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Abstract: This article presents an analysis of the effectiveness of object detection in digital images
with the application of a limited quantity of input. The possibility of using a limited set of learning
data was achieved by developing a detailed scenario of the task, which strictly defined the conditions
of detector operation in the considered case of a convolutional neural network. The described solution
utilizes known architectures of deep neural networks in the process of learning and object detection.
The article presents comparisons of results from detecting the most popular deep neural networks
while maintaining a limited training set composed of a specific number of selected images from
diagnostic video. The analyzed input material was recorded during an inspection flight conducted
along high-voltage lines. The object detector was built for a power insulator. The main contribution
of the presented papier is the evidence that a limited training set (in our case, just 60 training frames)
could be used for object detection, assuming an outdoor scenario with low variability of environmental
conditions. The decision of which network will generate the best result for such a limited training set
is not a trivial task. Conducted research suggests that the deep neural networks will achieve different
levels of effectiveness depending on the amount of training data. The most beneficial results were
obtained for two convolutional neural networks: the faster region-convolutional neural network
(faster R-CNN) and the region-based fully convolutional network (R-FCN). Faster R-CNN reached
the highest AP (average precision) at a level of 0.8 for 60 frames. The R-FCN model gained a worse
AP result; however, it can be noted that the relationship between the number of input samples and
the obtained results has a significantly lower influence than in the case of other CNN models, which,
in the authors’ assessment, is a desired feature in the case of a limited training set.

Keywords: convolutional neural network; deep neural network; insulator detection; efficiency
evaluation; power system maintenance

1. Introduction

Recently, the development of deep convolutional neural networks and their broader application in
the field of digital image processing was observed [1], areas well as the development of decision-making
processes automation in the power sector. The conducted research focused on individual elements of
electric power infrastructure [2,3], including electric power insulators [4–6]. Using UAVs (unmanned
aerial vehicles) as a platform for obtaining data on power transmission elements is becoming widespread.
There are many challenges to overcome when automating the analysis of digital images captured by
UAV vehicles. The biggest o problems are difficulties related to the number of images and resulting
data labeling problems. This is usually a manual task that requires precision and accuracy to provide
the learning algorithms with the most valuable input information. During the process, it is possible to
filter out unnecessary, redundant, or distorted data.
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This article presents research related to the elimination of the indicated problem. The analysis
of the learning outcomes of selected implementations of the convolutional neural networks was
performed with the use of a limited set of visual training data, recorded during the flight of a UAV
vessel over electric power infrastructure objects.

The remainder of the paper is organized into the following sections: Section 2 provides a review
of the video data acquisition process for the purposes of diagnostic testing of power insulators.
The problem statement and the research methodologies, together with the proposed approach of
insulator detection using different convolutional neural networks (CNNs), are outlined in Section 3.
The results of the research and discussion are also reported. Section 4 provides a conclusion for the
study. Section 5 presents a discussion of unsolved research problems.

2. Recording of Visual Data

Electric power lines are very specific objects similar to other industrial infrastructure facilities,
usually covering a wide area. This requires performing periodic inspections for proper maintenance.
Usually, periodical flights are made by airplanes or unmanned aerial vehicles [7], during which
visual material is recorded depicting the state of individual elements of overhead high voltage lines.
The continuous development of imaging methods allows image-recording at increasing resolutions
with an increasingly larger number of frames per second. Obtaining desired information from the
acquired visual material requires application of appropriate processing and the development of
new analysis methods for the detection of specific irregularities affecting the proper functioning of
the inspected object. The visual data (video, series of frames) recorded during a controlled flight,
due to the vastness of electric power infrastructure and the consecutive development of imaging
techniques, are currently characterized by very large volume, whereas analysis conducted by humans
is expensive, inefficient in terms of time, burdened with many errors, and dependent on the perception
and experience of the person making the inference based on visual material.

At the same time, human analysis is characterized by high flexibility in decision-making in unusual
situations that require complex multi-criteria analysis and the need to consider many aspects from
different fields. The development of artificial intelligence, in the field of robotic process automation
(RPA), among others, allows for effective algorithm application in the area of visual material analysis.
In terms of inspection of the state of technical infrastructure, the challenges for these types of algorithms
are as follows:

• The need to use advanced methods of image processing (deep learning);
• The need to build appropriate datasets which enable the construction of models describing the

essential elements of technical infrastructure;
• A high degree of complication in making decisions concerning the assessment of the state of the

examined object.

3. Application of the Proposed Approach to Insulator Detection

3.1. Dataset Preparation for CNN

The quality of prediction generated by convolutional neural networks depends to a large extent
on the use of an appropriate machine learning dataset [8]. The dataset built to solve a specific problem
should be characterized by the following features [9,10]:

• A large number of samples;
• Balance in terms of individual classes;
• High quality of images;
• Diversity in terms of depicting the analyzed objects (position, rotation, scale, lighting, obscuration);
• Accuracy of annotations (objects marking) in images.
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The quality of digital images is significant. As demonstrated in Reference [11], an increase in the
current conditions for large datasets meets many challenges as follows:

• The diversity of data sources brings abundant data types and complex data structures, which
increase the difficulty of data integration;

• Data volume is tremendous, and it is difficult to evaluate data quality within a reasonable amount
of time;

• Data change very fast, and the “timeliness” of data is very short, which necessitates higher
requirements for processing technology;

• No unified and approved data quality standards exist, and the research on the quality of large
datasets only just began.

The main focus during the process of creating a training dataset for convolutional neural
networks was on using as few training frames as possible. The aim was to improve the quality of the
training dataset and significantly shorten the pre-processing and training time of individual neural
network architectures.

3.2. Description of the Proposed Approach

The block diagram in Figure 1 shows the individual stages of the conducted research. The first
stage involved an inspection flight along an electric power line with the use of an unmanned aerial
vehicle and a camera recording a digital image at a resolution of 3840 × 2160. Then, the recorded
video material was divided into single digital images with a specific time interval. The selected images
containing the examined object or objects were pre-processed and then tagged.
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In the next stage, the selected images were divided into training datasets consisting of 15,
30, and 60 frames, and a test dataset consisting of 283 frames containing 2560 regions of interest
(ROIs) representing a power insulator. In the in-depth study for testing of selected CNNs (the faster
region-convolutional neural network (faster R-CNN) and the region-based fully convolutional network
(R-FCN)), training datasets were also prepared, comprising five, 10, 20, 25, 35, 40, 45, 50, and 55 frames.
A detailed description of the dataset preparation process with its sample elements is described in more
detail in the next section. For each prepared dataset (15, 30, 60 frames), the process of training for
the selected convolutional neural network was conducted. The inference process for an identical test
dataset was performed, and, in the last stage, the obtained results were compared.

3.3. Training and Test Dataset

The training and test datasets included images taken during the flight of the UAV along the
high-voltage line. For data acquisition, a GoPro Hero 4 camera was used. All the images of the training
and test datasets were manually tagged, thus obtaining a prepared training dataset and a ground truth
for the test set. For each image, a separate XML file was generated. The file contained coordinates
(x_min, y_min, x_max, y_max) of the regions of interest (ROIs), defining the positions of objects in
the scene. Figure 2 presents examples of tagged images from the flight along the high-voltage line.
The whole dataset contained 343 photos. In total, 3138 ROIs containing the insulator were marked.
The test dataset consisted of 283 images (2560 ROIs), and the entire training dataset contained 60 images
(578 ROIs). Additionally, the training dataset was divided into smaller sets of images, i.e., five, 10, 15,
20, 25, 30, 35, 40, 45, 50, 55, and 60 frames.
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3.4. Applied Convolutional Neural Networks

For insulator detection, five different convolutional neural networks were selected. These CNNs
are described in Table 1.

Table 1. Description of selected convolution neural networks (CNNs).

Name of the CNN Abbreviation CNN Model Main Features

Faster region
convolutional
neural network

Faster R-CNN

• The R-CNN is a special type of CNN that is
able to locate and detect objects in images

• A separate network is used to predict the
region proposals (region proposal network
(RPN)) [12]

• It consists of only one CNN
• Much faster than its

predecessors (Fast R-CNN
and R-CNN) [13,14]
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Table 1. Cont.

Name of the CNN Abbreviation CNN Model Main Features

You Only Look
Once v3 YOLO v3

• The single convolutional network predicts
the bounding boxes and the class
probabilities for these boxes [15].

• Can operate with the speed
of 45 frames per
second [16]

• The limitation of the YOLO
algorithm is that it
struggles with small objects
within the image (due to
the spatial constraints of
the algorithm) [17]

Single-Shot
MultiBox Detector
Inception

SSD Inception

• The network is an object detector that also
classifies those detected objects

• The network uses the MultiBox technique
developed for bounding box regression

• The network employs Inception V3 as the
backbone [18–21]

• The tasks of object
localization and
classification are done in a
single forward pass of the
network [22]

• SSD produces worse
performance on smaller
objects, as they may not
appear across all feature
maps [18]

Single Shot
MultiBox Detector
Lite MobileNet v2

SSD MobileNet

• The network is an object detector that also
classifies those detected objects

• The network uses the MultiBox technique
developed for bounding box regression

• The network employs MobileNet V2 as the
backbone and has depth-wise separable
convolutions for the SSD layers, also known
as SSDLite [18,20]

• The main features of the
SSDLite MobileNet
detector are the same as
SSD Inception. Both
implementations differ
mainly in performance [23]

Region-based fully
convolutional
network

R-FCN

• Unlike R-CNN series networks, fully
connected layers after region of interest
(ROI) pooling are removed

• All major complexity is moved before ROI
pooling to generate the score maps

• The ResNet-101 architecture is used as a
backbone to compute the feature maps [24]

• Uses a positive sensitive
score map to shorten the
inference time and
maintain competitive
accuracy [25].

3.5. The Analysis Results for All the Applied Convolutional Neural Networks

The operation results of the selected convolutional neural networks were evaluated based on three
parameters: precision, recall, and average precision. The precision parameter shows how often the
network generates an incorrect prediction. The precision parameter is described by the relationship of
true positive predictions resulting from the network (correctly detected insulators) and false positives
(number of wrong predictions) generated by the network. In turn, the recall parameter shows how
many objects were detected from all the tagged objects. It is crucial to assess the accuracy of the
prediction of the region of interest generated by the network. The IoU (intersection over union)
parameter was used to assess this accuracy. The IoU parameter describes the relationship between
overlap area which is the sum of the area of the region delimited by the network and tagged manually
in the picture and union area which is the product of the area of the region delimited by the network
and the region hand-tagged in the picture. In the analysis of network operation, the key parameter
was the average precision parameter, as well as the average precision curve, on the basis of which this
parameter was determined. This curve was drawn based on previously determined precision and
recall parameters for each single object detection. The shape and position of the average precision (AP)
curve allowed assessing the accuracy of the network operation. For example, if the AP curve is more
horizontal and located higher on the y-axis, the network is more accurate, while, as it reaches further
on the x-axis, the number of objects it manages to detect correctly is increased. Ideally, it should be a
straight line at the level of y = 1 reaching up to the value of x = 1. On this basis, the average precision
parameter was calculated. Table 2 presents the results of analyses for selected neural networks trained
using 15, 30, and 60 frames of film depicting the flight along the high-voltage line. Table 2 contains
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values of average precision, precision, and recall parameters calculated for three different established
IoU values (i.e., 0.25, 0.5, and 0.75).

Table 2. Summary of the analyses results for all the applied convolutional neural networks.
IOU—intersection over union.

Network
Model

Number
of

Frames

Average
Precision

IOU =
0.25

Precision
IOU =

0.25

Recall
IOU =

0.25

Average
Precision

IOU =
0.5

Precision
IOU =

0.5

Recall
IOU =

0.5

Average
Precision

IOU =
0.75

Precision
IOU =

0.75

Recall
IOU =

0.75

Faster
R-CNN 15 0.6156 0.8846 0.6137 0.3952 0.6537 0.4535 0.1064 0.1509 0.1047

Faster
R-CNN 30 0.7044 0.8989 0.7223 0.4723 0.7000 0.5625 0.0670 0.1731 0.1391

Faster
R-CNN 60 0.8043 0.9274 0.8328 0.6718 0.7964 0.7152 0.1584 0.2671 0.2398

R-FCN 15 0.7069 0.9123 0.7027 0.4805 0.7110 0.5477 0.1110 0.1668 0.1285
R-FCN 30 0.8015 0.9272 0.8461 0.5580 0.7354 0.6711 0.1178 0.2098 0.1914
R-FCN 60 0.8948 0.9515 0.9266 0.6598 0.8139 0.7926 0.1589 0.2720 0.2648

YOLO v3 15 0.2651 0.9324 0.2965 0.1418 0.5258 0.1672 0.0056 0.0590 0.0188
YOLO v3 30 0.3493 0.9208 0.3727 0.1127 0.4797 0.1941 0.0114 0.0531 0.0215
YOLO v3 60 0.4445 0.9427 0.4500 0.2000 0.5483 0.2617 0.0909 0.0687 0.0328

SSD
Inception 15 0.3589 0.9479 0.3910 0.2285 0.6771 0.2793 0.0909 0.1752 0.0723

SSD
Inception 30 0.4486 0.9528 0.4813 0.3096 0.7301 0.3688 0.0331 0.1570 0.0793

SSD
Inception 60 0.5365 0.9589 0.5465 0.3944 0.7615 0.4340 0.1199 0.2557 0.1457

SSD
MobileNet 15 0.3520 0.9286 0.3555 0.2238 0.6224 0.2383 0.0273 0.1327 0.0508

SSD
MobileNet 30 0.4344 0.9211 0.4238 0.2956 0.6842 0.3148 0.0303 0.1171 0.0539

SSD
MobileNet 60 0.5290 0.9225 0.5207 0.3014 0.6657 0.3758 0.0268 0.1488 0.0840

As can be seen in Table 2, a change in the value of the IoU parameter had a significant impact on
the analysis results. For further analysis, it was assumed that the IoU level equal to 0.5 was sufficient
to conclude that the insulator was correctly identified in the image. For an IoU of 0.5, it is clear that
the networks Faster R-CNN and R-FCN had by far the highest efficiency. The recall parameter was
particularly important here, which had a value of as much as 0.7925 for the R-FCN/ResNet network
trained on 60 frames for the IoU of 0.5. This means that, in this case, the network was able to identify
almost 80% of the insulators correctly. Given that the networks Faster R-CNN and R-FCN achieved
much better results than the other algorithms, they were selected for further, more detailed analyses.

3.6. The In-Depth Analysis Results for the Faster R-CNN and R-FCN Networks

The first step in the further analysis was to verify how the increase in the number of video frames
used for training affected the quality of network operation. For this purpose, both networks were
re-trained using five, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, and 60 frames. Figure 3 presents the average
precision curves of the Faster R-CNN model for the IoU of 0.5, which demonstrate the results of
the network operation on the test dataset for different numbers of frames that were involved in the
training process.
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As shown in Figure 3, the number of training frames involved in the learning process had a
significant impact on the detection quality of Faster R-CNN. Noticeably, the best result was obtained
for the network trained on a dataset consisting of 60 training frames. It should also be noted that the
networks trained with 25 and 35 frames were surprisingly good. Figure 4 presents the results obtained
for the R-FCN model in similar conditions.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 13 

network operation on the test dataset for different numbers of frames that were involved in the 
training process. 

 

Figure 3. Average precision curve for the Faster R-CNN model trained on 5-60 frames. 

As shown in Figure 3, the number of training frames involved in the learning process had a 
significant impact on the detection quality of Faster R-CNN. Noticeably, the best result was obtained 
for the network trained on a dataset consisting of 60 training frames. It should also be noted that the 
networks trained with 25 and 35 frames were surprisingly good. Figure 4 presents the results 
obtained for the R-FCN model in similar conditions. 

 

Figure 4. Average precision curve for the R-FCN model trained on 5-60 frames. 

Figure 4. Average precision curve for the R-FCN model trained on 5–60 frames.

As shown in Figure 4, the AP curves for the R-FCN model were flatter and reached further along
the x-axis than those for the Faster R-CNN model. It can also be seen that the increase in the number
of frames was not as crucial here as it was in the case of the Faster R-CNN model. In particular, this
was visible for networks trained for more than 15 frames. The slope of AP curves did not change as
significantly here either. In the final stage of the analysis, the relationship between the increase in the
number of training frames and the AP parameter value was examined. The obtained results are shown
in Figure 5, which also shows graphs and formulas of functions matched to the measurement data,
together with calculated determination coefficients.
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determination R2.

As showed in Figure 5, the determination coefficients R2 for both functions were at a similar level
of approximately 0.94. The slope of trend lines for the R-FCN model was slightly smaller, which means
that fewer training frames were needed to obtain a comparable effect to the Faster R-CNN model. To
finalize the presented activities, an in-depth study was performed which was divided into two stages.
In the first stage, the selected networks (Faster R-CNN and R-FCN) were trained in 20,000 steps for 15,
30, and 60 frames of the recorded material. Subsequently, an inference was made, and a set of images
was obtained representing both the objects sought and the other objects that were wrongly classified.
Next, manual selection of correctly classified objects was made, assuming the parameter IOU = 0.5,
with which the original training sets were supplemented. Expanded training datasets prepared in
this manner were used to tune the previously obtained models again in the second stage of training.
The obtained results are presented in Figures 6 and 7.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 13 

 
Figure 6. The average precision curve for the R-FCN model trained on the training dataset and 
additionally tuned in three considered cases with 15, 30, and 60 frames. 

Figure 6 presents a comparison of average precision curves obtained for the R-FCN network 
additionally tuned in three considered cases with 15, 30, and 60 frames. As can be seen, the detection 
accuracy significantly improved; the precision parameter curves were closer to the line y = 1, but the 
recall parameter slightly deteriorated, as fewer insulators were found. Figure 7 presents an analogical 
situation to Figure 6, with the results obtained after testing the Faster R-CNN model. In this case, a 
significant improvement in detection accuracy can be observed, especially for 15 frames of the video, 
but there was also a decrease in the number of insulators found. In this case, the shape of the curves 
(30 and 60 frames) also changed; their end parts sloped downward. Accurately calculated parameters 
of average precision, precision, and recall are presented in Table 3. 

 

Figure 6. The average precision curve for the R-FCN model trained on the training dataset and
additionally tuned in three considered cases with 15, 30, and 60 frames.



Appl. Sci. 2020, 10, 2104 9 of 12

Figure 6 presents a comparison of average precision curves obtained for the R-FCN network
additionally tuned in three considered cases with 15, 30, and 60 frames. As can be seen, the detection
accuracy significantly improved; the precision parameter curves were closer to the line y = 1, but the
recall parameter slightly deteriorated, as fewer insulators were found. Figure 7 presents an analogical
situation to Figure 6, with the results obtained after testing the Faster R-CNN model. In this case, a
significant improvement in detection accuracy can be observed, especially for 15 frames of the video,
but there was also a decrease in the number of insulators found. In this case, the shape of the curves
(30 and 60 frames) also changed; their end parts sloped downward. Accurately calculated parameters
of average precision, precision, and recall are presented in Table 3.
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but there was also a decrease in the number of insulators found. In this case, the shape of the curves 
(30 and 60 frames) also changed; their end parts sloped downward. Accurately calculated parameters 
of average precision, precision, and recall are presented in Table 3. 

 Figure 7. The average precision curve for the Faster R-CNN model which was trained on a training
dataset and additionally tuned in three considered cases with 15, 30, and 60 frames.

Average accuracy was not a clear indicator which, for the analyzed cases 15, 30 or 60, gave better
results. It is worth noting that, as a result of the in-depth study, an improvement in precision was
achieved in each of the cases. For the Faster R-CNN model, the improvement was respectively 23.19%,
15.84%, and 14.27%, and, for the R-FCN model, it was 21.44%, 20.31%, and 10.50%. On the other hand,
the recall parameter for the Faster R-CNN model deteriorated respectively by 13.07%, 8.14%, and
9.29%, and, for the R-FCN model, it deteriorated respectively by 10.28%, 14.52%, and 12.57%.

Table 3. Summary of the results of the in-depth analysis including the calculated parameters of average
precision, precision, and recall for the networks Faster R-CNN and R-FCN (15, 30, and 60 frames).

Network
Model

Number
of Frames

Average
Precision
IOU = 0.5

Precision
IOU = 0.5

Recall
IOU = 0.5

Average
Precision
IOU = 0.5,
Expanded
Training

Precision
IOU = 0.5,
Expanded
Training

Recall
IOU = 0.5,
Expanded
Training

Faster
R-CNN 15 0.4712 0.7251 0.5379 0.4384 0.8933 0.4676

Faster
R-CNN 30 0.5714 0.7574 0.6574 0.6106 0.8774 0.6039

Faster
R-CNN 60 0.6672 0.7929 0.7105 0.6221 0.9061 0.6445

R-FCN 15 0.4060 0.7424 0.4863 0.4368 0.9015 0.4363
R-FCN 30 0.4852 0.7650 0.5813 0.4402 0.9204 0.4969
R-FCN 60 0.6609 0.8206 0.7738 0.6109 0.9068 0.6766
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4. Conclusions

Creating object detectors of a particular class in digital images requires the development
of an appropriate learning dataset. The application of a limited learning dataset is possible for
image sequences in which there is a moderate, highly predictable variability of imaging conditions
(lighting conditions, background variability, scene composition, etc.) in which the visual material is
recorded. In the studied cases, a diagnostic flight along high-voltage lines in non-urbanized areas
was implemented, and known deep neural network architectures such as You Only Look Once
(YOLO), Single- Shot MultiBox Detector (SSD), Faster R-CNN, and R-FCN were used to develop the
object detector.

This article presented the comparison results for the detection of an object of the “power insulator”
class while maintaining a limited training dataset consisting of five, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55,
and 60 frames of visual material. The research aimed to assess the influence of the size of training
dataset on the achieved efficiency for various deep neural network architectures. For the evaluation of
efficiency, three IoU threshold values (at the level of 0.25, 0.5, and 0.75) were used to assess the quality
of the obtained detections. The best results were reached for two networks, Faster R-CNN and R-FCN.
Faster R-CNN received the highest AP at the level of 0.8 for 60 training frames. During the study,
it was demonstrated that the number of training data directly translated into the results obtained by
the trained detector. The R-FCN model got a poorer AP result; however, it can be observed that the
relationship between the number of input samples and the obtained results had a much smaller impact
than in the case of the other networks, which, in the authors’ opinion, is a desirable feature in the case
of a limited input dataset.

The main contribution of the work is the evidence that a limited training set (in our case,
just 60 training frames) could be used for object detection, assuming an outdoor scenario with
well-defined conditions. The decision of which network will generate the best result for such a limited
training set is not a trivial task. In contrast to a previous study carried out [24], in our case, the Faster
R-CNN network obtained a better AP result for the same limited training sample, which suggests
that deep neural networks will achieve different levels of effectiveness depending on the amount of
training data. As part of the in-depth study, additional network tuning was conducted, considering
the results gained after the first stage of training. For the two analyzed networks (Faster R-CNN and
R-FCN), in each of the three cases (15, 30, and 60 frames), the precision parameter improved while the
recall parameter deteriorated.

5. Discussion

In this article, the authors presented a study of the effectiveness of power insulator detection in
digital images with the application of a limited training dataset. However, the detection efficiency is
also affected by other problems such as the following:

• Flat and limited (unidirectional) views of objects. For aerial photographs taken perpendicular to
the ground, objects of interest are relatively small and have fewer elements, mainly in flat and
rectangular form. They usually include shots from above, omitting many important features of
those objects in other planes.

• Large sizes of digital images. Currently, aerial imaging provides visual material at very high
resolutions, which allows capturing increasingly more details, but at the same time introduces
problems related to the use of sufficient computing power necessary to process them. These problems
are eliminated by applying various methods of pre-processing for aerial photography. However,
their proper selection requires a lot of research to determine the effectiveness of various solutions
dedicated to specific technical problems.

• Overlapping objects. Objects may be occluded by other objects of the same type, which causes,
e.g., inaccuracies when labeling data.
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• Replication of the same objects in different digital images. The same object can occur in two
separate images, which can lead to double detection and errors when recognizing objects in images.

Directions for further research include the verification of the results obtained in limited datasets
captured during other inspection flights and effectiveness analysis for other methods of detecting
objects in digital images. It is also appropriate to examine the influence of augmentation of images
used in the process of training a convolutional network on detection efficiency.
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