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Abstract: Object tracking refers to the relocation of specific objects in consecutive frames of a video
sequence. Presently, this visual task is still considered an open research issue, and the computer science
community attempted solutions from the standpoint of methodologies, algorithms, criteria, benchmarks,
and so on. This article introduces a GPU-parallelized swarm algorithm, called the Honeybee Search
Algorithm (HSA), which is a hybrid algorithm combining swarm intelligence and evolutionary algorithm
principles, and was previously designed for three-dimensional reconstruction. This heuristic inspired
by the search for food of honeybees, and here adapted to the problem of object tracking using GPU
parallel computing, is extended from the original proposal of HSA towards video processing. In this
work, the normalized cross-correlation (NCC) criteria is used as the fitness function. Experiments using
314 video sequences of the ALOV benchmark provides evidence about the quality regarding tracking
accuracy and processing time. Also, according to these experiments, the proposed methodology is robust
to high levels of Gaussian noise added to the image frames, and this confirms that the accuracy of the
original NCC is preserved with the advantage of acceleration, offering the possibility of accelerating latest
trackers using this methodology.

Keywords: object tracking; honeybee search algorithm; swarm intelligence; parallel computing;
graphics processing unit

1. Introduction

Object tracking deals with the problem of following a specific object from a video source in a frame
by frame basis, and tries to solve several challenges such as the occlusion of objects [1,2]; and the
abrupt changes in light, color or size [3]. Different approaches, known as trackers, have been proposed
in order to solve the object tracking problem, but no definitive answer has been found [3–7]. Usually,
researchers compare trackers against each other regarding speed and accuracy with focus on trackers
which provide the most accurate results but have considerable low speeds.

In general, trackers are slower because they perform more operations to provide better accuracy.
This apparent negative correlation between accuracy and speed makes it challenging to select a suitable
tracker for any given application [8]. In summary, the studied problem in this work is how to accelerate
a specific tracker without having negative effects on their accuracy.

The Graphics Processing Unit (GPU) is a useful tool to accelerate computational tasks in general,
including object tracking [9,10]. This device thrives at the moment of accelerating trackers such as
the Normalized Cross-Correlation (NCC) [11–13]. Although NCC is not a recent tracker it is one
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of the most studied trackers due to its low complexity and good performance regarding accuracy.
NCC is well positioned compared to other trackers that used the ALOV video dataset for testing and
evaluation [3]. Moreover, this work presents a GPU-based parallel version of the Honeybee Search
Algorithm (HSA, detailed in Section 2.2) [14–17] to achieve greater NCC acceleration. While a GPU
allows accelerating computations by performing numerous operations in parallel, HSA achieves
acceleration by performing a heuristic search rather than an exhaustive search. In other words, HSA,
such as other heuristics, converges to the optimal solutions after several iterations. It is important to
mention that HSA is considered a pioneer on the subject of bio-inspired bees applied to the field of
artificial intelligence [18].

Adaptation of Swarm Intelligence (SI) algorithms, such as HSA, for parallel execution on a GPU,
is not a new idea. The research of Tan and Ding [19] proposes that when an SI algorithm is parallelized
through the GPU, the implementation must fall in one of the following four categories: (1) naïve parallel
model, (2) multiphase parallel model, (3) all-GPU parallel model, or (4) multiswarm parallel model.
They identified those models by observing several parallel implementations of SI algorithms [20–24],
most of which are based on the Particle Swarm Optimization heuristic. We selected HSA for this
study as it differs from other SI algorithms on the following basis: (1) it can be used for real-valued
optimization problems, while other heuristics are limited to discrete problems, (2) it is not explicitly
designed for route searching problems, and (3) according to our knowledge, the parallelization of HSA
has not been proposed or developed for object tracking.

SI has been used for object tracking in a few works [25,26], but as far as we know, the parallelized
SI algorithms have been mostly tested with benchmarking functions, and less frequently used for
object tracking [27]. This work uses the unique combination of: NCC as the tracker function, the HSA
for heuristic search, and a GPU for hardware acceleration.

Experiments performed within this work show that the addition of HSA improves the speed
against a purely GPU-accelerated NCC. Also, there are no observed adverse effects on the accuracy of
the results and these are confirmed using a proposed evaluation criterion, called Score-Time Efficiency.
The Score-Time Efficiency is used to facilitate the comparison of different tracker proposals regarding
speed and accuracy. This work can be considered a proof of concept to increase the acceleration of
object tracking by parallelizing HSA using the GPU with the NCC tracker as its fitness function.

This work is organized as follows: Section 2 describes the materials and methods, starting
with a description of the honeybee dance language (Section 2.1) that serves as an inspiration for
HSA (Section 2.2). Later, the Normalized Cross-Correlation (Section 2.3) tracker is described in detail,
allowing us to understand its application as a fitness function (Section 2.4) for HSA and parallelized
using a GPU (Section 2.5). We detail the procedure used to test the accuracy and speed of the different
implementations in Section 2.6. Additionally, Section 3 presents the results of the different conducted
experiments. Section 4 gives the discussion of the results. Finally, Section 5 provides the conclusion
and future work.

2. Materials And Methods

2.1. The Honeybee Dance Language

The information shared by honeybees through their dance language [28] is the location, quality,
and quantity of food they have found. Honeybees may take a long time to find food, depending on
how far it is from their hive. Nevertheless, once one of them locates the source of food, then other
honeybees swarm around it, making it clear that they have been taught where to go. The honeybee
dance is never displayed if there are no other honeybees, which is proof that it is a communications
tool that requires an audience.

While these insects are recruiting, they use odor samples to identify the location of resources,
as well as the desirability of a resource. The possible recruits can confirm the quality of the food source
by smelling samples brought by the explorer. The quantity of food is related to the “liveliness” and
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“enthusiasm” of the dance performance. The dancer makes pauses for antennal contact with peers,
to transfer some harvested samples of nectar. The angle recorded by bees during their trajectory to
the resource, relative to the sun’s azimuth (the horizontal component of direction towards the sun),
is mirrored following the angle on the comb using the waggle portion of the dance.

The described process can be abstracted and represented using pseudocode, which can be useful
to develop an algorithm. Algorithm 1 shows a very general view of the search process employed
by honeybees. There are three main phases: exploration, recruitment, and harvest. The process is
inherently parallel and the algorithm could be improved by embracing parallel processing technologies.

Algorithm 1 HSA is divided into 3 phases: exploration, recruitment, and harvest.
Honeybee Search Algorithm()

1 Exploration()
2 Recruitment()
3 Harvest()

2.2. The Honeybee Search Algorithm

The following section provides more details of HSA used as the basis for this work. The algorithm
was initially proposed by Olague and Puente [14–16] defined as a meta-heuristic that combines
Evolutionary Algorithms and Swarm Intelligence with individuals that emulate the behavior of
foraging honeybees. As displayed in Algorithm 1, there are three main phases: exploration, recruitment,
and harvest. The exploration phase consists of sending search agents called explorers to random
points of a specific multidimensional space; these points or possible solutions are called food
sources. We define the richness or attractiveness of the food sources through a function called
fitness function. The next phase, recruitment, is where the explorers return to the hive and try to
convince other honeybees to follow them to exploit the food source they have found. In the last phase,
harvest, a massive search covers the space where the surroundings of the best food sources receive
considerable greater attention. An evolutionary algorithm similar to Evolution Strategies (µ + λ) is
at the core of in the harvest and exploration phases; mutation and crossover are used as the leading
evolutionary operators [29].

The exploration stage (Algorithm 2) is actually a modified Evolution Strategy (ES) of the type
µ + λ. These evolutionary algorithms serve as a simulation of the natural process in which the
honeybees perform asynchronous exploration of the space in search of the food source. The exploration
stage starts creating a random population µe of multidimensional points called explorers, which are
then transformed into a new population λe using the mutation, crossover, and random steps.
The best individuals are selected using a fitness value as criteria, obtained using a fitness function.
The importance of mutation commonly distinguishes this kind of Evolutionary Algorithm as the main
source of change between generations (instead of crossover). In this case, we follow the approach
proposed by Boumaza and Louchet [30], with some changes in operators used to evolve the population.
λe sons are generated by three different methods: αe sons are generated by Polynomial Mutation [29],
βe sons are generated by crossover using Simulated Binary Crossover [29] and γe sons are generated
randomly. It should be noted that αe + βe + γe = λe. Another important difference between the
common ES and the one used in this algorithm is that a sharing operator [31] is used to penalize
individuals that concentrate in a small space by reducing the individual’s fitness value. The algorithm
repeats this stage until a given number of iterations or generations.

The recruiting phase is easily understood: we divide the total number λ of forager agents into
groups. The proportional size pi of those groups is relative to the fitness value ( f iti) of each of the
individuals that were selected from the exploration phase, as seen in Equation (1). Not all explorers
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may have assigned foragers to harvest their location; these might not have found a food source that is
good enough.

pi =
f iti

∑
µe
j=1 f itj

(1)

ri = pi × µh (2)

The harvest phase (Algorithm 3) is also a (µ + λ)-ES where the offspring is generated in the
exact same way as in the exploration phase (λh = αh + βh + γh). The differences are that, instead of
beginning with random points, the starting points are the results from the exploration phase; and the
number of generations and individuals (µh, λh) may change. This phase means the algorithm performs
an ES search for every good food source found during exploration. We compute the number of foragers
assigned to each explorer trough the factor ri, shown in Equation (2), where µh is the total size of the
foragers’ population.

Algorithm 2 Pseudocode for the exploration phase of HSA
Exploration(µe, λe)

1 Initialize(µe)
2 Evaluate(µe)
3 while stop condition = false
4 Generate(λe)
5 Evaluate(λe)
6 Sharing(µe, λe)
7 Select µ best(µe, λe)

Algorithm 3 Pseudocode for the harvest phase of HSA
Harvest(µh, λh, µe)

1 for each individual ∈ µe
2 Initialize(µhi)
3 Evaluate(µhi)
4 while stop condition = false
5 Generate(λhi)
6 Evaluate(λhi)
7 Sharing(µhi, λhi)
8 Select µ best(µhi, λhi)

2.2.1. Crossover

The Simulated Binary Crossover operator (SBX) [29] is used to generate a part of the offspring
populations. The SBX operator emulates the working principle of the single point crossover operator
on binary strings. From two parent solutions P1 and P2, it creates two children C1 and C2 using
Equations (3)–(5).

C1 = 0.5[(1 + β)P1 + (1− β)P2] (3)

C2 = 0.5[(1− β)P1 + (1 + β)P2] (4)

β =


(2u)1/(ηc+1) if u < 0.5(

1
2(1− u)

)1/(ηc+1)
otherwise

(5)

The spread factor β is dependent on a random variable u ∈ [0, 1] and on a user-defined
non-negative value ηc that characterizes the distribution of the children in relation to their parents.
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2.2.2. Mutation

Mutation is applied to each of the real variables of the individual using a polynomial distribution
perturbation [32]. The mutation operation modifies a parent P into a child C using the boundary
values P(LOW) and P(UP) of each of the decision variables using Equations (6) and (7).

C = P + (P(UP) − P(LOW))δ (6)

with δ =

{
(2u)1/(ηm+1) − 1 if u < 0.5
1− [2(1− u)]1/(ηm+1) otherwise

(7)

2.3. Normalized Cross-Correlation

As discussed in Section 1, the Normalized Cross-Correlation (NCC) is one of the less complicated
approaches to object tracking, but is top tier compared to other trackers which used the ALOV video
dataset for performance evaluation [3]. We use NCC as fitness function for HSA and describe the
adaptations in further sections.

NCC is used to measure the correlation between two image templates, i.e., NCC quantifies how
similar these image templates are [33–35]. The grade of similarity is a scalar number, the greater it is,
the more correlated these images are. Usually, the aim of using NCC is to find the point (u, v) where
certain template t is located within a certain image frame I (illustrated in Figure 1). In order to find
the optimal (u, v), every suitable point (u, v) in I must be checked using NCC. The range of possible
values for (u, v) is limited by the dimensions w× h of I as well as the dimensions m× n of t. The range
of u extends from 0 to w−m while the range of v goes from 0 to h− n.

n

m

w

v

u

(u, v)
h

t

I

Figure 1. Template t can be contained in frame I in a rectangle of size m× n which has point (u, v) as
top left corner.

The formula used to compute NCC for any given (u, v) is based on the squared Euclidean distance.
Equation (8) shows how the squared Euclidean distance d2

I,t(u, v) is obtained. The term I(x, y) refers
to the value used to describe the gray level of pixel located at point (x, y) within frame I. Similarly,
t(x− u, y− v) is the value of gray assigned to the pixel (x− u, y− v) of template t. Note (x, y) is any
point contained by the rectangular window that has point (u, v) as the top left corner and (u+m, v+ n)
as bottom right corner, meaning u ≤ x ≤ u + m and v ≤ y ≤ v + n. Such inequalities ensure the top
left corner of template t will always be (0, 0) while the bottom right corner will always be (m, n).

d2
I,t(u, v) = ∑

x,y
[I(x, y)− t(x− u, y− v)]2 (8)

d2
I,t(u, v) = ∑

x,y
I2(x, y)− 2I(x, y)t(x− u, y− v) + t2(x− u, y− v) (9)

The expression used to obtain d2
I,t(u, v) may be expanded, as in Equation (9). This manipulation

reveals that the result depends on three terms. The term ∑x,y t2(x− u, y− v), which remains constant,
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is ignored since it does not change for two different points (u, v). On the other hand, the term
∑x,y I2(x, y) does change for different values (u, v), but this change reflects the fact that the selected
point is different rather than measuring the similarity between pixels I(x, y) and t(x − u, y − v).
Only the term ∑x,y I(x, y)t(x − u, y− v) is useful to get the cross-correlation c(u, v) (Equation (10))
and thus it is established as a starting point for NCC.

c(u, v) = ∑
x,y

I(x, y)t(x− u, y− v) (10)

NCC presents an improvement over c(u, v), since it provides resistance to changes across the
frames of a video sequence. For example, a difference in the illumination of the targeted object that
occurs between frames of the video. Another common problem that occurs when using c(u, v) is that
bright spots in the image or template can cause confusion by provoking greater correlation values
than actual features of the targeted object. In order to give NCC a greater resistance to the mentioned
errors, the formula for c(u, v) is altered by normalizing the image and feature vectors to the unit
length (see Equation (11)). The mean of all the pixels (x, y) in the region were u ≤ x ≤ u + m and
v ≤ y ≤ v + n is denoted as Īu,v and found using Equation (12). The term t̄ is the mean of the pixels
contained in t and requires Equation (13) to be evaluated.

γ(u, v) =
∑x,y [I(x, y)− Īu,v][t(x− u, y− v)− t̄]√

∑x,y [I(x, y)− Īu,v]2 ∑x,y [t(x− u, y− v)− t̄]2
(11)

Īu,v =
∑x,y I(x, y)

m× n
(12)

t̄ =
∑x,y t(x− u, y− v)

m× n
(13)

The value γ(u, v), called NCC, ranges between −1 and 1 [35]. As the value approaches 1,
the certainty of finding t in point (u, v) with great robustness is greater. However, NCC is not capable
of detecting certain transformations such as rotation and scale changes in the targeted object.

2.4. NCC as a Fitness Function

Each point (u, v) in the image has a value γ(u, v). The fitness function in this case is γ(u, v),
while the individual is a 2D point (u, v). In this case there are not different fitness functions for foraging
and exploration phases. The formal definition of the optimization problem is as follows:

Maximize γ(u, v)

subject to 0 ≤ u ≤ w−m

0 ≤ v ≤ h− n

where each individual (u, v) must belong to the feasible region Ω = {(u, v) ∈ R2 : 0 ≤ u ≤ w−m, 0 ≤
v ≤ h− n}.

In this work, we made small changes to the original proposal of HSA to adapt to the specific
problem of object tracking. The exploration and harvest phases of the algorithm are left almost intact,
as described by [14–16]. A significant difference is in the sharing operator. Since object tracking
requires an optimal 2D point rather than a sparse cloud of 2D points, thus we can omit the sharing
operator to ease the convergence to the optimal value. Also, the initial random population of the
exploration phase is not entirely random; it is around a small window that surrounds the last known
position (u, v) of the object.

The recruitment phase was modified to limit the section of the feasible region to be searched.
Originally, small search spaces were defined around each food source found during the exploration
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phase (Figure 2a). This was changed so that a unique subsection of the feasible region is defined.
This single sub-region (Figure 2b) is defined to contain all explorers within it.

(a) (b)

Ω Ω

Figure 2. The original HSA defined a smaller search region around each recruiter. The proposed
parallel version defines a unique region that contains the recruiters. (a) Original; (b) New proposal.

2.5. Workflow of Parallel Experiments

The following section provides information about several different tools that were used in
conjunction to perform the experiments and evaluate the raw data that was obtained. Figure 3
shows the overall workflow. There are two main actors: the CPU and the GPU. It begins when the
CPU performs operations that are required before the parallel processing is performed. Then, the GPU
starts working to perform the search operations. Finally, results are sent back from the GPU to the
CPU and then presented to the user.

once per frame

GPU

initialization

Random

number

generation

Call GPU

kernel

Parallel Processing Send

results

Print results

to file

CPU

GPU

Parallel
Honeybee

Search
Algorithm

Parallel
NCCOnly BEE

Only NO BEE
BEE and NO BEE

Figure 3. Workflow of programs BEE and NO BEE. The random number generation is only used in
program BEE. Parallel NCC is specific to program NO BEE and Parallel HSA is specific to program BEE.

Observe that the stage “Random number generation” (described in Section 2.5.2) is only used in
program that uses HSA (BEE) because the heuristic procedure requires them. Another important note
is that the stage of “Parallel Processing” changes drastically between programs. The parallel processing
of program BEE uses Parallel HSA while the second program performs an exhaustive search (NO BEE),
using NCC.

2.5.1. Hardware

The GPU used in most of the experiments is an AMD Radeon R9 270, and it was programmed
using OpenCL. The clock speed of the GPU is of 925 MHz, and the communication with the CPU is
made through a PCI Express x16 slot that transmits about 16 GB/s.

The architecture of the GPU is designed for parallel operations that require no synchronization [36].
The 1280 ALUs of the GPU can work independently, but not in a coordinated manner. If the program
requires synchronization, the available resources are limited. The maximum number of synchronized
work-items, also called the maximum work-group, is of 256 parallel work-items [37].

The CPU used to provide instructions to the GPU, image preprocessing, random number
generation, and displaying results is a DELL XPS 8700 with an Intel Core i7-4790. The base frequency
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of the processor is 3.60 GHz. We use OpenCV for image manipulation. The CPU also has 15.6 GiB of
RAM available.

The experiments of Section 3.7, which tested state of the art trackers, requiered a second GPU with
the following characteristics: NVIDIA GeForce GTX 1050 with 640 cores and 1354MHz clock speed.

2.5.2. Random Number Generation

The processors of the GPU have a limited function set. This situation presents certain difficulties,
such as the lack of native support for random number generation, required for several vital activities
of HSA. The solution we implemented was to pre-generate random number arrays of different
distributions with the CPU and sent them along with the frame image data to the GPU. Four arrays
are generated and sent from the CPU to the GPU:

1. uniformly distributed integers (using OpenCV)
2. uniformly distributed real numbers (using OpenCV)
3. beta distribution for SBX [38,39]
4. and delta distribution for Polynomial Mutation [39].

2.5.3. GPU Kernel Parameters

The GPU kernel is the program that is executed by every work-item and can receive configuration
parameters if required. In this case, we sent different configuration parameters for each program,
Table 1 provides a summary.

Table 1. Summary of the configuration parameters used in the tests.

Parameter Description BEE NO BEE

µe Size of all populations 64 –
Generations – 2 –

ηm Parameter for mutation 25 –
ηc Parameter for crossover 2 –

αe/λe Mutation sons, exploration 60% –
βe/λe Crossover sons, exploration 10% –
γe/λe Random sons, exploration 30% –
αr/λr Mutation sons, harvest 60% –
βr/λr Crossover sons, harvest 30% –
γr/λr Random sons, harvest 10% –

Program BEE requires several values related to HSA. Many of the assigned parameters were
optimal values found by Olague and Puente [14–16]. Those parameters are: ηm, ηc, αe/λe, βe/λe, γe/λe,
αh/λh, βh/λh, and γh/λh (detailed in Section 2.2). The number of generations for the exploration
phase was selected using an experiment (described in Section 3.4), the harvest phase has the half of the
number of generations used for exploration.

2.5.4. Honeybee Search Algorithm Parallelization

Each honeybee is logically composed of q GPU work-items. The maximum number of individuals
that can work simultaneously is p/q, where p is the maximum work-group. To take advantage of these
p/q individuals, the size of populations µe, λe, µh and λh are all set to the same size of p/q.

When evaluating the fitness function, all work-items that belong to a certain individual have
work to do. However, there are activities in HSA that require a lower level of parallelization and only
use one processor per individual. The list of activities that fall in this category are:

• generation of the initial random µe population for the exploration phase
• generation of λ populations using mutation, crossover and random exploration
• merge µ and λ populations
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• selection of the µ best from µ + λ populations

Before the selection of the µ best from the µ + λ population, said population has to be sorted by
fitness value. The sorting algorithm used in the described implementation is a parallelized merge-sort,
that uses one work-item per honeybee [40].

The only phase not parallelized at all is the recruitment phase. One processor keeps working
while the rest remain idle. This processor assigns how many foragers will be recruited by each explorer
bee and defines the new search space.

2.6. Tests Procedure and Evaluation Criteria

The tests and evaluation of the different developed tracker proposals were carried out considering
several evaluation criteria. First, the tests were performed using the ALOV video dataset (described in
Section 2.6.1). Secondly, a quantitative evaluation is carried out using the F-score criterion for each
proposal and analyzed using a survival curve (detailed in Section 2.6.2). Subsequently, the average
time per frame criterion is obtained for each proposal and analyzed using a survival curve (detailed
in Section 2.6.3). Besides, the time complexity is derived for each proposal and contrasted with the
obtained results. Finally, performance in terms of accuracy and processing time for each proposal is
analyzed through a proposed criterion, called Score-Time Efficiency (detailed in Section 2.6.4).

2.6.1. ALOV Video Dataset

The tests were performed using the ALOV video dataset (Figures 4 and 5) proposed by [3].
This dataset provides 314 videos and ground truth data for evaluation and has been used as
a benchmark to test 19 different trackers.

Examples of Light Category:

Examples of Surface Cover Category:

Examples of Specularity Category:

Examples of Transparency Category:

Examples of Shape Category:

Examples of Motion Smoothness Category:

Examples of Motion Coherence Category:

Figure 4. Example videos from the ALOV dataset (first 7 categories). Only first frames are shown.
The target object is enclosed.
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Examples of Clutter Category:

Examples of Confusion Category:

Examples of Low Contrast Category:

Examples of Occlusion Category:

Examples of Moving Camera Category:

Examples of Zooming Camera Category:

Examples of Long Duration Category:

Figure 5. Example videos from the ALOV dataset (last seven categories). Only first frames are shown.
The target object is enclosed.

The ALOV dataset has 14 categories and each one presents a different challenge for common
trackers. The categories are:

1. Light: 33 videos that have sudden and intense changes in the main light source or how it
illuminates the tracked object.

2. Surface Cover: 15 videos where the tracked object changes its surface cover, but this cover adopts
the form of the object it covers.

3. Specularity: 18 videos with shiny objects that reflect light and produce specularities.
4. Transparency: 20 videos where the tracked object is transparent and easily confused with

the background.
5. Shape: 24 videos in which the tracked object drastically changes its shape.
6. Motion Smoothness: 22 videos that show an object that moves so slowly that no movement is

detected whatsoever.
7. Motion Coherence: 12 videos where the tracked object does not follow a predictable route

of movement.
8. Clutter: 15 videos with tracked objects that display similar patterns to the ones observed in the

background.
9. Confusion: 37 videos that show objects that are very similar to the object of interest, thus confusing

the tracker.
10. Low Contrast: 23 videos where the tracked object shows little contrast with the background or

other objects.
11. Occlusion: 34 videos where the object of interest is occluded by other objects or is not in the field

of vision at a certain point.
12. Moving Camera: 22 videos that are affected by the camera’s sudden movements.
13. Zooming Camera: 29 videos where the zoom of the camera changes the displayed size of the object.
14. Long Duration: 10 videos that have greater duration, between one and two minutes.
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To perform a quantitative evaluation against the other 19 trackers, the dataset authors suggest
using the F-score [3], which is a measurement tool based on the intersection and union area between the
provided answer and the real answer. We have successfully applied this measure to other evolutionary
algorithms dealing with video tracking [6,7].

The authors of the dataset suggest the use of a survival curve; a type of graph that shows the
results sorted in descending order and is more commonly used in the field of medicine to compare
how different treatments affect patients [41,42]. The curves that are closer to the labeled horizontal line
can be considered the most accurate.

2.6.2. F-Score

The F-score F is evaluated using Equations (14) and (15). The first Equation (14) is known as the
PASCAL criterion and it helps to identify false positives and true positives. The criterion depends on
how the rectangular window Ti is given as a result for a certain frame (also called truth) intersects
with the ground truth GTi and how this area compares to the union of both as illustrated in Figure 6.
The ground truth data was also provided as part of the ALOV++ dataset to allow faster testing and
measurement of new algorithms.

|Ti ∩ GTi|
|Ti ∪ GTi| ≥ 0.5 (14)

T i

GT i

T i ∩GT i

Figure 6. Ti (truth) and GTi (ground truth) may intersect. The PASCAL criterion helps to quantify how
similar Ti and GTi are, based on this.

The number of false positives n f p increases when the PASCAL criterion fails; the number of true
positives ntp increases on the opposite case, and the number of false negatives n f n increases when the
object is present on the frame according to the ground truth, but the tested algorithm determines the
object was not detected.

precision =
ntp

ntp + n f p

recall =
ntp

ntp + n f n

F-score = 2 · precision · recall
precision + recall

(15)

Note F only has non-negative values lesser or equal to 1, and the PASCAL criterion measures
not only that the result is in the correct place but also that it reflects the current, correct size of the
tracked object.

2.6.3. Average Time per Frame

The average time per frame is obtained using the summation of the seconds used to process each
frame (seconds per frame, spf) of each video sequence divided by the number of frames in that sequence.

Average Time per Frame =
∑ seconds per framei

Number of frames
(16)
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The average time per frame should be obtained for each video of the dataset and each one
of the different tracker proposals. We also used the survival curve plots to visualize the average
time per frame data. Moreover, the time complexity is formally detailed and later confirmed with
experimental results.

2.6.4. Score-Time Efficiency

To allow the comparison in terms of F-score and seconds per frame, this work proposes the
Score-Time Efficiency. This rate describes how much benefit is obtained in terms of F-score by each
second spent to process the frame. The tracker proposal with the greater Score-Time Efficiency will be
considered better. Equation (17) shows how we obtained the Score-Time Efficiency.

Score-Time Efficiency =
F-score

Average Time per Frame
(17)

3. Results

The Big O notation or asymptotic notation is used in the literature to describe the running
time of algorithms [43]; this work uses it with to predict how a certain proposed tracker would
compare against another one and how parallelization affects its performance in an abstract and formal
manner (see Section 3.1). The theoretical analysis is later confirmed by experimental evidence.

Section 3.2 observes the difference between using CPU or GPU to process exhaustive NCC.
To continue, our NCC implementation is validated and compared to other trackers using the results
reported by Smeulders et al. [3] (Section 3.3). Later, Section 3.4 describes the experiment that was
performed to find the optimal number of generations for HSA. Ultimately, the experiment in Section 3.5
determines which of the proposed implementations is the best alternative in terms of accuracy and speed.
Additionally, Section 3.6 uses artificial noise to test the robustness of the best alternative. Finally, Section 3.7
provides the comparison of the performance of our best alternative against other recent trackers.

3.1. Polynomial Time Complexity

The time complexity of NCC is obtained by observing Equations (11), (12) and (13). The time
it takes to get t̄ using Equation (13) is of O(m × n). The next term Īu,v is also obtained in a time
of O(m × n). Finally, γ(u, v) is computed using three different summations, each of them require
O(m× n). To conclude, the time complexity of computing γ(u, v) for a single point (u, v) is O(m× n).

Sequential exhaustive NCC requires to compute every single possible γ(u, v) for every (u, v).
This is the size of the feasible region (w − m) × (h − n). So O(m × n) ×O((w − m) × (h − n)) =

O(−m2nh + mnwh + m2n2 − mn2w) = O(mnwh), note that mnwh is the greatest term because m
should be smaller or equal to w and n should be lesser or equal to h (as illustrated in Figure 1). This is
the time complexity of sequential exhaustive NCC (Table 2 row 1).

In exhaustive parallel NCC, the GPU performs the computation of several γ(u, v) simultaneously.
Let c be the maximum number of simultaneous work-items of the GPU, then the time complexity of
parallel exhaustive NCC is O(mnwh

c ) (Table 2 row 2).

Table 2. Time Complexity of different implementations to be compared

Implementation Abbreviation Time Complexity

Sequential exhaustive NCC CPU NO BEE O(mnwh)
Parallel exhaustive NCC GPU NO BEE O(mnwh

c )
Sequential HSA NCC CPU BEE O(gλhmn)

Parallel HSA NCC GPU BEE O(
gmn

q )

HSA time complexity can be obtained observing the pseudocode in Figures 1–3;
and Equations (1) and (2). Please note that this analysis is specific to the case where the fitness
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function is γ(u, v), if the fitness function experiences any change, then so does the time complexity.
The first line of the Exploration pseudocode takes O(µe), as it is a constrained random generation
of µe individuals. The second line of the exploration pseudocode has a time complexity of O(µemn)
since γ(u, v) is computed for every one of the µe individuals. Next, the time for line 4 is of O(λe)

and O(λemn) for line 5; line 6 is omitted (no sharing). Exploration line 7 performs sorting, taking
O((µe + λe)log(µe + λe)). In total, lines 4–7 have a time complexity of O(λemn), since line 5 should
be significantly slower to compute. This O(λemn) time complexity operation is repeated several
times (line 3), this number is called the maximum number of generations or g, producing a time
complexity of O(gλemn) which is polynomially greater than the cost of lines 1–2. Thus, the exploration
phase takes O(gλemn). The recruitment phase requires the summation of the fitness of all the µe

individuals (Equation (1)) and then Equation (2) has to be computed for each of those individuals,
producing a time complexity of O(µe). The harvest phase is very similar to the exploration phase;
the key difference is the size of the evaluated populations (µh and λh) resulting in time complexity
of O(gλhmn). In polynomial terms, the greatest time complexity between exploration, recruitment,
and harvest phases is that of the harvest phase given that it should be true that λh > λe; taking
those considerations the time complexity for sequential HSA NCC (Table 2 row 3) is of O(gλhmn)
time complexity.

The parallelization of HSA is described in Section 2.5.4. The evaluation of the fitness function
γ(u, v) for each individual is performed by q work-items simultaneously. Please note that all
individuals are processed in parallel because the number of individuals is p/q, and this is dependent
on the capacity of the GPU. This step derives in a O(mn

q ) time complexity to get the fitness of all
individuals in the population once. Still, it is not possible to process several generations at the same
time; they are dependent on the results of the previous generation. Thus, the overall time complexity
of Parallel HSA NCC (Table 2 row 4) is O( gmn

q ).

It is clear that O(mnwh) > O(mnwh
c ) and O(gλhmn) > O( gmn

q ), then the parallelization is expected
to successfully accelerate computations in both cases. However, the comparison between using
exhaustive search or using HSA is non-intuitive. Still, we could reduce it to the simple idea that
HSA will be faster if the size of the image frame (w× h) is significantly greater than the number of
individuals in the λh population multiplied by the number of generations g. In summary, HSA is
expected to be faster than exhaustive search as long as wh > gλh, which should be the case in most if
not all of the tested videos. In the following sections, the different tracker proposals are tested in terms
of speed and accuracy, to contrast the time complexity derivations of each proposal, and to confirm the
advantages of parallelizing HSA for object tracking.

3.2. Sequential Exhaustive NCC vs. Parallel Exhaustive NCC

Our theoretical analysis has supported the assumption that using a GPU produces an acceleration
against using the CPU to compute NCC with an exhaustive search. The experiments show that the
assumption is correct, the GPU implementation of exhaustive NCC takes fewer seconds per frame
on average.

We considered impractical to fully process all videos of the ALOV dataset using the CPU and
exhaustive search, but in order to estimate the average time per frame, we tested the first two frames
of each video. We made this decision because the CPU required 1 day and 18 h to process the first 5
videos of the ALOV dataset. To check that the accuracy of the results is not affected, a few random
videos from the ALOV dataset were selected and used for testing, According to the results (Table 3),
the GPU computes NCC for a full frame around 170 times faster than the CPU. A small difference was
observed in the average F-score, equivalent to 12.60% of the overall standard deviation (not relevant).



Appl. Sci. 2020, 10, 2122 14 of 24

Table 3. Comparison between using GPU or CPU to compute exhaustive NCC. The average time per
frame contemplates all the videos of the dataset, the units are seconds per frame. ’Both’ shows the
average and standard deviation of CPU NO BEE and GPU NO BEE combined.

Average F-Score * F-Score *
Time per Frame Average Deviation

[spf] [arb. unit] [arb. unit]

CPU NO BEE 202.1399 0.5453 0.3056
GPU NO BEE 1.1823 0.5051 0.3327

Both 101.6611 0.5252 0.3193

(*) Only 100 random videos of the dataset taken into account.

As expected, the parallelization of exhaustive NCC successfully accelerated the execution.
This result supports our previous time complexity analysis: O(mnwh) > O(mnwh

c ).

3.3. Reported NCC and Other Trackers versus This Work’s NCC

This experiment was performed to show that the proposed NCC implementation behaves as
reported by other authors. We used all the 314 videos of the ALOV dataset for testing in this experiment.
The tests labeled OURS use the described GPU implementation of NCC and the tests labeled CTRL are
the ones reported for NCC [3,44].

As illustrated in Figure 7, the difference in average F-score between OURS and CTRL is small.
The distance between the averages is 9.06% of the standard deviation of all the tests, not significant.
These results validate that the proposed GPU implementation of NCC performs as good as expected
in terms of F-score.

OURS

CTRL

Both

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F-score [arb. unit]

Figure 7. Comparison of F-score between using this work’s NCC (OURS) and another NCC
implementation (CTRL), the raw data was obtained from [44]. ’Both’ shows the average and standard
deviation of OURS and CTRL combined.

Figure 8 shows survival curves for OURS, CTRL and 18 trackers reported by Puddu [44]. Survival
curves are obtained by sorting the scores for every video and show a general overview of the video
tracker performance; the closer the curve is to the perfect score (1.0), the better. The other trackers that
are displayed are: Struck (STR) [45], Foreground-Background Tracker (FBT) [46], Tracking Learning
and Detection (TLD) [47], Tracking by Sampling Trackers (TST) [48], Lucas-Kanade Tracker (LKT) [49],
Kalman Appearance Tracker (KAT) [50], Fragments-based Robust Tracking (FRT) [51], Mean Shift
Tracking (MST) [52], Locally Orderless Tracking (LOT) [53], Incremental Visual Tracking (IVT) [54],
Tracking on the Affine Group (TAG) [55], Tracking by Monte Carlo (TMC) [56], Adaptive Coupled-layer
Tracking (ACT) [57], `1-minimization Tracker (L1T) [58], `1 Tracker with Occlusion detection (L1O) [59],
Hough-Based Tracking (HBT) [60], Super Pixel tracking (SPT) [61], and Multiple Instance learning
Tracking (MIT) [62].



Appl. Sci. 2020, 10, 2122 15 of 24

1 25 49 73 97 12
1

14
5

16
9

19
3

21
7

24
1

26
5

28
9

31
3

0

0.2

0.4

0.6

0.8

1

1.2

ACT FBT

FRT HBT

IVT KAT

L1O L1T

LKT LOT

MIT MST

SPT STR

TAG TLD

TMC TST

CTRL OURS

Number of videos [videos]

F
-s

co
re

[a
rb

.u
ni

t]

Figure 8. Comparison of F-score survival curves between using this work’s NCC (OURS) and the NCC
implementation reproduced from [3,44] (CTRL). Other video trackers are shown for reference.

According to this experiment, our implementation of NCC is validated and can be considered
a tracker of acceptable performance in terms of accuracy.

3.4. Adjusting the Honeybee Search Algorithm

This experiment was designed to determine if the time per frame is reduced when the number
of generations (explained in Section 2.2) is lower, and what is the optimal number of generations.
This experiment considers all the 314 videos of the ALOV dataset. All the tests use NCC, GPU,
and HSA. The variation is made in the number of generations. The other configuration parameters of
HSA reuse optimal values proposed by Olague and Puente [14–16] after numerous experiments.

Figure 9a shows that the average F-score is stable between generations 2 to 10. The difference in
score between 2 and 3 generations is 3.50% of the overall standard deviation, and 1.95% between 3 and
4 generations. The leap between 4 and 10 generations is only of 4.02%. On the other hand, there is
a notable difference between 1 and 2 generations, measured as 66.79% of the overall standard deviation.

(a) (b)

gen 1

gen 2

gen 3

gen 4

gen 10

All

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F-score [arb. unit]

gen 1

gen 2

gen 3

gen 4

gen 10

All

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Average time per frame [spf]

Figure 9. The effects of increasing the number of generations of HSA. (a) Comparison of F-score.
(b) Comparison of average time per frame.

Figure 9b shows that as the number of generations increases, the average time per frame increases.
From 1 to 2 generations, the average time per frame increases by 8.65% of the overall standard deviation.
From 2 to 3 generations, the increment is 4.50%. When changing from 3 to 4 generations, time per frame
increases by 8.48%. The pattern is caused by the increment in the number of generations for the harvest
phase, which is the half of the generations used for the exploration phase. Finally, an increment from
4 to 10 generations causes the average time per frame to increase by 38.82% of the overall standard
deviation, showing that the trend continues.

Figure 10a shows a three-dimensional plot, the axes show the average F-score, the average time
per frame and the number of generations; the color of the bars indicates a difference in the average
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F-score; this helps to visualize the trend observed when the number of generations of HSA varies.
After two generations, the average F-score stabilizes. In contrast, the average time per frame keeps
increasing. We inferred from that information that two generations provide the right balance between
time and score. Nevertheless, the Score-Time Efficiency shows without a doubt that two generations is
the best option (Figure 10b).
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Figure 10. Selecting the optimal number of generations in terms of average time per frame and F-score
using the Score-Time Efficiency. (a) Average time per frame vs. F-score vs. generations. (b) Comparison
of Score-Time Efficiency.

As expected, the average time increases with each new generation. This aspect supports the
time complexity analysis of parallel HSA with NCC as fitness function: O( gmn

q ), where the number
of generations is of significant influence. This result shows the practical utility of the Score-Time
Efficiency, using it to determine that the optimal number of generations. Also, the observation that the
F-score has asymptotic behaviour starting on two generations ensures that selecting that number does
not mean a negative effect on accuracy. Figure 11 shows an example of the results that were obtained
using two generations, the location of the object (a ball) is obtained with a certain degree of accuracy
even when the size and illumitation of the object changes.

Figure 11. Visual example of the results that were obtained using NCC and HSA with two generations.
The frames that are shown correspond to the 23th video of the Light category of the ALOV dataset.
Every 14th frame is shown.
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3.5. GPU Exhaustive vs. GPU with Honeybee Search Algorithm

This experiment also uses all the 314 videos of the ALOV dataset and all the tests use NCC and
the GPU. The tests labeled BEE use Parallel HSA configured to run for two generations, and the ones
labeled NO BEE use exhaustive search. Keep in mind that the full capacity of the GPU is not used in
BEE because of the synchronization needs.

Notice in Figure 12 that the average difference of F-score between BEE and NO BEE is relatively
small. This difference is 1.54% of the overall standard deviation, an irrelevant difference. This validates
that BEE performs as good as the exhaustive NCC tracker.
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Figure 12. (a) Comparison of F-score between using parallel HSA (GPU BEE) or parallel exhaustive
search (GPU NO BEE). ’Both’ shows the average and standard deviation of GPU NO BEE and GPU
BEE combined. (b) Comparison of F-score survival curves between using parallel HSA (GPU BEE),
parallel exhaustive search (NO BEE) or sequential HSA (CPU BEE).

The difference of average time per frame, displayed in Figure 13a, is of 42.22% of the overall
standard deviation. However, there is a remarkable difference in the standard deviation of both groups.
In other words, BEE provides a lower and more stable time per frame (about 7.58 times steadier).
This result validates that using Parallel HSA provides an improvement in time per frame against a plain
GPU-accelerated NCC. Figure 13b shows how using the GPU accelerates the implementation that uses
HSA and how it compares against exhaustive search. This outcome shows how the polynomial time
complexity of GPU BEE is lower than GPU NO BEE, which is lower than CPU NO BEE, supporting
the theoretical analysis O(mnwh) > O(mnwh

c ) > O( gmn
q ).
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Figure 13. (a) Comparison of average time per frame between using parallel HSA (GPU BEE) or
parallel exhaustive search (GPU NO BEE). ’Both’ shows the average and standard deviation of GPU
NO BEE and GPU BEE combined. (b) Comparison of average seconds per frame survival curves
between HSA (BEE) and exhaustive search (NO BEE). There are four survival curves, these are also
marked as sequential (CPU) or parallel (GPU).

Finally, Figure 14 shows that using parallel HSA (GPU BEE) provides a greater Score-Time
Efficiency meaning it is the best alternative. This simple observation is an intuitive condensation of the
previous analysis of both the F-score and average time per frame observations.
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Figure 14. Comparison of Score-Time Efficiency between using parallel HSA (GPU BEE), parallel
exhaustive search (GPU NO BEE) and sequential HSA (CPU BEE).

3.6. Tests with Gaussian Noise

This experiment uses 14 videos of the ALOV dataset, one for each category. All the tests use NCC,
HSA with two generations, and GPU. We apply Gaussian noise to test the resistance of the proposal to
external perturbations. Gaussian noise requires the configuration parameters of median and standard
deviation to generate random numbers with that distrubution [63], and then these are added to the
values of each color channel. Figure 15 shows an example frame without noise (a), this is labeled as
noise level 0. Then, the same frame with Gaussian noise using median and standard deviation with
a noise level of 50 shown in (b). Finally, the same example frame with Gaussian noise using median
and standard deviation with a noise level of 100 shown in (c).

(a) (b) (c)

Figure 15. Example frames showing visual effect of Gaussian noise as parameters increase. (a) Noise
level 0; (b) Noise level 50; (c) Noise level 100.

The Figure 16a shows that there is a difference in F-score between videos that display different
levels of noise. In other words, the underlying object tracker (NCC) shows a degree susceptibility to
noisy image frames. The difference between noise level 0 and level 50 is 34.88% of the overall standard
deviation, and the difference between levels 50 and 100 is of 10.38% of the total standard deviation.
On the other hand, Figure 16b shows that noise has no noticeable effect on the average time per frame.
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Figure 16. (a) Comparison of F-score survival curves between different levels of noise. (b) Comparison
of average time per frame survival curves between different levels of noise.

A conclusion drew from the results obtained with the combination of NCC, HSA with two
generations, and GPU is that Gaussian noise affects the accuracy. Nevertheless, the difference in
F-score observed between no noise (level 0), and some noise (50 and 100) is in the range of 0.11 to 0.14,
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which is small considering that the full range of the F-score is from 0 to 1. On the other hand, the noise
has no effect on speed.

3.7. Our Best Tracker Proposal versus Two Recent Trackers

Two different recent trackers were selected for contrast: Struck [45] and SiamMask [10]. Struck
remains relevant because it is a purely online tracking proposal that requires no kind of training and is
still able to participate in the latest issues of the VOT challenge [64]. On the other hand, SiamMask
is considered among the best tracker proposals that participated in the latest VOT challenge (top 20)
in terms of accuracy, also several techniques that take inspiration from SiamMask are positioned in
the toptier. SiamMask relies on pre trainined models as it is based on convolutional neural networks.
This section compares the performance of this two state of the art trackers against our best proposal
(GPU BEE) in terms of speed and accuracy using 14 videos of the ALOV dataset, one per category.

The analysis of Struck and SiamMask revealed that both trackers preprocess the image frames
before actually performing tracking, in the case of SiamMask this is usefull to reduce latency caused
by the CPU to GPU communication. Taking that into account, a simple reduction of the frame size is
performed in our proposal, by scaling the picture accordingly, whenever the width or the height of the
frame is greater than 300 pixels. The effect on the accuracy caused by the reduction of frames can be
considered negligible compared to the full resolution frame. On the other hand, a relevant reduction
of the average time per frame is obtained.

Figure 17a shows that the accuracy of GPU BEE is inferior to that of SiamMask and Struck. This is not
surprising since GPU BEE uses NCC as a tracker, and different sources have found it to be surpassed in
accuracy by Struck. However it is interesting to note that Struck showed a better accuracy than SiamMask
in this particular setting, which is not the general case. The conclusion that is drawn is that Struck
shows greater robustness in certain cases: low resolution videos and videos with background objects
that resemble the target. In addition, it is clear that the parallelization of the HSA does not improve the
accuracy of its fitness function (Figure 13), but a significant acceleration is observed compared to the
conventional NCC tracker. As shown in (Figure 17b), the average time per frame of our best proposal
(GPU BEE) is almost four orders of magnitude smaller than that obtained for CPU NO BEE. Moreover,
the survival curve of average time per frame of GPU BEE is in the same window (from 0.2 to 0.9 spf) of
Struck and SiamMask, a remarkable improvement against CPU NO BEE.
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Figure 17. (a) Comparison of F-score survival curves between GPU BEE (our best tracker proposal),
Struck and SiamMask. (b) Comparison of average time per frame survival curves between GPU BEE,
CPU NO BEE (conventional NCC), Struck and SiamMask. In the average time per frame axis, the scale
from 0.02 to 0.1 is linear but logarithmic above 0.1, in order to contrast substantial difference of average
time per frame between CPU NO BEE and the rest of the trackers.
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4. Discussion

The main concern of this work is to find out whether our proposed combination of HSA and
GPU is capable of accelerating a given object tracker. It is shown in Figures 12 and 13 that the optimal
proposal, the one that maximizes accuracy and speed, is parallel HSA. An area of opportunity that
arises from this work is whether or not parallel HSA using NCC as fitness function can compete against
other trackers in terms of speed. During the tests combining the GPU, HSA, and NCC, the minimum
observed latency was of 0.0351 s per frame; the maximum was 2.6715 s per frame; and the average was
of 0.3729 s per frame. The results show that the tracker’s speed is affected by the dimensions of the
frame (width and height); as well as the size of the tracked object.

We reviewed the literature and found that the ALOV dataset was not used to test the speed of
trackers due to the authors’ emphasis on accuracy. On the other hand, the dataset presents a demanding
task because the frame sizes that range from 192 × 144 to 1920 × 1080 pixels and post many different
challenges. Other authors have reported speed of their tracker proposals. For example, Wu et al. [4]
which used video sequences with frame sizes than range from 128 × 96 to 640 × 480 pixels, which are
significantly smaller than ALOV frame sizes. Using the data of the most accurate trackers reported in
that benchmark [4], we found that the minimal latency is of 0.0027 s per frame, the maximum latency
is of 1.9607 s per frame and the average is 0.3228 s per frame. In contrast our average time (0.3729 s per
frame) seems to fall on the average, despite the fact that the ALOV dataset has larger frame sizes and
presents more complex challenges.

This work presents the results of tests using only one object tracker (NCC), but the parallelized
version of the Honeybee Search Algorithm as presented could and ought to be combined with other
object trackers. This combination can provide more evidence of the benefits of combining these
tools. Testing with other object trackers is not a trivial undertaking since this requires the study and
understanding of the tracker and an analysis to determine if it can be accurately translated into a fitness
function. We believe the main objective of this work has been fulfilled by providing the proof that the
combination of HSA and the GPU is useful to accelerate the NCC object tracker without adverse effects
on its accuracy. For future work, we have decided to address this further by testing this configuration
with other trackers (Section 5.1). Another relevant point that supports the previous observation is that
the parallel HSA was capable of accelerating NCC to the point of reaching Struck and SiamMask speed
levels even when NCC is not a state of the art tracker as is confirmed in Section 3.7.

According to our results, the GPU may not be the best tool for the parallelization of HSA or
other Swarm Intelligence algorithms. The GPU was designed to perform vector operations with
small synchronization requirements, while many Swarm Intelligence algorithms focus on the idea of
synchronization of individuals. Usually, a GPU has a limit to the number of possible synchronized
threads, often a fraction of the full capacity of the GPU. Nevertheless, our parallel implementation of
HSA achieved a higher speed than naïve parallelization of the NCC tracker. Even though, the used
hardware is not the best alternative in the market, we found that our parallelization approach
enhances the performance of the NCC tracker and this should be translatable to another GPU with
higher capacities.

5. Conclusions

The presented results provide evidence to conclude that the proposed combination of a GPU
and HSA can be useful to accelerate NCC, and possibly other trackers. Furthermore, using HSA,
together with the GPU, provides a greater acceleration than using the GPU alone. Even when HSA is
not a deterministic tool, the accuracy is not negatively affected when using it.

The experiments helped find the optimal value for the number of generations (two generations),
an important configuration parameter for HSA that has an effect in speed and accuracy. Both the
time complexity analysis and the experimental evidence showed the extent of the influence that this
parameter has in the tracker’s execution speed. Other experiments showed that the proposal is resistant
to high levels of noise.
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The proposed Score-Time Efficiency criterion was found useful to make simple comparisons of
different tracker proposals in terms of accuracy and speed, allowing making decisions that require
the optimization of both variables. According to the analysis performed using this criterion, the best
option was parallel HSA with 2 generations using NCC as fitness function.

Comparison experiments of our best proposal against other recent trackers such as SiamMask and
Struck show evidence that parallel HSA has no relevant effects on the accuracy of its tracker function
(NCC), but dramatically reduces latency, almost four orders of magnitude in terms of average time
per frame. This evidence exposes an opportunity area in which to focus future efforts: to employ the
proposed methodology but using state of the art trackers as a starting point.

5.1. Future Work

• Perform tests with different datasets. Since the ALOV dataset is mainly focused on accuracy.
An interesting dataset could be the object tracking benchmark of Kristan et al. [64]. Also, use
state-of-the-art trackers and other well-known traditional trackers for testing. For instance, Struck [45]
and SiamMask [10] are currently considered some of the most accurate and fast trackers [3,64].

• Perform tests with different parallel computing or hardware acceleration technologies. The synchronization
required by HSA could be provided by another architecture such as the FPGA [65], which would allow
designing a parallel computing architecture with custom capabilities.

• Comparisons with other Swarm Intelligence heuristics. This work used HSA, which could be compared
against other similar heuristics, such as Particle Swarm Optimization or Artificial Bee Colony.
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