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Abstract: Modeling and simulation of the skeletal muscles are usually solved using the Finite Element
method (FEM) which, although accurate, commonly needs a complex mesh and the solution is not
processed in real-time. In this work, a meshfree model that simulates skeletal muscles considering
their functioning and control based on electrical activity, their structure based on biological tissue,
and that computes in real-time, is presented. Meshfree methods were used because they are able
to surpass most of the limitations that are present in mesh-based methods. The muscular belly
was modelled as a particle-based viscoelastic fluid, which is controlled using the monodomain
model and shape matching. The smoothed particle hydrodynamics (SPH) method was used to
solve both the fluid dynamics and the electrophysiological model. To analyze the accuracy of the
method, a similar model was implemented with FEM. Both FEM and SPH methods provide similar
solutions of the models in terms of pressure and displacement, with an error of around 0.09, with up
to a 10% difference between them. Through the use of General-purpose computing on graphics
processing units (GPGPU), real-time simulations that offer a viable alternative to mesh-based models
for interactive biological tissue simulations was achieved.

Keywords: musculoskeletal simulation; fluid simulation; GPGPU

1. Introduction

The skeletal muscles are some of the most important structures of the body; they make up more
than 50% of the human body and are the ones that generate movement and help maintain its figure.
These are composed of many fibers connected to various points of the bones through the tendons.
To generate a movement, an electrical stimulus generates a contraction in the muscle fibers, temporarily
increasing the force exerted on the tendons, and related bones.

Different approaches to simulating human tissue respond to different performance and functional
requirements. For example, interactivity is required for real-time applications, such as virtual surgery
simulators, but visual realism is more desirable in the entertainment industry. Moreover, biomechanical
accuracy is most crucial in designing medical applications. A notable example is in Computer-Assisted
Surgery (CAS), where a connection to biomechanics has helped by defining a theoretical and numerical
framework that provides information about the mechanics of the tissues after a clinical treatment
or surgical intervention [1]. CAS has addressed a larger spectrum of clinical domains such as
cardiology [2], neurosurgery [3], urology [4], and abdominal surgery [5]. For these applications,
biomechanics faces a new challenge since the involved tissues are required to move and be deformed
by stress generated by clinical actions. Moreover, soft tissues are difficult to model accurately since
they typically exhibit complex, time dependent, non-linear, inhomogeneous and anisotropic behaviors.
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Such models are very computationally demanding and are therefore limited to pre-operative use,
since the simulations often require many minutes or hours to compute. For clinical applications
interactivity is critical, and reduced computational times are essential.

The Finite element Method (FEM) is one common numerical approach used to simulate skeletal
muscles [6-11]. However, modeling of complicated 3D muscle geometries increases the complexity
of mesh generation for Finite Element (FE) analysis. Poorly built meshes lead to mesh distortion
and significant errors in the FE analysis. Standard FE approaches are still ineffective in handling
extreme material distortions, as it could occur in muscle deformations. In 3D subject specific models,
fiber direction is measured at each of the muscle pixel points, which need to be interpolated at the
integration points in FE model, which introduces additional approximation errors in the FE analysis.
Additionally, performance depends on the model’s mesh quality and complexity, and any change to
the mesh during the analysis represents an extra computational cost, which is a significant drawback.
Another complex step of FEM in electromechanics is the coupling between electrophysiology and
mechanics. Meshless approaches are a possible solution to address these limitations.

Meshless methods [12] have several advantages over the FEM, and as such have been used to
simulate a wide range of biomechanical phenomena. The work of Doweidar et al. [13] showed that
meshless methods have apparent advantages over the FEM in biomechanical problems dealing with
large strains, such as in the simulation of the human lateral collateral ligament and the human knee
joint. Furthermore, Zhang et al. [14] extended a meshless whose results confirmed the accuracy of
meshless methods to deal with highly demanding nonlinear hyperelastic biomaterials. Soft tissue
simulations have also benefited from the meshless formulation. Horton et al. [15] presented a meshless
method for computing the deformation of soft tissue. The model presented a speedup of 2 times the
speed of a hexahedral-based FE simulation, and a speedup of 3 times when compared to a similar
tetrahedral-based simulation.

In this work, a new particle-based meshless method to simulate skeletal muscle tissue was
introduced. The muscle tissue was simulated using a highly viscous fluid which preserves its shape
and volume, and it was controlled and deformed with the monodomain model and a biophysical cell
model. Both the fluid and the electrophysiology simulations were solved using smoother particle
hydrodynamics (SPH). We are focusing on creating simulations that can be used in interactive
applications, such as CAS, where the tissue is visualized in a virtual world, and it is able to respond to
interaction from the user in real-time. Specifically, the focus of this work is on the deformation and
internal pressure of the muscle tissue by using a biophysical model. In order for the simulation of the
muscle to be viable in such applications, the method was accelerated with the use of General Purpose
Computing on Graphics Processing Units (GPGPU), achieving real time simulations at more than
60 frames per second (fps). To evaluate the accuracy of this approach, a comparison of the meshless
method with a FEM implementation was made. Total pressure and displacement were compared,
having an error of around 0.09, with up to a 10% difference in the models.

2. Related Work

2.1. Skeletal Muscle Simulations

Muscles drive body movement and anatomically characterize body shape, making them a central
component of modeling animated human figures. Modeling the morphology of muscles requires
that their deformations are accurately depicted. To this end, several approaches have been presented,
including geometrically-based, and data-driven approaches. On the other hand, the simulation of
physiological muscle functions aims to identify the biomechanical controls responsible for human
motion. Estimating these muscle controls has been pursued through static and dynamic simulations.
Please refer to the work by Lee et al. [16] for a complete review of muscle simulations, and the several
models that exist that are used to model them.
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Researchers have developed increasingly sophisticated biomechanical models of individual
body parts based on skeletal muscles, such as hands [17,18], head and neck [19], legs [20],
facial animation [21-23], and the upper body [24]. However, even in the most detailed models,
such as the ones presented by Zordan and Lee [24,25], muscles are grouped and treated as single rigid
line objects, and their behaviour is computed following models such as the Hill muscle model [26,27];
which is a mechanically inspired simplification of the muscle’s behaviour based on mass-less spring
systems. Even more recent applications and models, such as the ones that can be implemented in the
OpenSim [28,29] software represent muscles as rigid lines, and focus on the analysis of movement, not
on the complete tissue deformation and internal force, which limit their application in simulations
such as CAS.

Specifically, for meshless skeletal muscle simulations, Basava [30] presented the meshless
Reproducing Kernel Collocation Method (RKCM) in context of nonlinear hyperelasticity. The method
was able to provide both computational efficiency and controllable accuracy for large scale problems.
Chen et al. [31] introduced the meshfree Reproducing Kernel Particle Method (RKPM) for 3D
image-based modeling of skeletal muscles. This approach uses pixel data obtained from medical
images which are used as nodes for domain discretization in the meshless modeling. Valizadeh et
al. [32] implemented a 3D patient specific leg-muscle pixel-based model using isogeometric analysis
(IGA) and the RKPM.

2.2. SPH for Biological Simulations

In recent years, SPH has become increasingly popular in computer graphics. It has been
successfully used for the simulation of various fluid phenomena, including: rigid and elastic
solids, deformable objects, spray, foam, tiny air bubbles, granular materials, and other complex
scenes that consists of millions of points [33-35]. Recently, SPH based methods have been used
to solve non-hydrodynamic partial differential equations such as the wave equation, the diffusion
equation, Maxwell’s equations and Poisson’s equation [36], as well as to solve electronic structure
calculations [37].

The extension of SPH to simulate biological structures was relatively sparse, with a few examples
of blood or biological fluids confined by meshes [36—40], simulations of a virtual liver [41], lips [42],
cartilage [43], and generic biological tissues [44].

Regarding the simulation of biological soft tissue with SPH, several works tackled the simulation
while exposing some advantages of using the method: Gastélum et al. [45] integrated the effect
of internal and external forces, and demonstrated the advantage of using SPH for large tissue
deformations; Palyanov et al. [46] used a variation of SPH, Predictive-Corrective Incompressible
SPH (PCISPH) to simulate different types of tissue, both solid and fluid, and introduced contractile
fibers based on mass-spring systems; Rausch et al. [44] used SPH to simulate tissue that experienced
large deformations and damage, to the point of failure. Most of these works results were in agreement
with analytical solutions, as well as with Finite Element Method (FEM) solutions.

These solutions do not consider biophysical models to control the activation and deformation of
the tissues. Additionally, the tissues are modeled using mass-spring, elastic, or stress-based models that
are not necessarily applicable to biological tissue simulations since they are non-volumetric methods
where spring elements connecting point masses must be tuned for each desired scenario [43]. This is
an issue present in many other works that simulate skeletal muscles. Current computational models of
skeletal muscle models typically focus on simplified phenomenological relationships mimicking the
overall (mechanical) behavior of a single skeletal muscle.

3. Materials and Methods

In order to simulate skeletal muscles, specifically the muscle belly, the SPH method, in conjunction
with Shape Matching (SM) [47] and the monodomain model [48], were proposed. The base structure of
the tissue is composed of a particle based highly viscous fluid. The use of SM with a velocity correction
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scheme, similar to the one presented by Takahashi et al. [49], allows the tissue to maintain its shape,
and guarantee the conservation of volume, while avoiding the use of additional elastic or stress models.
This will allow the fluid to behave as a deformable solid, showing deformations based on the activation
of the tissue from an electric stimulation.

By using the monodomain model, an electric stimulation that innvervates the tissue is used to
calculate an electric potential. Since the electric potential can be considered as pressure in hydraulic
systems [50-52], the resulting electric potential will be considered in the pressure force calculation of
the fluid simulation, and the changes in pressure of the fluid will in turn deform the tissue. With this
proposed method, the particles will move from a high pressure area to a low pressure area, and effects
such as the bulging of the muscles will be present because of this movement. SPH will be used to solve
both the fluid dynamics, and the monodomain model.

3.1. SPH Method Description

SPH is an computational method using particle systems that is used to simulate the mechanics
of media such as solid mechanics or fluid dynamics. According to Muller [53], a scalar quantity A is
interpolated at location r by a weighted sum of contributions from all particles:

Zm (r—rj,h), 1)

where j iterates over all other particles, m; is the mass of particle j, 7; its position, p; the density, and A;
the field quantity at r;. The function W(r, 1) is called the smoothing kernel with core radius /.

While the mass m; is constant throughout the simulation, the density p; varies and needs to be
evaluated at every time step: through substitution of p into Ag in Equation (1) we get, for the density
at location r:

ZmZJWr—r Em r—r (2)
When considering the SPH method, derivatives only affect the smoothing kernels. The gradient
of A is simply
Aj
VAg(r Zm] p]VW(r—r/,h), (3)
j ]

while the Laplacian of A evaluates to

A4
VZAs(r) = ijp%vzwu —1j,h). (4)
j ]

3.2. SPH Applied to Fluid Simulations

In the Eulerian formulation, fluids are characterized by a velocity field v, a density field p and
a pressure field p. The progression of these fields over time is given by two equations. The first
guarantees the conservation of mass

dp _

while the Navier-Stokes equation defines the conservation of momentum

dv
p(5; +v V) = =Vp+pg+uV?, 6)

where g is an external force and p the viscosity of the fluid.
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Using particles instead of a grid based formulation, Equation (6) can be expressed as
plal — fipTESSMTE + figxtgrngl + fiUiSCDSity’ (7)
where a; corresponds to the acceleration of particle 7 and is integrated using the Leap-Frog scheme [54]:

Vi+% = Vl.i% + Ata;

®)
=11+ Atvl‘, .

Nf—=

The time step size At that will be used must be adapted by the Courant-Freidrich-Levy
condition [55]:

At<04 4 ©)

7
||Omax||

where d is the particle diameter, and v,y is the maximum particle velocity.
Substituting Equations (3) and (4) into the pressure and viscosity terms of the Navier-Stokes
equation and solving according to Miiller et al. [53] yields:

4 p;
flpressure = — Zm] pzz ‘p] Vw(ri — I, h)/ (10)
PP
f?iscosity _ Z Hi + Hjm‘Vj Vi VZW(I'{ —1 h) (11)
; 7 7

7 5.
P2 Pi

where p is the pressure, v the velocity, and u the viscosity coefficient. The pressure p; of particle i is
computed via the modified gas state equation suggested by [56]:

pi = k(pi — po), (12)

where py is the rest density, and k is a stiffness constant that scales the pressure, and, thus, the pressure
gradient and the respective pressure forces [34].

SPH Smoothing Kernels for Fluid Simulations

Stability, accuracy, and speed of the SPH method rely upon the choice of smoothing kernels.
For fluid simulations Miiller et al. [53] designed the following kernel

h) = '
polys (/1) 647th° | 0 otherwise o

2 _ 233
W 315 {(h -3 0<r<h
Unfortunately, if this kernel is used for the calculation of the pressure forces, particles build
clusters under high pressure, and as they get close to each other, the repulsion force vanishes because
the gradient of the kernel approaches zero. Desbrun [56] solved this issue by using a spiky kernel with
a non vanishing gradient near the center. That kernel generates necessary repulsion forces in pressure
calculations and is defined as:

Wspiky (r,h) = (14)

15 [(h—r)® 0<r<h
7Th®

0 otherwise

Viscosity is caused by friction and, thus, should only have a smoothing effect on the velocity field.
However, if a standard kernel is used for viscosity, the resulting viscosity forces do not always have

this property. For this reason, for the computation of viscosity forces, Miiller et al. [53] proposed a
third kernel:
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inscosity(r/h) (15)

15 [t n+fE-1 0<r<h
21k ) o

otherwise

3.3. Bidomain Model

One of the most common approaches for modeling the electrical activity of biological tissues [10],
which do not describe the electrophysiology of a single cell, is to solve the bidomain model [57]. It is the
most complete description of electrical activity for biological tissue. It describes both the intracellular
and extracellular potential fields, linking them through membrane behavior. The bidomain model,
together with precise models of cell membrane kinetics, is generally accepted to provide a reasonable
foundation for numerical simulations of electrophysiology [58].

The basic bidomain equations [48] are given by

X(Cma;/;n"i'liun) -V (Uiv(Vm‘f‘(Pe)) = ISi/ (16)
V- ((0;i+0e)Ve +0;VVy) = I, (17)

where 0; and 0, are respectively the intracellular and extracellular conductivity tensors, yx is the surface
to volume ratio of the cardiac cells, ¢, is the extracellular potential, C, is the membrane capacitance
per unit area, V;, is an electrical potential, I;;, is the ionic current, I, is the external stimulus applied to
the intracellular space, and I, is the external stimulus applied to the extracellular space. The ionic
current I;,, is calculated using an electrophysiological cell model.

Monodomain Model

Considering that the bidomain model is composed of a complex Partial Differencial Equation
(PDE) system, it is assumed that the intra and extracellular domains have equal anisotropy ratios to
obtain a simplified model called the monodomain model [48]. The monodomain model is entirely
written in terms of the transmembrane potential, defined as the difference between the intra and
extracellular potentials. It is given by

v,
X<C’"atm + 1i0n> =V-(cVVp), (18)

where ¢ is a conductivity tensor given by
o = oi(o; + o) Lo (19)

3.4. Tissue Simulation

The main idea for the viscoelastic tissue is similar to the work by Takahashi et al. [49]: to simulate
volume preserving viscoelastic fluids, the volume preservation and the viscoelasticity are dealt with
indepentently. A velocity correction for viscoelastic effects based on SM is used, while volume
preservation accomplished by enforcing the incompressibility of fluid using SPH.

Particle velocities are corrected to describe viscoelastic effects without changing particle positions.
In order to obtain intermediate velocity ¥; for particle i as an input for SPH, the predicted velocity v**
is computed first with all forces F?dv (external and gravity) excluding viscoelastic and pressure ones:

adv

V?d” =v;,+ At—1—, (20)
m;
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where m; is the mass of each particle. Then, the particle’s velocities are corrected with the velocity
correction vector Av; (which is obtained via a Shape Matching Scheme):
Vi = V?d” + Av;. (21)

Finally, the unknown factor (X) SPH method, XSPH [55] is used to reduce particle oscillations
with V;} =V — V]’.‘, and a velocity mixing parameter (0 < ¢ < 1):

ey
v, = V;k +¢€ Z ?]VZWU (22)
j

For the viscous fluid simulation, the use of the smoothing kernels mentioned by Muller [53]
is proposed.

Shape Matching Scheme

In Shape Matching [47], particle i is pulled toward its goal position g; to restore the original
configuration of the particles, and individual goal positions are computed to match the original
configuration of the particles defined by x? with current particle distributions denoted as x; after the
particles are transferred. With the goal positions, a velocity correction vector Av; with a coefficient for
the shape matching velocity correction k;(0 < I; < k; < 1) and /; the lower limit of k;:

Av; = k; ng_t"". (23)

3.5. Muscle Tissue Properties

Incorporating the skeletal muscle’s properties is fundamental for the correct functioning of the
model. For the case of the proposed cell model used, the values need to correctly simulate the current
propagation throughout the tissue. The values proposed for the monodomain model are based on
the work of Rohrle et al. [10]; for the cell model used, the parameters are based on Nickerson [59].
These values can be seen in Table 1.

Table 1. Values for the cell model, and the monodomain equations.

Variable Value Description

X 50 mm~! Surface-to-volume ratio
Cm 0.01 Membrane capacitance

o; 0.893 mSmm ! Internal fiber conductivity
Oe 0.67 mSmm 1 External fiber conductivity
Toxt 8000 pwA /mm? External stimulus current
V, —85.0mV Resting Potential

Vp 15.0 mV Plateau Potential

Vin —75.0 mV Threshold Potential

G 0.175 pA mm—2 Excitation rate constant
G 0.03 pA mm—2 Excitation decay constant
b 0.011 ms~! Recovery rate constant

d 0.55 ms ™! Recovery decay constant

For the density of the muscle belly, muscle architecture reports usually do not directly measure
muscle density [60]. Instead, several studies [61,62] use the value 1.0597 g/ c¢m?, which was obtained
from rabbit and canine muscle tissue [63]. However, it was inaccurate for several reasons. First,
a species effect could exist so that rabbit or canine muscle density differs from human muscle density.
Second, the method and duration of fixation may cause shrinkage and thus dehydration, which alters
muscle density. Ward et al. [60] determined, through various experiments, that studies should instead
use a value of 1.112 g/cm? for muscle density. As for the viscosity of the fluid, a coefficient of
15 Nm s [64] was selected.
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Muscle fiber architecture is essential when considering muscle deformation. For this simulation,
each particle has a direction vector that represents the fiber direction of the muscle fibers. The vectors
are oriented following a line of action from the origin to the insertion of the muscle.

3.6. Monodomain Solved with SPH

The solution of the bidomain equations is usually done using standard FEM, or finite-difference
(FD) methods. However, since the discretization of an object generates a mesh with many millions
of nodes, the linear systems resulting from FD or FEM methods are very large. Several meshless
methods have established the ability to provide a computational feasible model without the burden of
mesh generation [65]. For this work, SPH is proposed to numerically solve the monodomain model

of electrophysiology.
The monodomain model can be written as:
aV, 1 (1
T;ﬁ = Gﬂ(){(VUVVm) _Iion+18xt>r (24)

where I,y represents the stimulus current that is applied to the tissue.
Applying the SPH formulation [53] to the rewritten monodomain Equation (24), and using XSPH
to reduce particle oscillations with ¢ = 1 yields:

an . 1 o Vm,j - Vm,i 2
7 N Cm<?(<;m7()]v W(l‘—l‘],h) _Izon+lext . (25)

The second derivative of the kernel, which is necessary to solve Equation (25), is the following:

s 59 0<g<1
W”(r—rj,h):h—j 32-q) 1<g<2. (26)
0 otherwise

For time integration, a forward Euler method was used:

Ynt+1 R Yn + Atf (yn, tn). (27)
3.7. Activating and Deforming the Muscle

In order to control the activation of the muscles, the use of the Fitzhugh-Nagumo model [66,67]
was proposed to control the propagation of electrical activity in the monodomain model. Once the
muscle is activated, and a transmembrane potential is calculated, a way to deform the muscle is needed.
Since the muscle bellies are going to be simulated using highly viscous fluids, and considering that
transmembrane potentials can be considered as electrical pressure, the calculated transmembrane
potentials were added to the pressure force term of the fluid simulation. Since the fluid moves from
areas of high pressure to areas of low pressure, by increasing the pressure the tissue is forced to move
in a given direction. After the particles’ velocity is calculated as part of the SPH fluid simulation step,
the unit vector of the velocity and the direction vectors of the fibers are added, and then weighted by
the magnitude of the velocity to calculate the direction of the contraction or expansion. To control the
innervation of the muscle, a stimulus current L.y is applied to specific sections of the tissue: when the
current is applied, the transmembrane potential increases, and thus the pressure is increased. When
the stimulus current is removed, the transmembrane potential and the pressure begin to decrease,
relaxing the muscle and allowing it to return to its original shape.
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3.8. Gpu Considerations

Even though the proposed methods have been used to create real-time simulations of several
deformable objects, in order to be able to simulate objects with much more detail, in the form of several
thousands of points, or simulate many objects at the same time, the use of GPGPU is proposed.

Since the SPH method is going to be used to solve both the viscous fluid dynamics, as well as
the monodomain model, special attention will be given to its implementation on a GPU. The main
bottleneck for the parallelization of the method is the neighbor search step. For this work, the approach
taken by several authors [68-70] will be used.

3.9. Implementation

The proposed methods were applied to develop a simulation of the long head of the triceps
brachii and the vastus lateralis. The focus of the simulations were the contraction and expansion of
the muscle activated by the biophysical model, giving special attention to the displacement, pressure,
and processing time. The muscle geometry for the simulations was obtained from the BodyParts3D
database [71], a dictionary-type database for anatomy in which anatomical concepts are represented
by 3D structure data that specify corresponding segments of a three-dimensional whole-body model
for an adult human male. The geometry was used as a “container” reference to initialize the particles
that were used for the simulation.

To assess the accuracy of the proposed SPH-based model, another model that uses FEM was
simulated for the same geometries, and results were compared for the displacement of the geometry,
and the pressure generated by the tissue. The root mean squared error (RMSE) was used to compare
the results of both methods. The error is defined by

(28)

where 7 is the value predicted by the SPH method, and y is the value predicted by the FEM method.
For the displacement, the resulting deformed mesh by both methods is compared. For the pressure,
the total average pressure of the tissue by each method was calculated and then compared.

For the SPH method, 2 types of simulations were developed: one using only the CPU for
processing, without any parallel processing; another using GPGPU. For the FEM simulation, only a
CPU version was developed. The simulations were tested using the following setup, as shown in
Table 2:

Table 2. Specification for the computer where the experiments were conducted.

Component Specification

Processor 12x Intel(R) Core(TM) i7-5820K CPU @ 3.30GHz

Memory 16 GB

Operating System Ubuntu 16.04.3 LTS

GPU GeForce GTX TITANX 3072 CUDA Cores @1.08 GHz, 12GB Memory

3.10. SPH Simulation

The meshless simulations were developed using C++, CUDA for GPGPU processing,
and rendered using OpenGL. For particle number, several values were proposed: 2231, 4944, 9888,
and 18475. For the core radius &, the values of 0.02, 0.04, and 0.08 were selected. For the cell sizes,
the values of 0.02, 0.04, 0.08, and 0.16 were selected.

The block and thread configuration for the GPU kernels launch was set to 128 threads, and 145
blocks. This was found to be the configuration that produced the best performance when considering
execution time, occupancy, memory bandwidth, and compute resources utilization.
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To optimize the neighbor search step of the algorithm, a grid of size 2h was selected. The choice
of a cell size double the size of the core radius was because of stability concerns: for the complex
geometry of the muscle tested, if the cell size was the same as the radius, the particles would begin
to vibrate and eventually collapse by breaking the geometry and moving erratically throughout the
simulation space. While the added size for each cell increases the amount of particles that contribute
to the approximation and thus help calculate a more accurate value of a property, the computational
time was also increased.

Meshless simulations consisted on two phases: one where specific parts of the tissue were
innervated with a stimulus current, and one where the stimulus current was removed. The purpose
of the first phase was to test the effects of the stimulation current on the tissue, and try to simulate
a contraction on the tissue. The second phase would allow the tissue to return to its original shape.
Each phase ran for 250 time-steps.

3.10.1. Integration of SM, SPH, and Monodomain

With the transmembrane potential calculated using the monodomain model, the pressure force
of the fluid was altered in order to simulate a contraction of the muscles. Since several steps of the
model rely on SPH to calculate different properties, special care was taken to use the cycles of the
SPH algorithm as best as possible. For this work, three SPH cycles were needed: to calculate the
intermediate velocity; to calculate the pressure and density; and to calculate the pressure and viscosity
forces, as well as the transmembrane potential.

The GPGPU version of the SPH algorithm did have additional constraints regarding how data
was managed and processed. The SM section of the algorithm had no special considerations, and was
“Embarrassingly Parallel”, that is, the same tasks were performed for each particle, and no special
considerations or algorithms had to be considered besides thread synchronization.

A simple requirement to produce a better performing solution was to arrange data in a Structure
of Arrays (S0A) manner to achieve memory coalescing. Each property of the simulation, from the
position of the particles to their transmembrane current, were assigned to a one-dimensional array
(the arrays were device arrays, that is, arrays whose data is only available on the graphics card itself),
and the simulation data was stored sequentially.

3.10.2. Point-Based Tissue Simulation

The ends of the muscle geometry were fixed in space to emulate the origin and insertion of the
muscle belly. For the first phase, the stimulation current was applied to the particles at the ends of the
muscle geometry for 250 time-steps. The transmembrane potential of each particle gradually increased
as the Ionic current was propagated throughout the tissue, and the particles of the muscle moved
towards regions of lower pressure. For the second phase, the particles that had been innervated had the
stimulation current removed and the tissue was allowed to return to its initial configuration. Figure 1
shows the displacement in millimeters of the triceps using the 18,475 particle resolution, while Figure 2
shows the displacement for the vastus lateralis with the same particle resolution.
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(A) (B) ©
Figure 1. Integrated point-based tissue model for the triceps. (A) shows the initial state of the tissue,
(B) shows the muscle after being innervated with a stimulus current, and (C) shows the muscle
returning to its initial shape after the current was removed. The color of the particles represents its
displacement with respect to its original position.

(A) (B) ©
Figure 2. Integrated point-based tissue model for the vastus lateralis. (A) shows the initial state of the
tissue, (B) shows the muscle after being innervated with a stimulus current, and (C) shows the muscle
returning to its initial shape after the current was removed. The color of the particles represents its
displacement with respect to its original position.

3.11. FEM Simulation

To evaluate the performance of the proposed method, the FEM simulation was developed using
the software framework FEBio [72], and results were compared for the deformation and the pressure
within the tissue. Particularly, the model was the one introduced by Blemker and Delp [7]. Muscle is
modeled as a fiber-reinforced composite with transversely-isotropic material symmetry. The model
uses an uncoupled for of strain energy to simulate the nearly-incompressible behaviour of muscle
tissue. This model was selected because it is capable of representing complex muscle geometry and
architecture from MR images, it considers muscle fiber orientation and arrangement, and the predicted
muscle shape was compared to MR images of the same movement, obtaining less than 5 mm of
distance error for large muscles. The parameters used with the model can be seen in Table 3.
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Table 3. Properties used for the material model solved with the Finite Element Method (FEM).

Property Value Description
Density 1112 kg/cm? Density of the tissue
Gy 500 Pa Fiber shear modulus
Gy 500 Pa Cross shear modulus
K 1 x 10° Pa Bulk modulus
P 0.05 Exponential stress coefficients
Lofl 10.7 cm Optimal fiber length
omax 3 x 10° Pa Maximum isometric stress
o 1 Activation level

One of the drawbacks of the FEM is the preprocessing steps needed before any computation can be
performed. In this case, a mesh with finite elements had to be created, and muscle material properties,
including fiber distribution, were integrated. Boundary conditions were similar to the meshless
simulation: the ends of the tissue were fixed in space. A tetrahedral mesh was used, and six resolutions
were selected: 1 thousand, 2 thousand, 5 thousand, 10 thousand, 20 thousand, and 40 thousand
finite elements. Figure 3 shows the mesh with around 40 thousand tetrahedral elements for the
FEM simulation.

FEM simulations consist on the geometry being activated for 250 time steps, and then removing
the activation and running for 250 time steps. A step size of 0.001 was selected to avoid convergence
errors. As for boundary conditions, we selected 10% of the nodes around the origin and insertion of the
muscles, respectively, and fixed their displacement in X, Y, and Z. A pressure load of 200 Pa was applied
using a load curve, which ramps the pressure value from zero, to the rest of the nodes. Fiber direction
was created similarly to the meshless solution: instead of each particle having a direction, each node
had a direction vector which represented the fiber direction. Figure 4 shows the deformation in
millimeters of the triceps using the 40 thousand node resolution, while Figure 5 shows the deformation
of the vastus lateralis for the 40 thousand node resolution.

(A) (B)

Figure 3. Tetrahedral elements for the triceps and the vastus lateralis. (A) shows the tetrahedral

elements for the triceps, while (B) shows the tetrahedral elements for the vastus lateralis.
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(A) (B) (€)

Figure 4. FEM based tissue model for the triceps. (A) shows the initial state of the tissue, (B) shows the
muscle after being innervated, and (C) shows the muscle after the current is removed.

(A) (B) ©
Figure 5. FEM based tissue model for the vastus lateralis. (A) shows the initial state of the tissue,

(B) shows the muscle after being innervated, and (C) shows the muscle after the current is removed.
4. Results

Results are presented as follows: first, a quantitative comparison against the FEM solution for the
displacement and the pressure is presented; then the stability of the SPH method is discussed; finally,
the computation times for the different simulations are reported. The results are from the GPGPU
simulation, even though the CPU simulation also yielded similar results but with a larger processing
time per step. We also report the speedups obtained by using GPGPU. Speedup is a number that
measures the relative performance of two systems calculating the same problem. In this case, it is
the improvement of speed of execution when using a GPU vs using a CPU. The speedup is usually
dimensionless. In this case, it means that the GPU version ran from 150 to 250 times faster than the
CPU version.

4.1. Sensitivity Analysis

For the SPH method, a simulation for each of the proposed particle numbers, kernel, and cell sizes
was developed. Similarly for the FEM, a simulation for each of the node resolutions was developed.
Each of the simulations were paired against each other to calculate the RMSE. Figure 6 shows the
average error for all the FEM resolutions against the different particle resolutions by kernel and cell
size for the triceps, while Figure 7 shows the average error for the vastus lateralis. It can be seen that
the kernel and cell size selection is critical when considering the accuracy of the model. In this case,
when those value were set to 0.08 and 0.16, and to 0.08 and 0.08, the model presented to greatest error.
This could be attributed to the fact that too many particles were present at a given neighborhood,
and particles that should not have contributed to updating a property were updating it. This also
explains the results for the 0.02 and 0.04, and the 0.02 and 0.04 configurations, where too few particles
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were contributing to updating the properties. Since the 0.04 kernel and 0.04 cell size produced the least
error with respect to the FEM, for the rest of the results this choice of parameters was used.

To get a better understanding of the deformation and the pressure of the tissue, additional
considerations were taken. The muscle belly was divided into three regions: one around the origin
of the muscle, another around the insertion, and the last comprised the rest of the muscle. From
the origin and insertion, respectively, 20% of the tissue was selected to form each of the respective
regions. The region at center of the muscle belly comprised the remaining 60%. Additionally, for the
displacement, different coordinate planes were considered to analyze the deformation of the tissue
along those planes. Figure 8 shows the average error for each of the regions, and their respective
planes for the deformation of the triceps, while Figure 9 shows the average error for the vastus lateralis.
In this case, when more particles are used for the simulation, the error is reduced considerably at the
expense of additional processing time. For example, when comparing the error produced by the xy
coordinate plane on the center region for the 2k and 18k particle resolutions, the difference is more
than 80%.

14 45
——
4

% -2k % -2k
z ——dk g 2 ——dk
9k 15 9k
e 18k e 18k

1

05

0 0

0.08,0.16 008,008 004008 004004 002,004 002002 0.08,0.16 003,008 004,008 004004 002 004 0.02,002
Kemel - Cell Size Kemel - Cell Size

Figure 6. Average error for all the FEM resolutions for the triceps. (A) shows the average displacement
error for all particle resolutions. (B) shows the average pressure error for all particle resolutions.
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04 ok 15 9k
e 18k 1 e 18k
02
05
0 0
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Figure 7. Average error for all the FEM resolutions for the vastus lateralis. (A) shows the
average displacement error for all particle resolutions. (B) shows the average pressure error for
all particle resolutions.
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Figure 8. Average error for all the FEM resolutions for different regions for the triceps. (A) shows the
average displacement error for all particle resolutions. (B) shows the average pressure error for all
particle resolutions.
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Figure 9. Average error for all the FEM resolutions for different regions for the vastus lateralis. (A)
shows the average displacement error for all particle resolutions. (B) shows the average pressure error
for all particle resolutions.

4.2. Displacement and Pressure Analysis

For the analysis of the displacement and the pressure, only one node configuration for FEM,
and one particle configuration for the meshless method are presented. The FEM configuration was 40k
nodes, while the meshless was 18k particles, with 0.04 cell size and kernel. These were chosen since
more FEM nodes lead to better accuracy, and because with 18k nodes the error was the lower from
all the tested configurations. It is worth noting that the results were similar for all the configurations,
but with a larger error.

The mean displacement of the meshless and FEM simulations of the triceps can be seen in
Figure 10, while Figure 11 shows the mean displacement for the vastus lateralis. Figure 10A shows
the displacement for the contraction part of the simulation for the triceps (Figure 11A shows the same
information for the vastus lateralis), while the displacement for the expansion part can be seen in
Figure 10B (Figure 11B for the vastus lateralis). The area of the tissue that presented the most change
was around the center, not only because it was the largest section, but also because the pressure exerted
by the model made it so that the particles moved towards that direction. When both models were
compared, a difference of around 10% was present throughout the simulations. Another point that
became apparent was that the meshless simulation was not entirely stable when compared to the FEM
simulation: the displacement of the model was not smooth and the data shows slight noise throughout.
This was also apparent, if ever so slightly, in the rendered simulation: particles would oscillate while
moving, creating visual artifacts. Contrary to the contraction of the tissue, where the displacement
increased constantly, the expansion had a few moments, from time step 0 until around 50, where it
experienced almost no change and then the displacement began to reduce constantly.
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Figure 10. Mean displacement of the triceps. (A) shows the mean displacement for the contraction

step, (B) shows the mean displacement for the expansion step.
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Figure 11. Mean displacement of the vastus lateralis. (A) shows the mean displacement for the

contraction step, (B) shows the mean displacement for the expansion step.

4.3. Stability and Deformation of the Model

The stability and deformations of the model depended mainly on the cell size, the core radius,
and the number of particles. Deformation ranges were also similar. When the cell size and the
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core radius were set to 0.02 and 0.02, and to 0.02 and 0.04, the particles moved an average of 7%
from their original positions. This behavior is due to an insufficient number of neighbor particles
in each cell. Deformations became noticeable when the cell size and the core radius were set to 0.04
and 0.04, with a deformation of an average of 23%. This value ranged from around 20% to 26%
depending on the number of particles; the simulation with 18475 particles yielded the 26% average
deformation. This result is the closest to the 28% of optimal length during contraction that was reported
by Murray et al. [73]. When the cell size and core radius were set to 0.08 and 0.04, there was an average
deformation of 37%. When the cell size and the core radius were set to 0.08, the particles deformed
more than 70% from their original configuration, also presenting visual artifacts. Finally, the simulation
became unstable in less than 100 time steps when the cell size was increased to 0.16 and the core radius
was set to 0.08. The geometry deformed more than 70%, with several artifact forming before losing
the shape completely. The FEM simulation, in contrast, did not present any instabilities, and also got
closer to the 28% average deformation when more nodes were considered.

4.4. Computation Time

Using the GPU, the computation time was considerably sped-up when compared to the CPU
version. The results for the average computation times for each of the algorithm steps, and for each of
the particle sets are presented in Figure 12.

The average times and speedups were reported for each of the main methods of the algorithm in
order to showcase the differences in their performance. For the average times in Figure 12, the functions
that calculated the corrected velocity, the cell model, and updated the properties performed the
best since simple calculations on each element of the data sets were executed; they did not have
constructs such as if-then blocks which lead to thread branching, and did not involve the more complex
SPH method.
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Figure 12. Average times for the muscle tissues with 18,475 particles. (A) shows the average time for
the triceps, (B) shows the average times for the vastus lateralis.

These simpler methods, however, did not gain much from being parallelized using GPGPU, as can
be seen from the obtained speedups in Figure 13. The function that gained the least speedup was the
calculation of the corrected velocity, with an average speedup of 8. The calculation of the cell model
had an average speedup of 15.473, while the updating of the properties achieved an average of 14.887.
Even though the search for neighbors for the GPGPU version was more elaborate when compared to
the CPU version, it also was not sped up by much, having an average speedup of 9.715.
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Figure 13. Average speedups for the muscle geometry with 18475 particles. (A) shows the average
speedups for the triceps, (B) shows the average speedups for the vastus lateralis.

The functions that took the longest to compute, even while using GPGPU, where the ones that
implemented the SPH method. These functions, specially the one that computes the forces took,
in some cases, more than two orders of magnitude more than the previously discussed simpler
functions. However, since these functions are more elaborate, the contribution of using GPGPU
was more noticeable. The intermediate velocity calculation was sped up by an average of 102.667,
the computation of forces was speed up by an average of 151.551, while the calculation of the density
and pressure by an average of 283.354. These results are dependent on the types of calculations
and blocks that are involved in each function. The calculation of density and pressure had the most
speedup since the executed operations were limited to additions and multiplications.

The average speedups for all cell and radius sizes of the kernels that implemented the SPH
method can be seen in Figure 14. As more particles were involved in the calculations, the speedup for
each kernel was larger, indicating that the SPH method benefited more with the use of GPGPU when a
larger number of particles was involved in the calculations.
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Figure 14. Average speedups obtained for each kernel and each particle set. (A) shows the average
speedups for the triceps, (B) shows the average speedups for the vastus lateralis.

Finally, it is worth noting that the computation times for the FEM were much higher than those
for the SPH method. In particular for the 40 thousand node resolution, it took around 2 h to compute
500 time steps. Figure 15 shows the average speedup when comparing the CPU version of the SPH
method to the FEM simulation. The FEM times could be improved if another platform that solved the
equations in parallel was used, such as OpenCMISS [74]. Although there are several commercial FEM
solvers, to our knowledge there are not many commercial FEM solvers that use GPUs. So far, the FEM
model was only solved using CPU, and we plan to later run the model in GPU to more accurately
compare the proposed model’s execution time.
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Figure 15. Average speedups for smoothed particle hydrodynamics (SPH) kernels when compared to
FEM using CPU.

5. Discussion

Even though SPH and Shape Matching had already been used to simulate viscoelastic fluids,
to our knowledge, this was the first time a viscoelastic fluid was used in conjunction with a biophysical
model, specifically, the monodomain model, to simulate biological tissue. Additionally, the use of SPH
to provide an alternative mean to solve the monodomain model was implemented and used in the
presented simulations. To our knowledge, this was also the first time the monodomain model was
solved with SPH.

According to the results obtained, the following contributions of this research can be highlighted:

* Biological tissue simulation. Most of the previous work related to the simulation of biological
tissue used methods such as FEM. However, the definition and pre-processing of the mesh,
in addition to the high computational cost, even with the use of GPGPU, made the method
less than ideal for real time simulations. Here, an alternative mean to simulate biological
tissue was presented. In this case, a skeletal muscle was simulated by using a skeletal muscle
geometry and a specific activation model. By changing the geometry and the constitutive model,
different biological tissues could be simulated. Since SPH was used to simulate the tissue,
an integration with other particle-based models is also possible; for example, the inclusion of
blood in the tissue.

¢  Solution of the monodomain model with SPH. The monodomain model was usually solved
with FEM or the FDM. The use of GPUs was also explored to speed the simulations up. Here,
the model was solved with SPH, which is also paralellizable with GPUs, and the results were
similar to the ones of a simulation with the FDM. These results show that biophysical models can
be solved with the SPH method, and that the solved properties can be easily included in a more
complex model.

¢  Tissue deformation. The focus of this work was on the deformation of the muscle tissue by using
a biophysical model. In order to apply the transmembrane potential to the tissue, and deform it,
the potential was considered as a force of pressure that acted on the fluid. Since the fluid, and in
this case, the tissue, flows from regions of high pressure to regions of low pressure, the added
pressure made it so that the tissue contracted in a given direction when a stimulus current was
applied, or it relaxed to its original shape when the current was removed. If the model were to
be used in simulations, additional external forces could be applied to the tissue, and it would
appropriately respond because it preserves volume, and the internal pressure force would change
and deform the tissue. To our knowledge, this was the first time that such a model was used.
The proposed method was able to achieve a contraction of around 23%, which is similar to the
achieved contraction of a muscle. Additionally, the RMSE for the simulation was low when
compared to a FEM simulation that has proven to be reliable to simulate skeletal muscles.
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e Achieved real time simulations. In order for the model to be viable in interactive simulations,
it had to be able to be simulated in real time, at least 30 FPS. The CPU version, with around 9888
particles, was able to run in real time; at an average of 27.5 FPS for the mesh-based simulation.
If 18,475 particles were simulated in CPU, an average of 3.7 FPS were obtained for the mesh-based
simulation. In order to get a more detailed tissue, and to be able to simulate more than one,
the use of GPGPU was proposed. The GPU version, with 18,475 particles, ran at 70.125 FPS for the
mesh-based simulation. Even though the achieved speedups for FPS were not as high, speedups of
more than 250 were achieved for specific parts of the method. Additionally, different techniques,
such as reducing the neighbor search space, were used to reduce the computational complexity of
the model.

In spite of the advantages of the method, there were several concerns that had to be worked around.
The first was that some of the values, specifically the parameters for the elasticity, viscosity, and stiffness
of the tissue, were obtained experimentally. Then, for the GPU version, the use of expensive arithmetic
operations, such as divisions, hindered the performance of the simulation. Additionally, the algorithm
had branching paths that were mostly idle, which also caused the performance to be lower.

Next, the model created visual artifacts in the simulation: when the cell size or the core radius
were larger than 0.08, the particles would clump up at different points of the tissue, instead of returning
to their original position. The clumps of particles was also the cause for the reconstructed mesh to have
holes. By analyzing the particles’ properties in those areas, it could be seen that they were activated
more than in other areas.

Finally, the accuracy and stability of the model could be considerably improved. To improve the
accuracy of the simulation, the bidomain model could be used instead of the monodomain model.
Different versions of SPH have been developed to address these issues [75], and such modifications
could also be considered to improve the model.

Future Work

Even though a novel muscle model was presented, there is still work to be performed before it can
really be used to replace a muscle in a simulation. Some of the areas of opportunity include: using the
bidomain model instead of the monodomain model for increased precision; fine tune the parameters
to increase stability; redesign the GPU implementation to avoid thread divergence. Additionally,
this work serves as the base for further muscle simulations; for example, using a GPU cluster to
simulate, in real time, all the interacting tissues of the arm and forearm, including bone or ligaments,
and even simulate a specific movement of the arm. Finally, force production also has to be considered
so that the model can be compared to other established models. Currently, the model was focused on
deformation and internal pressure, but force production is essential for muscle and joint movement,
and will be considered in future iterations of the model.
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