsation ωk, which is to be determined along with
the decomposition [30,31]. A scheme to assess the bandwidth of a mode is as follows: First, for
each mode uk, compute the associated analytic signal by means of the Hilbert transform in order to
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obtain a unilateral frequency spectrum. Second, for each mode, shift the mode’s frequency spectrum
to “baseband”, by mixing with an exponential tuned to the respective estimated center frequency.
Third, the bandwidth is now estimated through the H1 Gaussian smoothness of the demodulated
signal, the squared 2-norm of the gradient. The resulting constrained variational problem is as follows:

min
{uk},{ωk}

∑
k

‖∂t

[(
δ(t) +

j
πt

)
uk(t)

]
e− jωkt

‖

2

2

 s. t.
∑

k

uk = f , (4)

where {uk} =
{

u1, · · ·, uK
}

is all modes. {ωk} =
{
ω1, · · ·, ωK

}
is center frequencies of all

modes. K is the number of levels of decomposition.
In order to render the problem unconstrained, a quadratic penalty term and Lagrangian multipliers

λ are both used. The augmented Lagrangian L is as follows:

L({uk}, {ωk},λ) = α
∑

k

‖∂t

[(
δ(t) +

j
πt

)
uk(t)

]
e− jωkt

‖

2

2

+ ‖ f (t) −
∑

k

uk(t)‖
2

2

+

〈
λ(t), f (t) −

∑
k

uk(t)
〉
, (5)

Minimization uk and ωk, respectively:

ûn+1
k (ω) =

f̂ (ω) −
∑
i,k

ûi(ω) + 0.5λ̂(ω)

1 + 2α(ω−ωk)
2 , (6)

Which is clearly identified as a Wiener filtering of the current residual. The full spectrum of the
real mode is obtained by Hermitian symmetric achievement. Conversely, the mode in time domain is
procured as the real part of the inverse Fourier transform of this filtered analytic signal.

ωn+1
k =

∫
∞

0 ω
∣∣∣ûk(ω)

∣∣∣2dω∫
∞

0

∣∣∣ûk(ω)
∣∣∣2dω

, (7)

Which puts the new ωk at the center of gravity of the corresponding mode’s power spectrum.
This mean carrier frequency is the frequency of a least squares linear regression to the instantaneous
phase observed in the mode.

The decomposition procedure of VMD method is as follows:
Step 1. Initialize

{
û1

k

}
,
{
ω1

k

}
, λ̂1, n← 0 .

Step 2. Update uk, ωk and λ, n← n + 1 , k = 1 : K.

ûn+1
k (ω)←

f̂ (ω) −
∑

i<k ûn+1
i (ω) −

∑
i>k ûn

i (ω) + 0.5λ̂n(ω)

1 + 2α(ω−ωn
k )

2 , (ω ≥ 0), (8)

ωn+1
k ←

∫
∞

0 ω
∣∣∣ûn+1

k (ω)
∣∣∣2dω∫

∞

0

∣∣∣ûn+1
k (ω)

∣∣∣2dω
, (9)

λ̂n+1(ω)← λ̂n(ω) + τ

 f̂ (ω) −
∑

k

ûn+1
k (ω)

 , (ω ≥ 0), (10)

Step 3. Repeat the iterative procedure of Step 2 until,∑
k ‖û

n+1
k − ûn

k ‖
2
2

‖ûn
k ‖

2
2

< ε, (11)
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where ε is a given parameter.

3.2. Trend Feature Analysis of Decomposed Data

A novel method of trend feature analysis is proposed for extracting trend feature vectors in this
part. The three-phase current IA/B/C varying with wind speed v of GSC under 22 states are decomposed
by variational mode in K levels, and each phase current gets K levels of modes:

Axu =
{

Axu1, · · ·, AxuK
}
, (12)

Bxu =
{

Bxu1, · · ·, BxuK
}
, (13)

Cxu =
{

Cxu1, · · ·, CxuK
}
, (14)

where A, B and C denote the each phase of GSC in Figure 1; x = 1, 2, · · ·, 22 denotes fault code;
Axu, Bxu and Cxu are the modes sets of three-phase current after decomposing; Axuk, Bxuk and Cxuk
(k = 1, 2, . . . , K) are the k-th mode coefficient series of three-phase current modes sets, respectively.

Extracting EAxk, EBxk and ECxk the feature energy of each mode of three-phase current can be
expressed as:

EAxkj =
n∑

j=1

∣∣∣Axuk( j)
∣∣∣2, x = 1, 2, · · ·, 22, k = 1, 2, . . . , K, (15)

EBxkj =
n∑

j=1

∣∣∣Bxuk( j)
∣∣∣2, x = 1, 2, · · ·, 22, k = 1, 2, . . . , K, (16)

ECxkj =
n∑

j=1

∣∣∣Cxuk( j)
∣∣∣2, x = 1, 2, · · ·, 22, k = 1, 2, . . . , K, (17)

where EAxk, EBxk and ECxk are the feature energy of each mode of three-phase current, respectively. n is
the total number of coefficients at each mode coefficient series.

The each open-circuit fault of IGBT modules would have a great impact on the feature energy
in each mode of three-phase current. Therefore, the feature energy vectors EA, EB and EC could be
constructed by the feature energy of each mode.

EAx =
[

EAx1 EAx2 . . . EAxK
]
, x = 1, 2, · · ·, 22, (18)

EBx =
[

EBx1 EBx2 . . . EBxK
]
, x = 1, 2, · · ·, 22, (19)

ECx =
[

ECx1 ECx2 . . . ECxK
]
, x = 1, 2, · · ·, 22, (20)

The three-phase current vary according to the wind speed. The same varieties occur to the feature
energy of each mode. Thus, when the open-circuit happens in the GSC, the varied feature energy
vectors would bring difficulties to the following data analysis. It is necessary to normalize the feature
energy vectors. Let:

FAxk =
EAxk

K∑
l=1

EAxl + σ

, x = 1, 2, · · ·, 22, k = 1, 2, . . . , K, (21)

FBxk =
EBxk

K∑
l=1

EBxl + σ

, x = 1, 2, · · ·, 22, k = 1, 2, . . . , K, (22)
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FCxk =
ECxk

K∑
l=1

ECxl + σ

, x = 1, 2, · · ·, 22, k = 1, 2, . . . , K, (23)

where σ is a tiny real number to avoid the erroneous judgment when the phase current is zero,
and minimize impact on final classification results. The normalized feature energy vectors can be
expressed as:

FAx =
[

FAx1 FAx2 . . . FAxK
]
, x = 1, 2, · · ·, 22, (24)

FBx =
[

FBx1 FBx2 . . . FBxK
]
, x = 1, 2, · · ·, 22, (25)

FCx =
[

FCx1 FCx2 . . . FCxK
]
, x = 1, 2, · · ·, 22, (26)

Then, the factors of normalized feature energy vectors can be the function about the part factors
of trend feature vectors. Let:

Ix_k=(FAxk)

1
p , x = 1, 2, · · ·, 22, k = 1, 2, . . . , K, (27)

Ix_k+K=(FBxk)

1
p , x = 1, 2, · · ·, 22, k = 1, 2, . . . , K, (28)

Ix_k+2K=(FCxk)

1
p , x = 1, 2, · · ·, 22, k = 1, 2, . . . , K, (29)

where p is a positive real number. The value of p could be confirm in an optimal range through several
experiments.

{
Ix_1 Ix_2 . . . Ix_3K

}
is the part factors set of trend feature vectors, which could be

used to judge which the phases are open-circuit. To locate the location of open-circuit IGBT module is
upper or lower, 3 additional factors of trend feature vectors are needed to add in.

The first level modes of three-phase current are most similar to the original current signals.
The coefficient sum of the first level modes of three-phase current can be expressed as:

SAx1 j =
n∑

j=1

Axu1( j), x = 1, 2, · · ·, 22, (30)

SBx1 j =
n∑

j=1

Bxu1( j), x = 1, 2, · · ·, 22, (31)

SCx1 j =
n∑

j=1

Cxu1( j), x = 1, 2, · · ·, 22, (32)

where SAx1, SBx1 and SCx1 are the coefficient sum of the first level modes of three-phase current. n is
the total number of coefficients at each mode coefficient series.

Define Ix_3K+1, Ix_3K+2 and Ix_3K+3 are the 3 additional factors of trend feature vectors. Let:

Ix_3K+1 =


1 , SAx1 > 0
0 , SAx1 = 0
−1 , SAx1 < 0

, x = 1, 2, · · ·, 22, (33)

Ix_3K+2 =


1 , SBx1 > 0
0 , SBx1 = 0
−1 , SBx1 < 0

, x = 1, 2, · · ·, 22, (34)

Ix_3K+3 =


1 , SCx1 > 0
0 , SCx1 = 0
−1 , SCx1 < 0

, x = 1, 2, · · ·, 22, (35)
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Then, the trend feature vectors of x-th failure state is:

Ix =
[

Ix_1 Ix_2 . . . Ix_3K+3
]
, x = 1, 2, · · ·, 22, (36)

where 3K + 3 is the number of factors in each trend feature vectors.

3.3. DBN Modeling

In 2006, a DBN model with an efficient learning algorithm proposed by Hinton. This algorithm
becomes the main framework of the deep learning algorithm later. It can extract the required features
from the training set automatically [32,33]. The typical model is the restricted Boltzmann machine (RBM).
The features extracted automatically solve the careless factors in the manual extraction, and initialize
the weights of neural network. Then Softmax function can be used to classify, and contributes
good experimental results. DBN can be composed of multi-layer RBM. A typical DBN model with
double-layer RBM is shown in the Figure 2.
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The process of DBN training model can be mainly divided into two steps.
Step 1: Unsupervised pretraining. Each layer of RBM network is trained independently and

unsupervised to ensure that as much feature information as possible is preserved when the feature
vectors are mapped to different feature spaces. The greedy method is adopted between the layers
training, and the process is as follows:

1. The input layer V0 of the first RBM is also the input layer of the entire network. It typically
involves training the first layer RBM by applying contrastive divergence. W0 is the weight in the
first RBM.

2. The hidden layer H0 of the previous layer RBM can be seen as the visible layer V1 of the back layer
RBM, followed by iterative training remaining RBM. W1 is the weight in the back layer RBM.

Step 2: Classification decision. Set the feature vectors from unsupervised reconstruction as the
input feature vectors of Softmax function, which is set at the last layer of DBN to supervised train and
classification decision.
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3.4. Mission Profile of the Method

Figure 3 shows the whole process of open-circuit fault diagnosis with proposed novel method,
including VMD, trend feature analysis and DBN algorithm. Above all, the three-phase current
varying with wind speed of IGBT modules open-circuit of GSC are extracted under 22 states.
Afterward, the three-phase current are conducted by VMD at K levels to obtain the corresponding
modes. Trend feature analysis is the part proposed to address the corresponding modes data to
produce the trend feature vectors under 22 states. In this part, feature energy vectors are extracted and
normalized. 3 K factors of trend feature vectors of each state are computed with normalized data and
optimal parameter p. Simultaneously, the coefficient sums of the first level modes are employed by
the defined piecewise functions. The rest 3 factors of trend feature vectors of each state are obtained
from the piecewise functions. Then, the trend feature vectors of each state are generated of the
abovementioned factors. Finally, input the trend feature vectors to DBN, which is utilized to train,
test and construct the model. The classification results output from Softmax classifier of the last layer
of DBN.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 20 
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4. Simulation Results

The simulation results produced from the proposed method which is addressed to diagnose the
open-circuit faults of GSC are evaluated in this section.

Simulink is used to simulate 22 states of GSC of PMSG wind turbine, as shown in Figure 4.
The three-phase current IA, IB and IC varying with wind speed are extracted, where the subscripts
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A, B and C are the each phase. 1000 samples are extracted under each state. The length of time of
each sample is between T and 1.15T, where T is the period of the phase current. 800 samples out
of 1000 samples under each state are randomly selected to compose training set, and the remaining
200 samples are used to compose test set. So, the sum of entire samples is 22,000, including 17,600 in
training set and 4400 in test set.
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Table 2 is the parameters of main simulation components.

Table 2. Parameters of simulation components.

Item Parameter Value

Ud 1050 V
UAB/BC/CA 690 V

Voltage of sine wave 0.7 V
Frequency of sine wave 50 Hz

Frequency of triangular wave 1000 Hz
Phase difference of each phase 120◦

Where Ud denotes the voltage of DC-Link; UAB/BC/CA is the line voltage of GSC; Voltage of sine
wave is utilized to generate trigger signals for IGBT modules; Frequency of sine wave is equal to the
rated frequency of phase current; Frequency of triangular wave is equal to the switching frequency of
IGBT modules; Phase difference of each phase denotes the phase relationship between any two phases.

4.1. VMD of Three-Phase Current

Considering [34], the whole three-phase current samples under 22 states are addressed by VMD
at 7 levels. Figures 5 and 6 show the waveforms of three-phase current and the mode coefficient serials
under No. 1 (normal operating) and No. 2 failure states, respectively. Where the red, green and blue
curves denote the A, B and C phase current in Figures 5 and 6, respectively.
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Figure 5. Waveforms of three-phase current and the mode coefficients serials under No. 1 state.
(a) Waveform of three-phase current. (b–h) Waveforms of mode coefficients serials from 1st level to
7th level.
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Figure 6. Waveforms of three-phase current and the mode coefficients serials under No. 2 failure state.
(a) Waveform of three-phase current. (b–h) Waveforms of mode coefficients serials from 1st level to
7th level.

1. No. 1 state (normal operating).

It can be seen from Figure 5a that there is no phase sequence alteration,
meanwhile, three-phase current is operating on a stable state. Figure 5b–h show that the waveforms
of modes are relatively balanced. The feature energy of each mode decreases from the first level to
seventh level. The majority feature energy is in the first level.

2. No. 2 failure state. The T1 IGBT module is open-circuit in phase-A.

It can be seen from Figure 6a that the value of phase-A current is non positive when T1 IGBT
module is open-circuit. This is determined by the electrical structure and working principle of GSC.
The currents of phase-B and phase-A are stable but changed in phase sequences, almost reverses
for each other. Figure 6b–h show the feature energy of each level altered in phase-A modes. The
proportion of feature energy of first level in phase-A is reduced. But the proportion of feature energy
of other levels in phase-A are increased. The proportion of feature energy of levels of phase-B and
phase-C are not sensitive to change.
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4.2. Using Trend Feature Analysis to Extract Trend Feature Vectors

The trend feature analysis is conducted to analyze the modes coefficients serials by using (12)–(36)
in Section 3. The trend feature vectors under 22 states are shown in Table 3.

Table 3. The trend feature vectors under 22 states of GSC.

Coding Number 1 2 3 4 ... 18 19 20 21 22

Ix_1 0.9435 0.4281 0.9139 0.8947 0.6465 0.3872 0.4256 0.6481 0.3891
Ix_2 0.0217 0.2180 0.0312 0.0412 0.1343 0.2487 0.2414 0.1332 0.2582
Ix_3 0.0204 0.1466 0.0268 0.0304 0.0880 0.1559 0.1426 0.0845 0.1443
Ix_4 0.0082 0.0842 0.0121 0.0153 0.0568 0.0844 0.0735 0.0593 0.0845
Ix_5 0.0026 0.0557 0.0074 0.0084 0.0339 0.0567 0.0533 0.0339 0.0561
Ix_6 0.0022 0.0396 0.0050 0.0059 0.0238 0.0393 0.0369 0.0239 0.0396
Ix_7 0.0013 0.0278 0.0034 0.0041 0.0167 0.0278 0.0266 0.0170 0.0281
Ix_8 0.9489 0.9210 0.9099 0.4280 0.4008 0.4194 0.6516 0.3887 0.4181
Ix_9 0.0197 0.0289 0.0339 0.2190 0.2537 0.2323 0.1291 0.2620 0.2411
Ix_10 0.0183 0.0236 0.0270 0.1469 0.1410 0.1517 0.0893 0.1420 0.1433
Ix_11 0.0074 0.0119 0.0135 0.0837 0.0833 0.0761 0.0559 0.0843 0.0778
Ix_12 0.0024 0.0068 0.0072 0.0557 . . . 0.0551 0.0551 0.0336 0.0558 0.0544
Ix_13 0.0020 0.0047 0.0050 0.0389 0.0386 0.0381 0.0236 0.0392 0.0383
Ix_14 0.0012 0.0031 0.0035 0.0279 0.0276 0.0273 0.0168 0.0279 0.0270
Ix_15 0.9478 0.9169 0.4226 0.9094 0.4116 0.6359 0.3831 0.4155 0.6470
Ix_16 0.0198 0.0316 0.2236 0.0322 0.2471 0.1384 0.2647 0.2479 0.1327
Ix_17 0.0185 0.0247 0.1443 0.0265 0.1424 0.0864 0.1432 0.1394 0.0868
Ix_18 0.0083 0.0124 0.0858 0.0137 0.0788 0.0616 0.0850 0.0781 0.0581
Ix_19 0.0023 0.0066 0.0562 0.0084 0.0549 0.0354 0.0563 0.0542 0.0342
Ix_20 0.0021 0.0045 0.0396 0.0057 0.0382 0.0247 0.0395 0.0379 0.0241
Ix_21 0.0012 0.0032 0.0280 0.0040 0.0271 0.0176 0.0282 0.0270 0.0170
Ix_22 1 −1 1 −1 1 1 1 1 −1
Ix_23 −1 −1 −1 −1 −1 −1 −1 1 1
Ix_24 1 1 1 1 1 1 −1 −1 −1

Where the subscripts x denotes the coding number. For instance, the trend feature vectors of No. 1
state is I1 = [0.9435, 0.0217, . . . , 1] when x = 1. The trend feature vectors of No. 21 failure is I21 =

[0.6481, 0.1332, . . . , 1] when x = 21.

4.3. DBN Training and Test Recults Analysis

In this paper, the input of DBN under each open-circuit failure state is a 24 dimensions trend
feature vectors Ix =

[
Ix_1 Ix_2 · · · Ix_24

]
, x = 1, 2, · · ·, 22,where x denotes the failure coding

number. The DBN consists of double-layer RBM and Softmax classifier. In order to reduce the
dimensions and retain the feature information of the trend feature vectors, the number of neurons in
the first layer of RBM is set to 14, and the number of neurons in the second layer of RBM is set to 5.
Then, the input of Softmax classifier is 5 dimensions. The output of Softmax classifier is a 22 dimensions
probability vectors S =

[
S1 S2 · · · S22

]
, where S j( j = 1, 2, · · ·, 22) denots the probability of the

j-th fault. Table 4 shows the probability output results of Softmax classifier and corresponding failure
coding number.

Table 4 shows that, for instance, put the No. 1 trend feature vectors into DBN model, the
classification result is S = [0.999990, 0.000000, . . . , 0.000000], which means the probability of No. 1
trend feature vectors belonging to No. 1 state is 99.999%. Put the No. 22 trend feature vectors into DBN
model, the classification result is S = [0.000000, 0.000001, . . . , 0.999997], which means the probability
of No. 22 trend feature vectors belonging to No. 22 state is 99.9997%. Table 4 verifies the simulation
classification results generated from the proposed method are accurate to the failure coding number,
if the accurate standard is upper than 50%.
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Table 4. The probability output results of Softmax and corresponding failure coding number.

Coding Number 1 2 3 . . . 19 20 21 22

S1 0.999990 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
S2 0.000000 0.999999 0.000000 0.000000 0.000000 0.000000 0.000001
S3 0.000001 0.000000 0.999998 0.000000 0.000000 0.000000 0.000000
S4 0.000007 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
S5 0.000001 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
S6 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
S7 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
S8 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
S9 0.000001 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
S10 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
S11 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
S12 0.000000 0.000000 0.000000 . . . 0.000000 0.000000 0.000000 0.000001
S13 0.000000 0.000000 0.000000 0.000000 0.000001 0.000000 0.000000
S14 0.000000 0.000000 0.000000 0.000003 0.000000 0.000000 0.000000
S15 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
S16 0.000000 0.000000 0.000000 0.000000 0.000000 0.000001 0.000000
S17 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
S18 0.000000 0.000000 0.000001 0.000000 0.000000 0.000000 0.000000
S19 0.000000 0.000000 0.000000 0.999996 0.000000 0.000000 0.000000
S20 0.000000 0.000000 0.000000 0.000000 0.999997 0.000000 0.000000
S21 0.000000 0.000000 0.000000 0.000000 0.000000 0.999998 0.000000
S22 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.999997

To compare the performance of proposed method, the other 7 methods are involved to address
the same samples and 1classical method stated in [16] is utilized too. The total 9 methods are:
1, proposed method, VMD, trend feature and DBN (VMD-TFA-DBN); 2, the classical method, wavelet
transform, feature analysis, judgment and BPNN (WT-FA-JD-BP); 3, VMD, trend feature analysis and
BPNN (VMD-TFA-BP); 4, trend feature analysis and DBN (TFA-DBN); 5, trend feature analysis and
BPNN (TFA-BP); 6, VMD and DBN (VMD-DBN); 7, VMD and BPNN (VMD-BP); 8, only DBN (DBN);
9, only BPNN (BP). To increase the credibility, every method trains the same training set and tests the
same test set at 100 times. Table 5 shows the comparison results between 9 methods.

Table 5. The simulation comparison results of open-circuit fault diagnosis under 9 methods.

Open-Circuit Fault Diagnosis Methods Accuracy Error Times

VMD-TFA-DBN 100% 0
WT-FA-JD-BP 99.99% 3
VMD-TFA-BP 93.26% 29,656

TFA-DBN 95.45% 20,020
TFA-BP 63.57% 160,292

VMD-DBN 20.69% 348,964
VMD-BP 16.78% 366,168

DBN 18.18% 360,008
BP 3.75% 423,500

The following conclusions can be analyzed and drawn from Table 5:

1. The method of VMD-TFA-DBN, proposed in this paper, has generated the best classifying
capability under the 22 circumstances that the accuracy is 100%, the error times is 0.

2. The method of only BP has produced the worst classifying performance, the accuracy is 3.75%,
the error times is 423500.

3. When the accuracy of VMD-TFA-DBN is higher than VMD-TFA-BP, TFA-DBN is higher than
TFA-BP, VMD-DBN is higher than VMD-BP, and DBN is higher than BP. All of these illustrate the
classification accuracy of DBN in higher than BP in the models.
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4. The accuracy of each method used proposed TFA is higher than corresponding who does not use
TFA, which verifies the great function of TFA for increasing classification accuracy.

5. The accuracy of each method used VMD is higher than corresponding who does not use VMD,
which verifies the function of VMD in proposed method.

6. The classical method WT-FA-JD-BP has generated the second best performance that the accuracy
is 99.99%, the error times is 3.

5. Experimental Results

In this section, experimental results are generated to verify the simulation results and analysis.
As the same as simulation, the three-phase current IA, IB and IC are extracted, where the subscripts
A, B and C are the each phase. 1000 samples are extracted under each state. The length of time of
each sample is between T and 1.15T, where T is the period of the phase current. 800 samples out
of 1000 samples under each state are randomly selected to compose training set, and the remaining
200 samples are used to compose test set. So, the sum of entire samples is 22,000, including 17,600 in
training set and 4400 in test set.

Table 6 is the parameters of main components of GSC.

Table 6. Parameters of main components of GSC.

Item Parameter Value

Ud 1050 V
UAB/BC/CA 690 V

Voltage of sine wave 0.7 V
Frequency of sine wave 50 Hz

Frequency of triangular wave 1000 Hz
Phase difference of each phase 120◦

5.1. VMD of Three-Phase Current

The whole three-phase current samples under 22 states are addressed by VMD at 7 levels.
Figures 7 and 8 show the waveforms of phase-A current and the mode coefficient serials under No. 1
(normal operating) and No. 2 failure states, respectively.
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Figure 7. Waveforms of phase-A current and the mode coefficients serials under No. 1 state.
(a) Waveform of phase-A current. (b–h) Waveforms of mode coefficients serials from 1st level to
7th level.
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Figure 8. Waveforms of phase-A current and the mode coefficients serials under No. 2 failure state.
(a) Waveform of phase-A current. (b–h) Waveforms of mode coefficients serials from 1st level to
7th level.

1. No. 1 state (normal operating).

It can be seen from Figure 7a that the waveforms of phase is stable as same as each phase in
Figure 5a. Figure 7b–h show that the feature energy of each mode decreases from the first level to
seventh level. The majority feature energy is in the first level.

2. No. 2 failure state. The T1 IGBT module is open-circuit in phase-A.

It can be seen from Figure 8a that the waveforms of phase-A is similar (to red curve) in Figure 6a.
The value of phase-A current is non positive for a large majority. Figure 8b–h show the feature energy
of each level altered. The proportion of feature energy of first level is reduced. But the proportion of
feature energy of other levels are increased.

5.2. Using Trend Feature Analysis to Extract Trend Feature Vectors

The trend feature vectors under 22 states are shown in Table 7.
Where the subscripts x denotes the coding number. For instance, the trend feature vectors of

No. 1 state is I1 = [0.9434, 0.0218, . . . , 1] when x = 1. The trend feature vectors of No. 22 state is
I22 = [0.3891, 0.2582, . . . , −1] when x = 22.

5.3. DBN Training and Test Recults Analysis

Then, obtain the trend feature vectors Ix =
[

Ix_1 Ix_2 · · · Ix_24
]
, x = 1, 2, · · ·, 22, where x

denotes the failure coding number. The DBN consists of double-layer RBM and Softmax classifier.
The number of neurons in the first layer of RBM is set to 14, and the number of neurons in the second
layer of RBM is set to 5. The output of Softmax classifier is a 22 dimensions probability vectors
S =

[
S1 S2 · · · S22

]
, where S j( j = 1, 2, · · ·, 22) denots the probability of the j-th fault. Table 8

shows the probability output results of Softmax classifier and corresponding failure coding number.
Table 8 shows that, for instance, put the No. 1 trend feature vectors into DBN model,

the classification result is S = [0.998857, 0.000000, . . . , 0.000000], which means the probability of
No. 1 trend feature vectors belonging to No. 1 state is 99.999%. Put the No. 22 trend feature vectors
into DBN model, the classification result is S = [0.000000, 0.000080, . . . , 0.999353], which means the
probability of No. 22 trend feature vectors belonging to No. 22 state is 99.9997%. Table 8 verifies the
simulation classification results generated from the proposed method are accurate to the failure coding
number, if the accurate standard is upper than 50%.
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Table 7. The trend feature vectors under 22 states of GSC.

Coding Number 1 2 3 4 ... 18 19 20 21 22

Ix_1 0.9434 0.4281 0.9144 0.8946 0.6474 0.3872 0.4253 0.6489 0.3891
Ix_2 0.0218 0.2180 0.0311 0.0413 0.1342 0.2473 0.2408 0.1329 0.2582
Ix_3 0.0205 0.1466 0.0267 0.0303 0.0874 0.1558 0.1435 0.0844 0.1443
Ix_4 0.0082 0.0842 0.0121 0.0153 0.0568 0.0849 0.0739 0.0592 0.0845
Ix_5 0.0026 0.0557 0.0073 0.0085 0.0338 0.0570 0.0532 0.0338 0.0561
Ix_6 0.0022 0.0396 0.0050 0.0059 0.0238 0.0397 0.0369 0.0239 0.0396
Ix_7 0.0013 0.0278 0.0034 0.0041 0.0167 0.0281 0.0265 0.0169 0.0281
Ix_8 0.9492 0.9210 0.9103 0.4272 0.4010 0.4181 0.6511 0.3890 0.4181
Ix_9 0.0195 0.0289 0.0339 0.2199 0.2540 0.2329 0.1291 0.2620 0.2411
Ix_10 0.0183 0.0235 0.0269 0.1461 0.1403 0.1513 0.0897 0.1419 0.1433
Ix_11 0.0074 0.0119 0.0134 0.0839 0.0833 0.0765 0.0561 0.0843 0.0778
Ix_12 0.0024 0.0068 0.0071 0.0559 . . . 0.0551 0.0554 0.0336 0.0558 0.0544
Ix_13 0.0020 0.0047 0.0049 0.0391 0.0387 0.0383 0.0237 0.0392 0.0383
Ix_14 0.0012 0.0032 0.0035 0.0280 0.0276 0.0275 0.0168 0.0279 0.0270
Ix_15 0.9477 0.9170 0.4230 0.9092 0.4121 0.6350 0.3825 0.4164 0.6471
Ix_16 0.0199 0.0316 0.2240 0.0323 0.2471 0.1385 0.2646 0.2475 0.1328
Ix_17 0.0186 0.0247 0.1446 0.0265 0.1422 0.0865 0.1437 0.1392 0.0868
Ix_18 0.0083 0.0124 0.0854 0.0137 0.0786 0.0617 0.0852 0.0780 0.0581
Ix_19 0.0023 0.0066 0.0559 0.0084 0.0548 0.0356 0.0563 0.0541 0.0342
Ix_20 0.0021 0.0046 0.0393 0.0057 0.0381 0.0249 0.0395 0.0378 0.0241
Ix_21 0.0012 0.0032 0.0278 0.0040 0.0271 0.0178 0.0282 0.0270 0.0170
Ix_22 1 −1 1 −1 1 1 1 1 −1
Ix_23 −1 −1 −1 −1 −1 −1 −1 1 1
Ix_24 1 1 1 1 1 1 −1 −1 −1

Table 8. The probability output results of Softmax and corresponding failure coding number.

Coding Number 1 2 3 . . . 19 20 21 22

S1 0.998857 0.000058 0.000016 0.000000 0.000000 0.000000 0.000000
S2 0.000000 0.999602 0.000000 0.000000 0.000000 0.000000 0.000080
S3 0.000379 0.000000 0.999668 0.000000 0.000000 0.000000 0.000000
S4 0.000106 0.000000 0.000000 0.000059 0.000000 0.000000 0.000000
S5 0.000130 0.000010 0.000000 0.000063 0.000060 0.000000 0.000000
S6 0.000000 0.000000 0.000005 0.000000 0.000089 0.000060 0.000000
S7 0.000000 0.000000 0.000000 0.000000 0.000000 0.000102 0.000044
S8 0.000254 0.000260 0.000000 0.000000 0.000000 0.000000 0.000000
S9 0.000183 0.000000 0.000240 0.000000 0.000000 0.000000 0.000000
S10 0.000091 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
S11 0.000000 0.000000 0.000000 0.000011 0.000000 0.000000 0.000000
S12 0.000000 0.000000 0.000000 . . . 0.000000 0.000000 0.000000 0.000484
S13 0.000000 0.000000 0.000000 0.000000 0.000470 0.000012 0.000000
S14 0.000000 0.000000 0.000000 0.000713 0.000014 0.000000 0.000000
S15 0.000000 0.000000 0.000000 0.000000 0.000000 0.000001 0.000000
S16 0.000000 0.000000 0.000000 0.000000 0.000000 0.000285 0.000023
S17 0.000000 0.000064 0.000002 0.000000 0.000002 0.000000 0.000000
S18 0.000000 0.000000 0.000068 0.000001 0.000000 0.000003 0.000000
S19 0.000000 0.000002 0.000000 0.999117 0.000000 0.000000 0.000013
S20 0.000000 0.000000 0.000000 0.000000 0.999364 0.000000 0.000000
S21 0.000000 0.000000 0.000000 0.000000 0.000000 0.999536 0.000003
S22 0.000000 0.000003 0.000000 0.000036 0.000000 0.000000 0.999353

Nine compared methods mentioned in the end of Section 4 are used to compare the performance.
They are involved to address the same experimental samples. To increase the credibility, every method
trains the same training set and tests the same test set at 100 times. Table 9 shows the experimental
comparison results between 9 methods.
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Table 9. The experimental comparison results of open-circuit fault diagnosis under 9 methods.

Open-Circuit Fault Diagnosis Methods Accuracy Error Times

VMD-TFA-DBN 99.99% 3
WT-FA-JD-BP 99.99% 5
VMD-TFA-BP 91.92% 35,532

TFA-DBN 94.73% 23,178
TFA-BP 59.16% 179,714

VMD-DBN 18.25% 359,684
VMD-BP 12.42% 385,361

DBN 15.67% 371,071
BP 1.37% 433,971

The following conclusions can be analyzed and drawn from Table 9:

1. The method of VMD-TFA-DBN, proposed in this paper, has generated the best classifying
capability under the 22 circumstances, with an accuracy of 99.99%, and the error times is 3.

2. The method of only BP has produced the worst classifying performance, the accuracy is 1.37%,
the error times is 433971.

3. When the accuracy of VMD-TFA-DBN is higher than VMD-TFA-BP, TFA-DBN is higher than
TFA-BP, VMD-DBN is higher than VMD-BP, and DBN is higher than BP. All of these illustrate the
classification accuracy of DBN in higher than BP in the models.

4. The accuracy of each method used proposed TFA is higher than corresponding who does not use
TFA, which verifies the great function of TFA for increasing classification accuracy.

5. The accuracy of each method used VMD is higher than corresponding who does not use VMD,
which verifies the function of VMD in proposed method.

6. The classical method WT-FA-JD-BP has generated the second best performance, as the accuracy is
99.99%, and the error times is 5.

The conclusions of experimental results are broadly in line with what of simulation results. But the
performance of each method of experimental results is worse than corresponding method. The probable
causes are summarized as follows:

1. Three-phase current is extracted with error or interference. The samples are varying to indistinct,
which lead to the accuracy decreased.

2. The total number of experimental samples in training set may be lack of, which leads to the DBN
training model leaky.

6. Conclusions

This paper proposes a novel method to diagnosis the single and double IGBT modules open-circuit
faults of GSC of the PMSG wind turbine. Above all, three-phase current varying with wind speed are
extracted under 22 states. Afterward, the three-phase current are conducted by VMD at 7 levels to
obtain the corresponding modes. Trend feature analysis is proposed to address the corresponding
modes data to produce the trend feature vectors under 22 states. Finally, input the trend feature vectors
to DBN, which is used to train and test and construct the model, and obtain the classification results.

The simulation and experimental results show that the proposed method has the capability to
diagnose the single and double IGBT modules open-circuit faults of GSC, and the accuracy is high.
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