iriried applied
L sciences

Article

SARA: A Microservice-Based Architecture
for Cross-Platform Collaborative Augmented Reality

1,2,% 1,2

Diego Vaquero-Melchor and Ana M. Bernardos 12 and Luca Bergesio

1 Information Processing and Telecommunications Center, Universidad Politécnica de Madrid,

28040 Madrid, Spain; abernardos@grpss.ssr.upm.es (A.M.B.); luca.bergesio@grpss.ssr.upm.es (L.B.)
2 ETSI Telecomunicacién, Av. Complutense 30, 28040 Madrid, Spain
* Correspondence: diego.vaquero@grpss.ssr.upm.es

check for

Received: 15 January 2020; Accepted: 16 March 2020; Published: 19 March 2020 updates

Abstract: Augmented Reality (AR) functionalities may be effectively leveraged in collaborative service
scenarios (e.g., remote maintenance, on-site building, street gaming, etc.). Standard development
cycles for collaborative AR require to code for each specific visualization platform and implement
the necessary control mechanisms over the shared assets. in order to face this challenge, this paper
describes SARA, an architecture to support cross-platform collaborative Augmented Reality
applications based on microservices. The architecture is designed to work over the concept
of collaboration models which regulate the interaction and permissions of each user over the AR
assets. Five of these collaboration models were initially integrated in SARA (turn, layer, ownership,
hierarchy-based and unconstrained examples) and the platform enables the definition of new ones.
Thanks to the reusability of its components, during the development of an application, SARA enables
focusing on the application logic while avoiding the implementation of the communication
protocol, data model handling and orchestration between the different, possibly heterogeneous,
devices involved in the collaboration (i.e., mobile or wearable AR devices using different operating
systems). to describe how to build an application based on SARA, a prototype for HoloLens and iOS
devices has been implemented. the prototype is a collaborative voxel-based game in which several
players work real time together on a piece of land, adding or eliminating cubes in a collaborative
manner to create buildings and landscapes. Turn-based and unconstrained collaboration models
are applied to regulate the interaction. the development workflow for this case study shows how
the architecture serves as a framework to support the deployment of collaborative AR services,
enabling the reuse of collaboration model components, agnostically handling client technologies.

Keywords: augmented reality; mixed reality; multi-platform; architecture; collaboration; microservices

1. Introduction

Augmented Reality (AR) and Mixed Reality (MR) have spread rapidly to become familiar
technologies. Thanks to the emergence of more powerful devices (both mobile and wearable ones)
and evolved Software Development Kits (SDKs) and frameworks that facilitate development of AR
and MR applications, its future seems brighter than ever. This is such that some sources indicate that,
for example, 100 million customers will use AR both in physical stores and when making on-line
purchases [1]. Much of the potential of AR and MR is shown in collaborative scenarios. Collaboration
in AR and MR is not a new issue and quite a few systems have already been developed mainly
to provide solutions for specific applications, thus lacking generalization capabilities.

This paper introduces SARA, a microservice-based architecture to facilitate the deployment
of Shared-Augmented Reality experiences and Applications. SARA has three main strengths. First,
it allows building AR-based collaborative applications regardless of the end-devices (mobile or

Appl. Sci. 2020, 10, 2074; doi:10.3390/ app10062074 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://dx.doi.org/10.3390/app10062074
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/6/2074?type=check_update&version=2

Appl. Sci. 2020, 10, 2074 20f26

wearable ones). SARA is also able to automatically orchestrate the rules for the collaboration policy
needed for the target application. To do so, we defined a set of collaboration models which implement
the most frequent collaboration strategies, such as turn-based, layer-based and hierarchy-based ones.
Finally, the architecture facilitates the adaptation of non-collaborative applications to make them
collaborative, and even to turn those non-AR applications into AR ones. SARA architecture is tested
in this paper through a case-based methodology—technology empirical evaluation—to complete a
proof-of-concept validation. The case under study is the development of a voxel-based collaborative
game, which is implemented to demonstrate the development life-cycle and the management
of unconstrained and turn-based collaboration models.

This paper is structured as follows. First, in Section 2 we provide an overview of the current
state of the art regarding AR collaborative systems as well as collaborative Augmented Reality
architectures. In Section 3 we present an analysis of the collaboration over AR, analyzing its
main characteristics and functional features. To do so we divide the collaboration schema into
three different layers (visualization, interaction and collaboration management) and we evaluate
the workings of some examples of collaboration models such as turn or layer-based ones, among others.
Next, in Section 4 we present the main characteristics of SARA, the architecture itself and its
components. In Section 5 the data model is introduced, with the main entities handled within
the architecture. Then, in Section 6, we present the process of building an application based on a specific
and illustrative case. Finally, Section 7 concludes the work and summarizes future research lines.

2. State of the Art

In its most basic definition, Augmented Reality (AR) consists of superimposing digital content
over a view of the real world. One of the most widespread interpretations today is the one from
Azuma [2], who specifies that AR has to meet three basic requirements: (i) to combine the real world
with virtual information, (ii) to be real-time interactive and (iii) to be presented in 3D. The concept
of AR is closely related to Virtual Reality (VR) and even more to Mixed Reality (MR). In contrast
to AR, in which the digital information is superimposed over the real world, in the case of VR the user
is immersed within the digital world. Milgram and Kishino [3] introduced the Virtuality Continuum
concept to establish a classification based on the user location: real /physical at one end and virtual at
the other. The Mixed Reality term appears here as a mix between virtual content and information from
the physical world, in such a way that digital content may interact with the real world. Presently, the AR
term is sometimes used in substitution of MR by developers and users. For the purpose of this paper
we will do this assimilation. Although we refer to the term AR we also assume that virtual content
will be related to the physical world, thus being the proposals directly applicable to MR problems.

The concept of collaboration in Augmented Reality context took its first steps shortly after the first
AR systems [4] emerged. One of the first approaches was the Transvision System from Rekimoto [5],
which allowed multiple users to share virtual content graphics disposed in a table. This system also
enabled the users to interact with the content by choosing and action (e.g., selection or manipulation)
to be implemented through a physical device. Two more important concepts may be highlighted
from this system. First, the ownership of the object has to be transferred among users. Hence,
two or more users could not work over the same digital element at the same time. This concept
of blocked ownership has been adopted in many of later systems, with its associated advantages
and limitations (a user must wait for another user to end-up the interaction in order to do hers).
Second, each user had its own 3D model database synchronized with the other ones by propagating
modifications. The Studierstube system [6—8] substituted that process of sharing the same digital
content between all the users by the concept of information layers. These layers could be shown
or hidden to the users in order to control the information presented to them. The manipulation
of the digital content and the interaction with it was performed through a physical device. Once more,
the same concept of a master device and multiple slaves from Rekimoto appears here, since the master
stores the current state of the virtual content, which is downloaded from the slaves side. Additionally,

Appl. Sci. 2020, 10, 2074 30f26

any changes performed to the state of the virtual content on the slaves side is propagated to the central
state maintained by the master. A fact that makes the system interesting is that it can be seen
more as a service provider for different applications such as education [9] and gaming [10] than a
single application. One of the first systems that explored the idea of combining different platforms
to perform the collaboration (mobile devices and stationary computers in this case) was the MARS
project [11]. In this system, authors made a distinction between two different contexts where users
might be, outdoors and indoors. An indoor user could manipulate virtual annotations of real
world objects while the outdoor users would see them properly placed. Subsequently, both users
could swap their roles. Despite the limitations imposed by the hardware required at the time
of publication, this work stands out as one of the first platforms to integrate different types of devices
in collaboration. With the VITA project [12] Benko et al. offered a system for off-site visualization
of an archaeological excavation. They combined Head Mounted Displays (HMD), a tracked hand-held
device, a high resolution display and a multi-touch projected table surface to enable the collaboration.
From a high-level point of view, the collaboration was thought as the navigation, manipulation
and browsing of digital data. Thus, each user had their own representation of the digital content
and they did not share the visualization component. In particular, this system did not enable multiple
users to manipulate the same digital element. Nilsson et al. [13] proposed the use of Augmented
Reality to support collaboration between different organization in crisis management scenarios.
In this case, AR content sharing between several users is explored, but adapting the visualization
to each participant. The authors faced the process of sharing common organization-specific information
on a map. The proposed solution consisted of decoupling the data (e.g., the position of a car on
the map) from its representation. Hence, the associated AR component for a piece of information was
generated based on the organization of the participant. In this system, each client device was notified
when another user made any change in its own virtual representation (e.g., if a vehicle’s position
was changed), and the client internal AR representation was updated. Regarding the interaction,
it was performed by means of a physical device (a joystick). Thus, only the user with that device
was able to interact with the AR content. On the other hand, the DARCC system (Distributed AR
for Collaborative Construction simulation) from Hammad et al. [14] offered a system for operating
and locate digital construction elements (in particular cranes) in a collaborative manner using AR.
The collaboration in this case was performed within the construction site, with all the participants
visualizing the AR content. In particular, the digital content was aligned by combining GPS and device
sensors to convey the idea of the assets being located in the physical world. Although the AR
content was shared among all users, their interaction was limited to control a single associated element
(the crane). Since the content alignment was done on GPS, the use of this system was limited to outdoor
contexts. Apart from these works, there are many other examples of collaborative systems that can be
divided according to their area of application: Industrial [15,16], Architecture and Construction [14,17],
Education and training [18,19] and Entertaining [20,21]. An exhaustive review of collaborative systems
based on AR and MR to date has been recently proposed by de Belen et al. [22].

The creation of frameworks and architectures to facilitate the development of new cross-platform
applications was already raised previously in the literature, as previously stated. Some of these works
focused on wearable devices [23] or smartwatches [24], infrastructure devices such as the Kinect [25] or
the generation of adaptive web applications [26] and user interfaces [27]. Following the same approach
of facilitating the development of cross-platform application but focusing on the Augmented Reality
Context, Speicher et al. [28] developed the XD-AR framework, created for addressing the issues found
when developing AR applications in a multi-platform context. More specifically, they focused on
the more recent devices and frameworks used in that moment (e.g., Tango, ARCore and ARKit).

In industry context, Microsoft has presented their Spatial Anchors system [29], which is a cross-platform
developer service to deliver multi-user Mixed Reality experiences. It enables storing and afterwards
retrieving the position of the users’ devices and their relation with the real world. Microsoft has
also recently launched their Spectator View system [30]. Spectator View allows streaming the MR

Appl. Sci. 2020, 10, 2074 40f26

digital content from a HoloLens device (in the form of holograms) to be shared with other users who
are carrying 3D hand held devices. Thanks to this feature, the digital content can be easily shared
among several users. Spatial synchronization is performed among the devices to present the digital
content aligned. Although it is a very powerful and easy to integrate tool, its main drawback is that
the cross-platform support is offered by means of the Unity environment, which is itself cross-platform.
When integrating it into an iOS or Android device, for example, it must be done through a Unity
application, i.e., without using the native frameworks.

In summary, (i) there is not an agreement on what collaboration in AR implies, and although
(ii) there are already proposals to facilitate the development of cross-platform applications in the context
of Augmented and Mixed Reality, they are focused on a reduced and close set of devices. In general,
these frameworks, tools or approaches do not take into account how to integrate new devices or
different development ecosystems. Apart from this, the reviewed systems rely on limited collaboration
models (e.g., by taking turns because there is only one physical control device that has to be
passed) or present a decoupled collaboration (e.g., each user works independently without sharing
the AR content [12]). Additionally, the collaboration model is conditioned by the implementation
of the system itself. For example, some projects use the concept of shifts (either having to transfer
a physical device [13] or by external regulation) while others handle the concept of ownership
(so that participants can only interact with those AR elements that have been given access). Thus,
since the collaboration model is limited by the implementation, it is difficult (if not impossible)
to change that model to adapt it to other requirements.

The following section will analyze the characteristics of collaboration in AR environments,
which will later be taken into account for the development of the architecture.

3. Analysis of the Collaboration in AR Context

3.1. Definition of Collaboration in AR Context and Its Main Characteristics

A possible meaning for “collaborate” is “to work jointly with others or together” [31].
Thus, from a high point of view, several users in a group may do some actions to achieve a certain
goal. However, in addition to those common goals, it may be possible that each user has personal
goals. Hence, competition can be seen as a sub-case of the collaboration. In this Section, we aim at
analyzing the concept of collaboration in AR context to define a set of features or characteristics that
have to be managed in an AR-oriented collaborative architecture. Three are the main characteristics
of the collaboration:

Number of participants in the collaboration: First and most obvious, to perform a collaboration
multiple users are required. Thus, the number of these participants may affect the design
of collaborative AR systems.

Individual vs. common service goals: Depending on the application, there may be one or several
objectives common to all users. However, it is also possible that each user has one or more personal
objectives, which may not coincide with the common ones. As an example, let us suppose a multiplayer
game based on AR. Players in a team may be willing to win, while each player individually may
be targeting to improve his personal score. Another example could be a collaborative BIM-based
(Building Information Modeling) tool in the architecture context. Several participants may work
together to design a building, being each user focused on different components (e.g., one may arrange
the electricity system while another may place the piping system). In general, each of them can work
independently in their own copy of the building. However, in specific occasions both may have
to work together and even reach agreements.

Operational features to take into account when implementing collaboration: to achieve
the collaboration goal, some actions have to be performed by the users. Thus, there may be interaction
with the AR content as well as communication between the participants. The implementation of courses
of action in collaborative AR requires to determine aspects such as time and space management,

Appl. Sci. 2020, 10, 2074 5 of 26

interaction methods, visualization and, all in all, the collaboration model used to orchestrate
the collaboration. we following comment on all these issues:

e Real time vs. shift collaboration: Time management restrictions are important when defining
collaborative AR applications. It is possible for example that all the users are working with the AR
content at the same time, which could be seen in real time. However, it is also possible that they
work in shifts and that they do not even coincide in time. In this case, the state in which a user left
the digital information must be able to be retrieved by a second user in order to continue working.

e Shared physical space vs. remote: If all participants of the AR collaboration experiences are located
in the same physical space, it is usually said that they are co-located and they are working “locally”.
On the contrary, if the participants do not share the same space, it is usually said that they work
“remotely”. It is also possible to have a mixed situation in which some users are co-located
and they are working remotely with another one.

o Interaction methods: According to the target AR platform, interaction with the virtual content
is implemented in a different manner. For example, in hand-held devices such as smartphones,
the main interaction method is touch-based. However, in case AR Head Mounted Displays
(HMDs), usually the interaction is carried out by hand gestures and/or voice commands.
Thus, the type of interaction will condition the design of the means to implement the course
of action.

o Information exchange channel: in order to collaborate, exchange of information between
the participants is required. This can be done by visual means, including annotations or check
lists, speech or combined strategies.

o Content alignment and profiled visualization: Digital elements may have different views tailored
to the specifications of different users. Thus, the visual aspect presented by AR assets may
not be exactly the same for all users. Among these characteristics are the object position, scale
and rotation as well as more advanced ones such as color or shape. For example, let us consider a
3D AR cube that is positioned on a real, physical table. If the AR content is aligned, the cube will
be seen by all participants in the same exact position (setting aside possible drift errors). On the
contrary, if the content is not aligned the same cube will be represented in different positions
for each user. For example, one may see it on the table while another user may see it on the floor.
However, both representations will refer to the same cube. In this case, being aligned refers
not only to the position, but also to characteristics such as rotation and scale (e.g., it is possible
that each uses sees the cube in the same position but with different sizes). On the other hand,
the information displayed to one user may not be visible to another, or it may show added or
removed elements. In this sense we say that the content has been adapted to the user’s profile;
in other words it has been profiled.

o Collaboration model: the collaboration model defines how users organize themselves to visualize
and interact with AR content. This organization may come from themselves (they agree by speech),
due to implemented control mechanisms (e.g., if the element of interaction has to be transferred)
or by high-level rules (e.g., it is defined that they have to work in shifts).

3.2. Conceptual Framework to Define Collaboration

Based on the collaboration characteristics in Section 3.1, we next abstract three service layers
where collaboration constructs are managed, from less to more enriched interactive scenarios:
(i) the visualization of the Augmented Reality content, (ii) the interaction with the AR elements
and (iii) the high-level orchestration of first-two components. Figure 1 shows an outline of the three
layers and how they would be instantiated within an example application: the voxel-based
collaborative game that will be later detailed in Section 6. Below, each layer is explained in detail.

Appl. Sci. 2020, 10, 2074 6 0f 26

All the participants can see the same AR The participants can interact with the

assets which in this case is the the 3D world by touching it to add or

voxel-based world. The content is) remove cubes. This will modify the 3D

Layer O Layer 1 aligned for all of them. They can world, and the changes will be
Visualization Interaction communicate by speech propagated to other users
- - / /
Layer 3

Collaboration Model The collaboration is orchestrated by using a collaboration model. In this case it may

be a turn-based one (in which only the user with the turn can modify the world) or an

unconstrained one (in which everyone can interact at the same time)

Figure 1. Collaboration Layers.

Layer 0: Visualization. This is the most basic level, since there can be no collaboration in AR if
users cannot share AR digital elements. This level refers both information sharing and alignment of AR
content. First of all, it is possible for all users to share exactly the same AR elements, i.e., that everyone
can see exactly the same. However, it is also possible for the sharing process to be filtered according
to some rules (e.g., based on hierarchical roles where the user who is at the top of the hierarchy
has access to all the information levels while others can only see specific levels depending on
the permissions based on their position in the hierarchy). Second, it is also possible that the shared
AR elements present the same characteristics (e.g., position in the real world, rotation or scale) for all
the users, or on the contrary that they are personalized for each one. At this point, the organization
of the collaboration fully relies on the participants. Blocking and interaction have to be accorded
by the users during their own collaboration. In this case, speech may be a useful way to regulate
collaboration. In other words, the collaboration model is not restricted.

Layer 1: Interaction. Once the digital elements are shared among participants, the next step is to
allow the users to interact with them. With that, we understand that the AR elements are able to detect
user inputs and react accordingly. Let us suppose an AR cube that is positioned in front of the user,
who is using a smartphone to visualize it. When the user touches the cube on the screen, it should
be able to detect that touch and if necessary, e.g., to execute some application logic such as changing
its color. It is also possible that instead of touching, the user performs a drag gesture, which could
have a different associated logic, such as making the cube rotate on itself. Therefore, different ways
of interacting with the AR elements can be present for a single device. Likewise, for each type of AR
device, the ways of interaction with the AR content will be adapted to them. As was the case at level
0, the collaboration model does not present any restrictions. Users will have to organize themselves
to regulate the interaction. Thus, the next layer emerges with the aim of automatically orchestrating
the collaboration.

Layer 2: Collaboration Management. With layer 1, participants are given the ability to interact
with AR content. It may be the case that several users decide to interact with the same element at
the same time. In principle, there is nothing that prohibits or regulates this situation. How should
a hypothetical AR cube react when one user moves it up and another user tells it to move down?
in this case the logic of the application is wrapped with an external element, a Collaboration Model (CM).
A Collaboration Model is compounded by a set of rules that control all the elements of the collaboration,
which can be both visualization and interaction capabilities. The most basic Collaboration Model would
be the Unconstrained one, in which no rules are specified. Thus, even in the case that the collaboration
management is not explicitly defined, that situation can be associated with a Collaboration model.
Another example may be the use of a Turn-based model. In this case, the interaction with the AR
elements is restricted only to the user whose turn it is. In summary, by defining the rules that shape a
CM, it is possible to control the flow of an application without modifying its basic logic. An important
fact is that the same set of rules (i.e., the same Collaboration Model) can be applied to completely
different applications. In other words, collaboration models are application independent and can be
reused. Below we propose five types of high-level collaboration models to illustrate this concept.

Appl. Sci. 2020, 10, 2074 7 0f 26

1. Turn-based model: the interaction with the AR elements is managed by using a token. Only the user
who has the token (therefore in her turn) can interact with the virtual objects. The interactions
of other users with the AR content are in principle discarded.

2. Ownership-based model: in this collaboration model, each digital element has an associated owner.
Thus, the visibility and interaction with each element may be restricted only to its owner.
It is also possible that the elements are visible for all or a group of users with only the interaction
being limited.

3. Layer-based model: This collaboration model is characterized by having one or many layers, to which
the AR objects are linked to. One digital element may be present in several of those layers. Users on
their side will have access to certain layers and they will be able to visualize and also interact
with its associated digital elements.

4. Hierarchy-based model: in this case users are organized in a tree-based hierarchical structure. On one
hand, the user at the top of the hierarchy has access to all AR elements, both for interaction
and visualization. Changes performed by that user will always prevail over those initiated at a
lower level of the hierarchy. On the other hand, users located in the lower branches of the tree
will have limited both their visibility and their ability to interact. It is reasonable to assume that it
will be the participants themselves who define these restrictions for their subordinates.

5. Unconstrained model: in this collaboration model there are no restrictions. All user interactions
are processed and no control over the visibility of AR elements is established. In this case a FIFO
(First In, First Out) policy will be applied.

It is important to note that these five models gathers the main and common collaboration schemes
we identified and that there may be more possibilities, since the rules themselves are what define each
of the models.

Which collaboration model to use entirely depends on the service goal of the application to be
developed, i.e., SARA is not imposing any collaboration model but enabling choosing or combine
the most adequate ones for the application to be developed. In Table 1 we illustrate how different
collaboration models can be applied within two different applications. On the one hand, we propose
the voxel-based world editor that will be described in more detail in Section 6. At this point, it is enough
to indicate that multiple users need to be able to interact with a portion of land formed by cubes (voxels),
so that by adding or removing those cubes they can create landscapes and buildings. The resources
to be handled will be (1) the land itself, (2) the voxels (which may be added, removed or change their
color) and all players will have identical permissions. On the other hand, we propose a prototype
application for visualization and management of SmARLt city resources (the SmARt City viewer). In its
most basics, this prototype allows users (from the municipality, service providers, operators) to inspect
injected data sources on a 3D representation of the terrain. The key concept of this prototype is that
AR resources visualization will be based on the roles assigned to the users. Table 1 summarizes how
each collaboration model may fit or not for both applications.

It is also important to note that an application could also integrate different collaboration
models, e.g., depending on the users’ role and the interaction level. For example, in the SmARt
city scenario, the municipality could establish a hierarchy-based model over service layers to force
and control specific aspects of the city management; at the same time, urban service operators working
the same hierarchical level could own and control their network of resources (ownership-based model),
while interacting with others providers on shared resources following a turn-based model. Figure 2
illustrates an example of the combination of multiple collaboration models.

Appl. Sci. 2020, 10, 2074

8 of 26

Table 1. Use cases of the collaboration models and it suitability for the voxel-based game and the SmARLt city prototypes.

Use Case

Voxel-Based Prototype

SmARt City

Unconstrained

When parties coordination
is not needed or relies on
human means

A choice if every player is
empowered to add and remove
cubes simultaneously and
coordination relies on
peer-to-peer communication

Not adequate, as it is assumed that the
number of services service providers and
resources in the city will be large enough
to need at least information filtering
services for visualization

Turn based

When resources need to
be univocally controlled
by a single user at a given
moment in time

A choice if every player is
empoweredto add and remove
cubes and coordination needs

to be orchestrated to avoid
conflicts and organize interaction

A choice in case two or more service
providers share a common resource and
may have control over it: e.g., a signage
panel in which alerts can be presented may
be admitting new information in case the
control token is free

Layer based

When resources need to
be grouped and the access
to those groups has to

be managed

It does not apply, as this
application only contains a
single node: the terrain mesh
that players will modify

Layers will be in this application associated

to a given service (cleaning, garbage

collection, air quality monitoring, traffic
controlling. . .). Each layer will contain a set

of nodes in it and will be secured by applying
role-based access. Users authorized for each
layer will be able to visualize the resources on it.

Ownership based

When a user owns one or
more given nodes with
full control over them.
These resources could be
within the same layer

or not

Not applicable, as this application
only requires a single resource

for common interaction: the

terrain mesh that players will modify

Applicable to determine e.g., which operators
can access and visualize the state of specific resources.

Hierarchy based

When a hierarchy of roles
is needed to control the
different resources

The basic application is built on
players with the same role, thus
the hierarchy-based model does
not fit. In case hierarchies are
implemented, it is assumed that

a user with upper role (game
master) would have at least to
approve the initiatives of the others

A hierarchical model does fit the
collaboration control in this application, as
there will be users with different roles that
will be authorized to access functionalities
depending on their role, e.g., municipality
(overall control), service providers (overall
monitoring of the service, interaction with
shared resources), service managers (tactical
decisions in a service layer and over owned
resources) and operators (visualization and
information generation over authorized resources)

Appl. Sci. 2020, 10, 2074 9 0f 26

........... Ownership
e Hierarchical
relation
W Layer
;g;_ .. Access
TF e NS . ——— The Cleaning Services
:g: R !) hierarchy has access to the - -
<t R i The manager service owns the £z Cleaning layer. However, Users Cleaning Services
TF2 .t Traffic Lights | traffic lights resources, and v Layers 3and 4 has only access to a
oy Manager | injects the AR representation of =~ subset of the cleaning fleet
}gr i them into the Traffic Lights layer representation. The brigade
TFs e Traffic Lights supervisor would have access Brigade
to the combination of both Supervisor
Cleaning Services =~~~ 7""""77""% [
]
(TTTTTTTTTro77 Air quality Data i
! 1
'
! 1
! 1
! 1
i '
! 1
! 1
i ' H
i ' H
i ' H
i '
i '
i i
I '
There may be multiple
clients, each one of them R g
owning a different weather g g
station. That 3D Client 1 Client 2 - Cleaning flest 2
representation of the data is . . Cleaning fleet 1 9
injected into the Air quality . .
n o =i
Weather Weather
Station 1 Station 2

Figure 2. Collaboration Layers.

As can be seen in Figure 2, a layer-based model is present, with three managed layers: Traffic Lights,
Cleaning Services and Air Quality Data. Access to the Traffic Lights layer is granted to a Traffic Lights
Manager, which owns the nodes associated with the traffic lights. At the same time, access to the Air
Quality Data layer is granted to multiple clients. Those clients generate and own the nodes associated
with different weather stations. These clients could be institutions or citizens, being the ownership
associated with them. Also, at the same time, a hierarchical-based model may be used to establish
the control over the elements of the Cleaning Services layer. The members further down the hierarchy
would have access to a subset of the vehicle fleet, while the supervisor would have access to the entire
set. By combining multiple models of collaboration, conflicts could arise. For example, if a user had
been given access to a layer with a certain element, which belongs to another user, should he be able
to view it? Looking ahead, for future versions of SARA we propose the use of priority rules to manage,
which should help in those advanced scenarios.

4. SARA: Main Characteristics and Architecture Components

The development of the architecture has been carried out based on the challenges detected
in the solutions of the literature and the collaboration characteristics exposed in Section 3. SARA’s name
comes from “an architecture for Shared-Augmented Reality experiences and Applications” and its
characteristics are presented below.

1. Multi-user management: Since SARA’s main objective is to facilitate the development
of collaborative AR applications, multi-user management is a vital concept of architecture.
With this characteristic we refer to both user access control (e.g., logins, logouts) as well as

the exchange of information between participants in the collaboration.

2. Session management: in order to orchestrate the collaboration, SARA uses the concept of Session.
Several users may connect to the same Session, each session with a different functional concept
and objective. The AR content associated with a Session may be shared among the participants
in the collaboration. Each session will be treated independently within the system, so the same
instance can be used for handling totally different applications at the same time.

3. AR content visualization management: SARA is able to manage in a flexible way
the visualization of AR assets, i.e., it is capable of controlling features over the shared AR element
(e.g., it is possible to control that visualization based on permissions) and also who visualizes

Appl. Sci. 2020, 10, 2074 10 of 26

10.

11.

12.

the common features. This management can be carried out from the functional logic of a Session
or externally through the use of collaboration models.

Device-optimized interaction management: in addition to display AR content, the system
handles interaction with AR content adapting it to the specific standard interaction means
of the target device. Each device has an inherent form of interaction associated with it.
SARA integrates all these interaction types. As an example, when a user works with a
smartphone the main interaction is performed through its touch screen. On the contrary,
when the user is wearing an HMD such as the HoloLens, the main interaction is performed
by hand gestures. However, the user expects that a touch on a digital object and a tap gesture to have
a similar functional meaning. Moreover, interactions from different device types are translated
to a common understanding.

AR platform and development framework independence: the whole architecture has been
designed as a platform-independent environment. This feature means that different devices
can cooperate over the platform. From smartphones to wearable AR devices, going through
standard platforms such as computers, SARA provides a cross-platform information exchange
system. Besides that, the creation of new end-point applications for the architecture is platform
and framework independent, which allows developers to work with the tools of their preference.
Location independence: the collaboration between participants can be performed both remotely
and locally. This process is transparent to the user, since all she has to do is connect to a session.

Then, according to the session details, if required, the alignment process will begin.
AR Content Alignment: in case that AR content alignment is required, the system establishes it

according to the requirements of the session. To do so, SARA offers different strategies. The basic
mode of operation is intended to be through the use of markers, which are 2D physical images
located on the real world. Although it would be ideal, the process of aligning cloud of points
(also known as SLAM maps [32]) extracted from the real world reveals such difficulty that it

is proposed to be integrated in a future version of the architecture.
Time decoupling: Collaboration is allowed to take place both in real time (or near-real time)

with all the users collaborating at the same time and in shifts, with the participants not being
coincident in time. To do so, SARA keeps a central state of the collaboration session must be
maintained and changes on this state can be made at any time. Later, that state may be recovered

on demand (e.g., if a participant connects later to the collaboration).

Extensible: It is possible to add new features to the system easily. This affects both the addition
of new services with new functionality to the system, and the adaptation and extension
of the associated data model.

Independent of the communication network protocol: in order to cover as many devices as
possible, the system offers a transparent way of establishing the communication. At the moment
of truth, there are certain frameworks and platforms that present different difficulties to work
with certain protocols, hence the option of choosing is given to the developer. The use of TCP,

UDP, Websockets and MQTT is currently included.
Logic decoupled and reusable: Thanks to SARA, all the logic of the application can be

implemented for a single device/platform, which we call the provider. This provider will inject AR
content to a session and the other participants will send interaction events to content. This second
group is labeled as consumers. The main core of consumer clients is common to all the applications
and hence it can be reused and taken as starting point for development. Over that core, some logic
such as interface management may be implemented, but it is not strictly necessary.

Adaptation of non-AR, non-collaborative applications: by using SARA it is easy to inject
the content of applications that were not generated with Augmented Reality in mind and expose it
to users. It is also possible to update applications that were not initially developed as collaborative
ones to allow that functionality.

Figure 3 provides an overall view of the architecture: a set of services will enable the communication

among the participants and the management of the collaboration itself. Additionally, several SARA clients

Appl. Sci. 2020, 10, 2074 11 0f 26

are depicted in the figure. Each of those clients will be used by the participants to collaborate, either
using them one at a time or by combining several of them. Further details are given later in Section 4.2.

SARA Client SARA Client SARA Client
o € € €
g 8 sg o2l |88
2| |z g5 IR
g |% 2g £elleg
o © c ®©
- = > - =
SARA SARA SARA
Adaptor Adaptor Adaptor

Y

Communication Collaboration
Management Management

SARA Microservices

Figure 3. Overview of the SARA architecture, with its communication and collaboration management
microservices and clients.

The architecture has been designed based on the microservice paradigm [33]. This decision has
been taken to maintain each service loosely coupled and small in functional terms wanting to assure
scalability and reusability. Thanks to this, in general the architecture will keep on working even
if a given service is down (only it will not do it in case the service is managing communications,
Section 4.1). Figure 4 shows the different services implementing the full architecture.

- SARA Client

ﬁ Interaction App
Manager [*—®1 Logic

Content

Content | g Provider l t

Generator Service - - World
Session g 3l ARView q¢—pf Center

t Manager Manager Manager

ﬁ Real Time Content
Provider
Sessions Events DB
_

Users

Service
Communication Service
Conflict Manager Service Collaborati Network Manager Session Transformation
Dslo?irealnon Status [—® Interpreter
" : Manager
Conflict Conflict | [Manager 9
Solver Detector Service MQTT TCP ubP ws t
¢ c ication P Interaction
Collaboration ommunication Proxy Interpreter
Model e
Generator
Clients
| Event Manager |< Manager
Collab.

Model DB j

Figure 4. Service-oriented architecture diagram for SARA.

The architecture may be divided into three main building blocks: (a) the Communication Service,
(b) the SARA Client and its associated services and (c) the Conflict Manager and Collaboration services,
to be explained below.

Appl. Sci. 2020, 10, 2074 12 of 26

4.1. The Communication Service (CS)

This service is the most critical of the architecture since it is in charge of managing
the communication among all the others; i.e., in case this service is not running, the rest of the system
will not work. Figure 5 illustrates an example in which three users participate in the collaboration.

|interaction SequenceOverview)

Client 3
er =

Communication Service

1 : connectToSession

: \L_I\ 2 : connectToSession
DT S RO 4 : returnConnected

3 : returnConnected frmmmemme e =

i

The status of the
Session is empty at
this point if this is the
first connection with
the session.

U‘E - sendCurrentSessionStatus 6 : sendCurrentSessionStatus |

1]

Although User 3 has
connected later, she still
is able to participate in

When nodes are added o 7 : addMode L

removed to the Status, : r | 8 : onNodeAdded
these changes are : =

the collaboration. She

connected clients. They
should them update their
intemnal state and visual
representation.

: > receives the state of the
propagated to all the : ' Session at that point.

9 : connectToSession

i 10 : retumConnected :

Collaboration Models 1 11 : sendCurrentSessionStatus

are applied at this : : ;]
points, to validate H i 1

gither the updates q = g)
from that user are ! LF': interactWithNode(user u, node)
valid or if she is able] H
to interact with a
certain node.

14 : onModelnteraction{u, n)

U 13 : onModelnteraction{u, n)

Interaction events
are propagated to
all users, but only
the one with the
application logic
implemented should
react to them

Figure 5. Sequence diagram that illustrates the communication between users and the Communication Service.

Inside the CS there is the Network Manager component, which is the main entry point to this
service. When a SARA Client or some other services require to communicate with the CS they
must establish a connection by using one of the possible technologies this service offers. In this
case the possibilities are MQTT, TCP, UDP and WebSockets, which have support in the vast
majority of development environments and programming languages. Once that connection has
been made, the CS knows which kind of connection was used and the same method will be used
for the communication. All the messages/events received are abstracted from the communication
layer in the Communication Proxy. From there, all events can be understood by the Event Manager,
which will parse them and react to their content.

There is also a component labeled as Clients Manager. It is in charge of storing the information
of the connection with the clients and to storing their information. User credentials are not stored
in this component, but only connection information.

The Session Status Manager stores the information of the sessions handled by the system. It reacts
to update events of session status and apply them to the proper Session. Since different development
platforms use different coordinate systems to arrange the digital 3D AR content, it is mandatory

Appl. Sci. 2020, 10, 2074 13 0f 26

to have a component in charge of establishing a common framework. Hence, the Session Status Manager
can cooperate with the Transformation Interpreter, with the aim of maintaining a consistent status
of the Session understandable by all. The most common operation to be performed will be the Z-axis
inversion of the coordinate systems, because some systems use a right-handed coordinate system
and others use a left-handed one.

Finally, the Interaction Interpreter reacts to interaction events by translating them to a common
representation. Once that is done, those events can be applied to the required Session. For example,
it is possible for a user to interact with an AR element by touching a smartphone screen while another
user does so by gestures while she is wearing an HMD.

4.2. The SARA Client (SC)

It represents the combination of a user and a device. The collaboration is established among
different instances of these Clients. Please note that each Client may have a different final
implementation, i.e., the main components must be adapted to the target client devices.

The entry point of the SC is the Session Manager component. It offers a standard way to communicate
with the Communication Service in terms of network managing and events handling.

The AR View Manager receives Session events and is in charge of updating the AR elements that
the user sees.

The World Center Manager must be implemented in such a way that a certain point of the real
world is set to be the origin of the coordinate system associated with the Session. It is possible
to implement manual policies (e.g., to allow the user selecting a certain point) or automatic (e.g., to use
marker detection).

The App Logic represents the specific logic of the application embedded in this client.

Finally, the Interaction Manager component must fit the type of device in use. For example,
in smartphones or tablets it must react to screen touches and to detect if some AR component
was touched. If so, it asks the Session Manager to send the proper event. In other devices such
as HMDs for example, those events can be generated based on hand gestures, user positions or voice
commands for example.

With the idea of increasing the capabilities of SARA Clients, they may have access to Content
Provider Services, which offer contents that can be integrated in the Session status. From there,
it can be shared with other clients that may have no direct connection with the content providers.
Their functionality can be offered in any form, as long as clients are able to access it. Finally, Real Time
Content Providers and different Content Generators can be exposed to the system through the Content
Provider Services. we can imagine a scenario in which, for example, real-time external information
is integrated into the session’s status as Internet of Things information or social media data elements.

4.3. The Collaboration Services

Collaboration Services comprise several services that allow to alter different characteristics
of collaboration between users.

The first service is the Collaboration Model Manager (CMM). 1t stores information about the collaboration
model associated with a certain Session. Each collaboration model has a set of associated rules.
When the Communication Service receives any event, it is validated using the CMM. This validation
is done by comparing the event against all the rules associated with the collaboration model. If the
event goes through all of them, it is valid, so the content of the event may be applied. Otherwise,
by default it is discarded but other policies could be implemented too.

The Conflict Manager Service has two main components, the ConflictDetector and the Conflict Solver.
The first is in charge of detecting conflicts (such as two users applying updates concurrently or
conflicts generated when applying the CMM). Once detected, the Conflict Solver reacts to these conflicts
and manages responses. For example, in the concurrent updates scenario, it can merge both events
into a single one and send it to the Communication Manager as solved.

Appl. Sci. 2020, 10, 2074 14 of 26

As the last component, the Users Service offers functionality related with the user’s data. It also has
access to its own database and stores information such as hierarchies of users, which can be queried
by the CMM. Additionally, this service offers functionality such as registers and removal of users,
as well as logins and logouts.

Thus, SARA wraps the minimum functionality required to enable the development and deployment
of collaborative AR applications. Figure 6 illustrates the difference between the development
of collaborative AR applications without using SARA and using it.

No SARA support Based on SARA

APP 1 APP 2 - APP N APP 1 APP 2- APP N

Implement the main
logic of the application

Platform 1 Platform 2 Platform 1 Platform 2 l l

A \4

Implement the main logic
Implement and configure (2) | ofthe application (inthe
a communication server provider client only)

7 o I ‘o

Create the consumer client applications by importing the

; '
!]
Implement and configure (3) i provided wireframe. By default, connection with SARA, E
the communication ! interaction detection and communication protocol are '
protocol o ____________auomaticallyhandled !
Platform 1 Platform 2 Platform 1 Platform 2 l i
A A

Add specific logic and
(4) | interfaces to the SARA
clients

Implement and adapt
the interfaces to each
individual platform

Platform 1 Platform 2 Platform 1 Platform 2 i l

\ 4

Select the Collaboration Model from the set of available or
Implement the implement a new Collaboration Model

collaboration model

,,,

Figure 6. Sequence diagram that illustrates the communication between users and the Communication Service.

As Figure 6 shows, when implementing collaborative AR applications without using SARA,
the development of each new application is done independently of the others. Thus, the application
logic should first be implemented for each of the platforms on top of which the application needs to run.
For example, in case the objective is to create an application that initially provides support for HoloLens
and iOS devices (i.e., Platform 1 and Platform 2), it is required to implement the logic in a dedicated
application for each of them. If later it is needed to give support for Android systems, that same
logic should be implemented for Android. Once the logic has been implemented, a communication
server that allows the exchange of information between clients has to be implemented and configured.
Some previous server structure could be reused here, but it should always be adapted. Once done,
the message exchange protocol between the clients and the server needs to be defined and implemented,
and this had to be done for all the platforms involved. Next, the graphical interfaces and interaction
methods of each platform have to be created and tailored. Finally, the collaboration model needs
to be be implemented from scratch, possibly within the application’s own logic, which means that it
cannot be easily reused. By using SARA, there are three blocks in which development is accelerated.
First, SARA provides a Communication Service, which does not require any implementation and can
be directly launched (with some minor configurations such as port information). Thus, it will accept
client connections and handle the events broadcasting. Second, when developing the platform clients,
SARA already provides an application skeleton that once imported, establishes the connection with
the Communication Service and receives/sends the session status. At this point it would only be

Appl. Sci. 2020, 10, 2074 15 of 26

necessary to create the interfaces adapted to the application. Third, SARA offers the possibility
to choose from a group of already implemented collaboration models that can be applied independently
of the application’s functionality (although depending on it, some models will make more sense
than others). In conclusion, SARA supports the development of collaborative AR applications
by agnostically managing the AR content display device. SARA is built under the view of reusing a set
of conceptual collaboration models, thus these assets are available for customization and integration.

Once the main components of SARA has been presented, in the next Section the Data model
in which SARA is based will be presented.

5. SARA Data Model

One of the objectives of the SARA architecture is to be platform and framework independent.
With this goal in mind, we have established a minimum data model that can be easily adapted
to the most common concepts used by the main platforms and development frameworks. Most of them
(e.g., Unity, ARKit and ARCore), work with the concept of Scene. This Scene groups in a hierarchical
way a series of elements such as lights, cameras, and 3D models. In this case we have sought that
the translation between these elements and those of our architecture to be as direct as possible. Figure 7
gathers in a class diagram the main entities of the model. In all the class diagrams presented, the prefix
“SARA” has been added to those classes that could be confused with those of the development
frameworks. Next, each entity will be presented in detail.

SARASession
SessionManager 0..* +id: string
. N
L~ +connected_us§rs[0..]
+sessions +connectedDevices|[0..*]

+collaboration_model: CollaborationModel
+alignment_method: Alignment Info

+broadcastToUsers(sender_user: String)

+children
0.* H-status
SARANode 1
+mesh: SARAMesh SARASessionStatus
+node_id: string 1
+isRoot: bool +getNodeWithld(node_id: String)
+name: string +rootNode +getNodeWithName(node_name: String)
+transform: SARATransform +setFromJSONRepresentation()
+addChildNode(node: SARANode) 1
+parent

SARATransform SARAMesh SARAMaterial SARAColor
+position: Vector3 +vertices: float[*] +color: SARAColor +r:int
+rotation: Vector3 +normals: float[*] +emmisive: SARAColor +g: int
+scale: Vector3 +triangles: int[*] +metalness: float +v:int
+texture: Image +uvs: float[*] +roughness: float +a:int

+material: SARAMaterial

Figure 7. Class diagram of the most basic data model handled in the architecture.

Appl. Sci. 2020, 10, 2074 16 of 26

5.1. Sessions

The main concept of the data model is the Session which can be translated to the concept of a Scene
as previously mentioned. However, there is a slight change in the interpretation of the concept.
Since we want to provide collaboration capabilities, we have to enable several users to share AR
content and interactions. Hence, multiple users may connect to the same Session. The digital
elements associated with a Session will be shared among the connected users. SARA is capable
of handling several Sessions at the same time, each with its own resources, its connected users and its
functional objective.

Each Session has a SessionStatus associated, which includes a reference to a root Node. This Node
also finds its counterpart in the aforementioned platforms (i.e., a GameObject in Unity and a SCNNode
in ARKit for example). A Node keeps a reference to its parent and its children, which make up a
tree-like hierarchical structure referenced by the root node. Besides that, a Node may or may not have
an associated Mesh, which stores the graphic information of the 3D model. It is possible to have empty
Nodes, that only have a Transform (a position, rotation or scale) but no associated Mesh, with the aim
of grouping several nodes under the same parent.

Regarding the Mesh, we have made the decision to keep it as simple as possible. To do so, we only
store a list of vertices (each three numbers on the array form a vertex), a list of triangles (each number
references the index of a vertex of the vertices array while every three indexes form a triangle) and a list
of normals (each one associated with the vertices). we have decided to define the faces of the mesh as
triangles to simplify the development process. However, if it is required to use faces formed by more
than three vertices, it is easy to make that change.

Finally, each Session has an Alignment Info field associated. As shown in Figure 8, this class
represents a common point from where different strategies can be implemented. For example,
it is possible to set the Alignment Info to be Marker Based. This indicates that users must physically locate
the marker image on his environment and once it has been found, the new coordinate system that
encompasses the Session will be centered on it. In the future we are planning to allow the alignment
to be established through the use of SLAM maps [32]. However, at this moment this process is not
straightforward, since each platform and framework generates a different representation of the same
physical space and they use different formats to handle that information. Today, some industry
solutions are beginning to appear to solve this challenge, like for example, the Azure Spatial
Anchors [29] solution from Microsoft. Since that process requires machine learning capabilities
and it goes beyond the scope of this document, it has been decided to support it within the data
model, leaving it for a future implementation. Additionally, the use of geo-positioning techniques
like GPS may be integrated into the alignment in future versions. To end with the Alignment Info,
there is a simpler possibility: to not align the virtual content. In this case each SARA Client should offer
the user some kind of functionality to choose a real-world physical point that represents the previously
mentioned coordinate system.

Alignment Info

+type: int

A
| | |

AN SLAM Based Not Aligned Marker Based

+markerToDetect: Image
+markerWidth: float
+/MarkerHeight: float

Figure 8. Detail on the Alignment Method associated with a Session.

Appl. Sci. 2020, 10, 2074 17 of 26

5.2. Events

So far it has been presented how to encode the information that forms the Sessions. Now, it is time
to expose the data model that allows the exchange of information between the different services
of the architecture. The main entity used for this is an Event and its details can be found in Figure 9.

«enumeration» «enumeration»
Event_types SARAEvent ConnectionMethod
unknown +id: String The class of the event UDP
new user connection +timestamp: long _| can be distinguished TCcP
create session +sender_user: String using the type property ws
connect_user_to_session +ype: Even'g_types . MQTT
set session state +targetSessionID: String
get_session_list «enumeration»
incremental_update StatusFormat
!nteract!on_event_cllck unknown
interaction_event_drag obj
nodes_added ‘ ‘ custom_json
nodes_removed dae
set_node_material SARAEvent_Interaction SARAEvent_Information

+senderNodetID: String

A A
’7

SARAEvent_InteractionEventClick

SARAEvent_ConnectToSession

+session_id: String
+user_to_connect: String
+status_reception_format: StatusFormat

SARAEvent_NewUserConnection | |

+user_id: String
+connection_method: ConnectionMethod

SARAEvent_SetSessionState

+format: StatusFormat
+new_session_state: String

SARAEvent_InteractionEventDrag

+normalizedXDirection: float
+normalizedY Direction: float
+normalizedZDirection: float

SARAEvent_IncrementalUpdate

+target_session_id: String
+target_id: String
+property_path: String
+new_value: Object

SARAEvent_CreateSession

SARAEvent_NodesAdded
+nodes: List<SARANode>

SARAEvent_SetNodeMaterial

+node_id: String
+material: SARAMaterial

SARAEvent_NodesRemoved

+nodes: List<String>

Figure 9. Data model of the Events handled by the system.

As can be seen in Figure 9 two fields are known for each Event: the user who launched it
(i.e., the client id) and the target session (the Session to which the sender user is connected to). The type
property is used to easily distinguish the type of event when decoding it. For the moment, there are two
different types of Events: Interaction events and Information events.

On one hand, the interaction group encapsulates actions performed on a digital element, such as
clicks (which would be a common interpretation of taps and touches) or drag. On the other hand,
the information group includes events that update the information of the session or the connections,
hence the name.

e When a client application wants to connect to the system, a NewUserConnection event must be
generated. In this event the user that will be connected must be specified, as well as what we call
a Connection Method. As will be explained later, the system permit the network connection to be
performed using different protocols such as TCP, UDP, WebSockets and MQTT. Once the client has
connected with the system, it can be easily known which of these protocols was used to establish
the connection. However, in order to keep the data model clear, it has been decided to indicate
this information within the event itself. At this moment, her connection information has been
stored, but has not been connected to any Session yet. In order to do this, a ConnectToSession event
is required.

Appl. Sci. 2020, 10, 2074 18 of 26

o A ConnectToSession event must contain the identifier of the session to which the user is going
to connect, the user itself and a status reception format. The reason of the last field is closely related
to another of the types of information events, the SetSessionState.

e the SetSessionState event is used to completely replace the state of a session or to start it
for the first time. As it can be seen, it has a format field and a new session state one. In order
to maximize compatibility with as many platforms as possible, the system allows coding the state
of a session using different formats. Some of them, such as OBJ or COLLADA, are the most
popular on all platforms. However, the use of a custom JSON format is introduced here with
the aim of allowing greater clarity to the exchange of events as well as greater flexibility. The idea
is to export the status of the sessions (i.e., the nodes structure) to one of these formats and to
encode the result as a base64 string. With this differentiation, different users may receive the same
SessionStatus by means of different formats. It can be argued that this type of communication
is not the most efficient. In future SARA implementations, the entire data model could be encoded
as flat bytes, which would reduce the amount of information moved within the system (since
the JSON format introduces redundant characters) and the communication times.

o Finally, as opposed to the SetSessionState which replaces the old state of a session with a new one,
the IncrementallUpdate event is used to update specific properties of the nodes such as the position
or the rotation. To do so, the id of the target node is required, as well as the path to the property.
Let’s take as an example an update event for the position of a node (which would be thrown,
for example, when the node gets moved due to some kind of logic). The property_path would
have a value of “trans form.position” and the new_value would store the new state of that property
(e.g., an array like [1.0, 0.0, 0.0]). By using this event, selective changes can be made without
requiring to override the whole state of the Session.

5.3. Managing Collaboration Models

The third pillar of the data model is related to collaboration models. In Figure 10 a class diagram
of the collaboration models can be seen.

CollaborationModel

TurnBased +id: String
+name: String

+current_user_turn: String —|> +description: String <|_

+setUserTurn(user_id) +rules: CMRule[0..*]

+validate(event: Event)

JA)

Unconstrained

HierarchyBased OwnershipBased LayerBased
+setOwnership(user_id, node_id)
+topClients +layers ?
1.* +associations
Layer
Userinfo 0.* = —
I Ownership Association +layer_id: String
1 _Id: String +node_id: String +nodes: SARANode
[+user_id: String +users_with_access: String[0..*]

+manager +subordinates

Figure 10. Data model of the Events handled by the system.
Five different types of models are proposed in this document. However, it is perfectly feasible

to define new collaboration models by extending the basic ones. At the end, any kind of collaboration
model has to implement the validate event through some kind of logic. This process can be done

Appl. Sci. 2020, 10, 2074 19 of 26

either by directly implementing the logic in code or by using a rule-based external inference system.
Finally, in order to facilitate the understanding of the collaboration models we made five different
models with non-overlapping logic. However, nevertheless, it is possible to combine multiple
collaboration models at the same time. One example of this combination may be a game in which
users can take turns actions, and in these turns they can only interact with those elements in to layers
to which they have access. Thus, two models may be cooperating: a turn-based one for shift handling
and a ownership-based one to restrict the access to the AR elements.

To manage the collaboration models, a special set of events is required. Figure 11 shows a
possible set of those events for each collaboration model with the exception of the Unconstrained-model,
which does not require events. These events can be used by developers or they can define their own
set of events to define other types of collaboration models.

SARAEvent_Collaboration

Layer-based Ij

SEC_CreateLayer -

Hierarchy-based Ij

SetUserAsRoot

SEC_AskForTurn

+layer_id: String

R ™ +creator_id: String
Ownership-based
SEC_Removelayer

+layer_id: String

+user_id: String +user_id: String

SEC_SetUserTurn PromoteUser

+user_id: String

+user_id: String

SEC_AskForNodeOwnership

+user_id: String
+node_id: String SEC_AddUserToLayer
+layer_id: String
+user_id: String

DowngradeUser

+user_id: String

SEC_SetUserOwnership

SendUserToBottom

SEC_RemoveUserFromLayer | [—

+user_id: String
— +node_id: String

+layer_id: String +user_id: String

+user_id: String

|| SEC_RemoveUserOwnership

+user_id: String
+node_id: String

SEC_AddNodeToLayer — EnablelnteractionForSubordinates

+layer_id: String
+node_id: String

+leader_id: String

SEC_RemoveNodeFromLayer| | | DisablelnteractionForSubordinates

+leader_id: String

+layer_id: String
+node_id: String

SEC_MoveNode — EnablelnteractionForSubordinates

+node_id: String
+target_layer_id: String

+leader_id: String

| DisablelnteractionForSubordinates

+leader_id: String

AddNodeToLevel

|| +node_id: String
+leader_id: String

RemoveNodeFromLevel

— +node_id: String
+leader_id: String

L MoveNode

+node_id: String
+leader_id: String

Figure 11. Data model of the Events required for each Collaboration Model.

6. Creating and Deploying Applications Over SARA: The Case of a Collaborative
Voxel-Based Game

This Section presents an overview of the application development process based on SARA
by using a case approach. The chosen case is a collaborative real-time voxel-based construction game,
in which several users equipped with wearable and mobile devices may collaborate locally to achieve

Appl. Sci. 2020, 10, 2074 20 of 26

a common goal, by following different collaboration models (unconstrained and turn-based ones).
The development case thus features specific design requirements that enables showing how SARA
concept may provide to the development workflow. This prototype was inspired by Minecraft [34]
and its more recent one implementation, Minecraft Earth [35]. In the original game, the player
controlled a digital avatar inside a cube-based (voxel) world. Then, she can add or remove these
cubes for creating landscapes and structures. In the Minecraft Earth implementation, the voxel world
is constrained to a small surface and it can be viewed by means of Augmented Reality. Thus, in our
prototype several players will work together on a piece of land, to which they can add or eliminate
cubes in a collaborative manner. By default, a simple landscape appears, as a starting point for the users.
From there, they can use three simple tools to manipulate the aspect of the world. These three tools
are: (i) a shovel used to remove the cubes, (ii) a brush used to change the type of one cube and (iii) a
block adder, which will add a block in the desired point.

This small prototype has a self-contained functionality that allows all the SARA capabilities to be
easily applied. All the logic of the application, has been implemented using the Unity environment
and initially it was only focused to be for a single user, allowing the participant to click on the screen
to interact with the world. Thanks to SARA, AR collaboration capabilities can be easily added.
To illustrate the developing process, we propose the combination of HoloLens (for wearable AR)
and two iOS devices (an iPhone and an iPad, representative of hand-held ones). Table 2 gathers
the main features of this prototype.

Table 2. Features of the voxel-world game prototype.

To have fun while creating structures and

Common Objective landscapes together

Individual Objectives ~ Not specified. Users may distribute the work while playing

Number of Users Unlimited

Location of the .

Collaboration Mainly local

Involved Devices Computer, HoloLens and iOS devices
Unconstrained model, users will have to agree the

. actions. This is done to mimic the operation

Collaboration Model model of the original Minecraft. Turn-based model
also makes sense in this context

Temporality Real time

All users have the same capabilities: selection
Interaction Capabilities of the tool to be used and selection of a point
in the voxel world to apply the tool action

The content alignment is done through 2D,

AR Content Alignment physical marks

The development process can be summarized in 5 steps: (1) configure and launch the Communication
Service, (2) implement the main logic of the application, (3) create the SARA clients, (4) add specific logic
to those clients and (5) selecting and applying the Collaboration Model. Figure 12 gives an overview
of this process identifying the main tasks in each of the steps. Next, each of those five steps will be
presented in more detail.

1. Communication service configuration: the first step is to launch the artifact that represents
the Communication Service. In this case it consists of a Node.js application that has to run on a
computer. This is one of the artifacts that have already been generated when designing SARA
and therefore do not require implementation.

Appl. Sci. 2020, 10, 2074 21 of 26

2. Implementing the main logic of the application: the second step is to create the application
logic which, as has been said earlier, it will be a voxel-based creative game. It is also possible
to reuse an application already implemented, in order to adapt it to collaborative AR. All this
logic will be grouped within a SARA Client, which also incorporates the Session Manager
component used for establishing the communication. To implement this point, the first step
is to import the SARA library, which has already been generated and do not require intervention.
Once done that, it is the turn to set some basic information within the SARA adaptor instance,
such as the IP of the Communication Service, the Session to connect to or the format to be used
for the session updates. When the application runs, the SARA instance will generate the required
events to connect this client to the selected session. At this point, this client (the provider) is able
to send events to the CS. It is labeled as provider because it will inject the AR content to the session.
Once launched, it will make a general scan of all the elements within the Unity Scene, in this case
the voxel world. From there, the updates of the session nodes would be made when some element
in the scene changes. Additions and removals of cubes in the world will also generate update
events, so all participants will receive the new state of the world. Figure 13 shows a screenshot
of the Unity application with a small terrain already generated.

Configure and Launch This step does not require any implementation. It is only required to launch the service
(1) the Communication
Service

\ 4

Implement the main The logic of the application has to be implemented within one SARA client. This client will act as a provider.

(2) logic of the application Here, nodes are added to the scene status which will later be propagated. This step heavily depends on the
purpose of the application
v
Sara provides a client skeleton that allows to see the AR representation of the status of a session. If this
Create the SARA client has already been generated for the target platform, no extra implementation is required. Otherwise, it
(3) clients will be necessary to implement the client for the target platform, which can be reused in future

developments. The client must be able to detect user interaction with AR content.

\4

Some situations may require client applications to have some kind of logic implemented. An example of this

Add specific logic and situation is that of non-AR interfaces that allow the user to select tools. This kind of logic has to be adapted

(4) |nterfaceé;”te?ﬂt2e SARA to the device in use. In the event that this type of logic is not necessary because clients will not be able to
interact with the AR content, this step can be skipped.
v
Select or implement At this point it is possible to choose one of the collaboration models that SARA offers or to implement the
(5) the Collaboration logic of another. In the first case, it would be enough to associate the chosen model to the session.
Model

Figure 12. Overview of the five steps in which the process of developing with SARA is divided.

Figure 13. Screenshot of the Unity implementation.

Appl. Sci. 2020, 10, 2074 22 of 26

3. Creating the SARA Clients and enabling user interaction: for the third step it is required
to create the clients that will be used by the other participants, the consumers. To simplify, in this
case we are going to stick to only two devices; a HoloLens device and an iOS one. Through these
clients, users can see the session representation by means of AR. The implementation of this point
is similar to that of the previous one. On either platform (Unity for the HoloLens and ARKit
for the iOS one), the first step for generating the application is to import the SARA artifact.
After setting the required parameters, the application is ready to receive the update events and to
generate the proper AR representation. In both cases it is necessary to establish some way
to detect user interaction with AR elements. One possibility is to detect user gestures (hand
gestures in HoloLens and touches on the screen in the iOS client) at any time and if she is pointing
to an AR element, then generating an Interaction Event. Another possibility is to add listeners
to the AR elements themselves (GameObjects in Unity and SCNNodes in ARKit) with only
the elements with these listeners generating those events. Finally, the functionality described up
to this point is common to all SARA clients, i.e., it is independent of the application and could be
used for any context.

4. Adding specific logic to SARA Clients: the fourth step is to implement the specific logic
of the application for the users’ clients. This point will be completely dependent on the application.
In the example of voxel-based game, it is necessary to offer the users an interface from which
they can select tools to use them. For example, in the case of the iOS client, a toolbar can be
exposed to the users from where the action to be used is selected. After that, a cube is added at
the point of the AR world that the user has touched. In the HoloLens case, the choice of the tool
must be adapted to the form of interaction of that platform (e.g., voice commands, 3D tool
palettes or 2D overlays may be used). Figure 14 shows a screenshot of the iOS client. From the
tools in the bottom-left corner of the figure the user may select the tool to be used. Figure 15
on the other hand, shows a capture taken from the HoloLens, which in this case only receives
the status of the session and has no interaction capabilities. Thus, the HoloLens participant can
only inspect the AR content. we can imagine a scenario in which the playing field of some e-sport
(e.g., League of Legends [36]) is injected into SARA. The spectators could then see an AR copy
of that land where they wanted, but without the ability to interact. However, specialists could
have access to a set of tools that allow adding annotations on the map.

§s’ssii0e(ails

Figure 14. Capture of the voxel-based prototype taken from the iOS client.

Appl. Sci. 2020, 10, 2074 23 of 26

Figure 15. Capture of the voxel-based prototype taken from the HoloLens client.

5. Selecting and applying the Collaboration Model: the fifth and final step is to establish
the Collaboration Model that the session will present. In the voxels example, several possibilities
are viable. For example, it is possible to use a Turn-based model, which will only allow the user
who has the turn to make changes on the world. Another possibility is to limit the interaction
capabilities of the users, allowing only one user to add cubes and another one to only delete them.
However, it is also possible to set aside any rule by choosing the Unconstrained model. In that
case, all participants may add and remove cubes from the world at their will, in a manner similar
to the original version of the game where no control was performed.

In summary, in step 1 we launch the Communication Service which will allow the rest of the system
to work. In step 2 we implement the application logic and prepare the connection with the SARA
platform. With step 3, users’ clients are generated, through which they will be able to see the AR
content that represents the session status. In step 4, if required, the specific logic of the users’ clients
is implemented, which will depend on the scope of the application. Finally, in step 5 we select
a Collaboration Model for the session that will make the appropriate regulation of the events
of the session. This prototype can be seen in action in the following link [37]. As shown in Figure 6,
there are three stages that are common among multiple developments over SARA: the configuration
and launching of the Communication Service (step 1), the creation of the consumer clients (step 3)
and the selection of the Collaboration Model (step 5). Thus, SARA provides artifacts with the basic
functionality associated with each of these stages, which supports the application development
by reusing them.

7. Conclusions and Future Work

In this paper we presented SARA, a cross-platform microservice-based architecture
for collaborative Augmented and Mixed Reality that aims at supporting the deployment of these
type of services. SARA also allows the adaptation of applications not intended for collaborative
AR, so that they present this functionality. In addition, it supports the management of collaboration
models, allowing their reuse between applications with different functional objectives and setting
up the schemes and data models required for integrating new ones. These advantages have been
demonstrated by the development of a game prototype, the voxel-based world editor, in which a
single-user game has been adapted to the collaborative AR context.

Further work is needed to make the architecture and its supporting tools usable
in generalized scenarios.

Firstly, it is required to address the specific issues related to performance, which may be
critical in large-scale applications. In this moment, communication between clients is done through
the exchange of events encoded in JSON format. Thus, a first step toward enhancing the performance
will be to dispense with JSON-based verbose encoding and use a binary format that allows compression.

Appl. Sci. 2020, 10, 2074 24 of 26

This will reduce the bandwidth required to send the messages, also reducing their size and alleviating
JSON parsing times (which generally tend to be high).

Second, when defining both the Meshes and the Materials of the AR assets, for the sake of clarity
it was decided to keep them simple. However, most 3D editing programs allow, for example,
grouping several meshes under one or applying several materials and textures to the same object.
The incorporation of these improvements in SARA would not be a problem, since as discussed
in Section 5, the data model can be easily extended.

Third, a very common practice in 3D development environments is the use of Shaders. A Shader
is a program fragment in charge of representing the visual elements and what is their appearance.
This includes, for example, lights and shadows, as well as more advanced effects such as brightness,
emission and reflections. In the practice of these environments, it is possible to change the visual
appearance of an element without having to change the associated mesh, i.e., using one of those
shaders. They are also used to “draw” visual elements that would otherwise consume many resources
or calculations, such as particle systems. The incorporation of shaders in SARA will improve its
graphic section and homogenize the representation of the elements among all platforms.

Fourth and finally, the integration of sound and animations is a highly desired feature. The vast
majority of application used every day make use of sound or music effects to give feedback to the user
or to improve their experience. With the implementation of SARA presented in this paper, the only
way to integrate sound is to have predefined which are the audio files to play. Then, when a certain
event is received in the consumer clients, these audio files are played. However, this approach is not
flexible. For its part, the animation of 3D elements is also essential in many applications, especially
in video games. SARA is able to handle changes in the basic characteristics of the nodes of a session
(e.g., position, rotation and mesh information) and when they are animated or changed, participants
will be able to see that animation as well. It would be desirable to analyze SARA’s behavior with
advanced animations as well as the integration of these animations themselves.

Thus, we have organized future technical work around (1) performance, (2) representation issues
(meshes, materials and shaders) and (3) integration of sound and video. As the reader may notice,
these are challenging aspects but are not affecting the general philosophy around collaboration models
that drives the architecture, which may be extended and adapted to new service scenarios that may
require different collaboration schemes.

Apart from considering these technical challenges, empirical evaluation on SARA perceived
value and impact on real development practices could be addressed over a stable and fully functional
implementation of the architecture. This would also involve recruiting a sample of developers with
comparable skills to complete specific tasks over the framework. This approach could help to better
assess the benefits and unveil limitations of the architecture. Our current further work is focused
on exploiting SARA as a technology layer for prototyping applications to drive user studies within
different service domains, technology settings and collaboration scenarios (based on a single model
or combining several ones). Hopefully, these experiences will allow analyzing how the proposed
collaboration models fit within mental models and to which extent the practical implementation
of the proposed collaboration is acceptable in a realistic setting (with device, interaction and real time
constraints) for a wider population. An additional issue to explore are the similarities and differences
that remote and local contexts pose on collaboration and the possibility of delivering cross-domain
collaborative AR interaction models.

Author Contributions: D.V.-M. and A.M.B. contributed the work concept, the design of the architecture and
the writing. D.V.-M. implemented the technical layer with support of L.B. All authors have read and agreed to the
published version of the manuscript

Funding: This work was supported by UPM Project RP150955017, and by the Spanish Ministry of Economy
and Competitiveness under grant TEC2017-88048-C2-1-R.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2020, 10, 2074 25 of 26

References

1.

b

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Gartner 100 Million Consumers Will Shop in AR by 2020. 2019. Available online: https://www.gartner.
com/en/newsroom/ press-releases/2019-04-01-gartner-says-100-million-consumers-will-shop-in-augme
(accessed on 17 March 2020).

Azuma, R.T. A survey of augmented reality. Presence Teleoper. Virtual Environ. 1997, 6, 355-385. [CrossRef]
Milgram, P; Kishino, F. A taxonomy of mixed reality visual displays. IEICE Trans. Inf. Syst. 1994, 77, 1321-1329.
Caudell, T.P,; Mizell, D.W. Augmented reality: An application of heads-up display technology to manual
manufacturing processes. In Proceedings of the IEEE 25th Hawaii International Conference on System
Sciences, Kauai, HI, USA, 7-10 January 1992; Volume 2, pp. 659-669.

Rekimoto, J. Transvision: A hand-held augmented reality system for collaborative design. In Proceedings of
the Virtual Systems and Multimedia, Gifu, Japan, 18-20 September 1996; Volume 96, pp. 18-20.
Schmalstieg, D.; Fuhrmann, A.; Szalavari, Z.; Gervautz, M. Studierstube-an environment for collaboration in
augmented reality. In Proceedings of the CVE'96 Workshop Proceedings, Nottingham, UK, 26-28 May 1996;
Volume 19.

Szalavari, Z.; Schmalstieg, D.; Fuhrmann, A.; Gervautz, M. “Studierstube”: An environment for collaboration
in augmented reality. Virtual Real. 1998, 3, 37—48. [CrossRef]

Schmalstieg, D.; Fuhrmann, A.; Hesina, G.; Szalavari, Z.; Encarnagao, L.M.; Gervautz, M.; Purgathofer, W.
The studierstube augmented reality project. Presence Teleoperators Virtual Environ. 2002, 11, 33-54. [CrossRef]
Kaufmann, H. Collaborative Augmented Reality in Education; Institute of Software Technology and Interactive
Systems, Vienna University of Technology: Vienna, Austria, 2003.

Fuhrmann, A.L.; Purgathofer, W. Studierstube: An Application Environment for Multi-User Games in
Virtual Reality. GI Jahrestag. 2001, 2, 1185-1190.

Hollerer, T.; Feiner, S.; Terauchi, T.; Rashid, G.; Hallaway, D. Exploring MARS: Developing indoor and
outdoor user interfaces to a mobile augmented reality system. Comput. Gr. (Pergamon) 1999, 23, 779-785.
[CrossRef]

Benko, H.; Ishak, E.W.; Feiner, S. Collaborative mixed reality visualization of an archaeological excavation.
In Proceedings of the Third IEEE and ACM International Symposium on Mixed and Augmented Reality,
Arlington, VA, USA, 2-5 November 2004; pp. 132-140.

Nilsson, S.; Johansson, B.; Jonsson, A. Using AR to support cross-organisational collaboration in dynamic tasks.
In Proceedings of the 8th IEEE International Symposium on Mixed and Augmented Reality, Orlando, FL, USA,
19-22 October 2009; pp. 3-12.

Hammad, A.; Wang, H.,; Mudur, SP. Distributed augmented reality for visualizing collaborative
construction tasks. J. Comput. Civil Eng. 2009, 23, 418-427. [CrossRef]

Datcu, D.; Cidota, M.; Lukosch, S.; Oliveira, D.M.; Wolff, M. Virtual co-location to support remote assistance
for inflight maintenance in ground training for space missions. In Proceedings of the 15th International
Conference on Computer Systems and Technologies, Ruse, Bulgaria, 19-20 June 2014; ACM: New York, NY,
USA , 2014; pp. 134-141.

Aschenbrenner, D.; Li, M.; Dukalski, R.; Verlinden, J.; Lukosch, S. Collaborative production line planning
with augmented fabrication. In Proceedings of the IEEE Conference on Virtual Reality and 3D User Interfaces
(VR), Reutlingen, Germany, 18-22 March 2018; pp. 509-510.

Coppens, A.; Mens, T. Towards Collaborative Immersive Environments for Parametric Modelling.
In Proceedings of the International Conference on Cooperative Design, Visualization and Engineering,
Hangzhou, China, 21-24 October 2018; Springer: Berlin, Germany, 2018; pp. 304-307.

Blanco-Ferndndez, Y.; Lépez-Nores, M.; Pazos-Arias,].J.; Gil-Solla, A.; Ramos-Cabrer, M.; Garcia-Duque, J.
REENACT: A step forward in immersive learning about Human History by augmented reality, role playing
and social networking. Exp. Syst. Appl. 2014, 41, 4811-4828. [CrossRef]

Sanabria,].C.; Aramburo-Lizarraga, J. Enhancing 21st century skills with AR: Using the gradual immersion
method to develop collaborative creativity. Eurasia]. Math. Sci. Technol. Educ. 2017, 13, 487-501. [CrossRef]
Datcu, D.; Lukosch, S.G.; Lukosch, H.K. A collaborative game to study the perception of presence during
virtual co-location. In Proceedings of the Companion Publication of the 17th ACM Conference on Computer
Supported Cooperative Work & Social Computing, Baltimore, MD, USA, 15 February 2014; ACM: New York,
NY, USA, 2014; pp. 5-8.

https://www.gartner.com/en/newsroom/press-releases/2019-04-01-gartner-says-100-million-consumers-will-shop-in-augme
https://www.gartner.com/en/newsroom/press-releases/2019-04-01-gartner-says-100-million-consumers-will-shop-in-augme
http://dx.doi.org/10.1162/pres.1997.6.4.355
http://dx.doi.org/10.1007/BF01409796
http://dx.doi.org/10.1162/105474602317343640
http://dx.doi.org/10.1016/S0097-8493(99)00103-X
http://dx.doi.org/10.1061/(ASCE)0887-3801(2009)23:6(418)
http://dx.doi.org/10.1016/j.eswa.2014.02.018
http://dx.doi.org/10.12973/eurasia.2017.00627a

Appl. Sci. 2020, 10, 2074 26 of 26

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

36.
37.

Huo, K.; Wang, T.; Paredes, L.; Villanueva, A.M.; Cao, Y.; Ramani, K. SynchronizAR: Instant Synchronization
for Spontaneous and Spatial Collaborations in Augmented Reality. In Proceedings of the 31st Annual
ACM Symposium on User Interface Software and Technology, Berlin, Germany, 14-17 October 2018; ACM:
New York, NY, USA, 2018; pp. 19-30.

De Belen, R.A.J.; Nguyen, H.; Filonik, D.; Del Favero, D.; Bednarz, T. A systematic review of the
current state of collaborative mixed reality technologies: 2013-2018. AIMS Electron. Electr. Eng. 2019,
doi:10.3934/ElectrEng.2019.2.181. [CrossRef]

Chi, PY.P; Li, Y. Weave: Scripting cross-device wearable interaction. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems; ACM: New York, NY, USA, 2015; pp. 3923-3932.
Houben, S.; Marquardt, N. Watchconnect: A toolkit for prototyping smartwatch-centric cross-device
applications. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems; ACM:
New York, NY, USA, 2015; pp. 1247-1256.

Nebeling, M.; Teunissen, E.; Husmann, M.; Norrie, M.C. XDKinect: Development framework for cross-device
interaction using kinect. In Proceedings of the 2014 ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, Rome, Italy, 17-20 June 2014; ACM: New York, NY, USA, 2014; pp. 65-74.

Yang, J.; Wigdor, D. Panelrama: enabling easy specification of cross-device web applications. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, Rome, Italy, 17-20 June 2014; ACM: New York,
NY, USA, 2014; pp. 2783-2792.

Nebeling, M.; Mintsi, T.; Husmann, M.; Norrie, M. Interactive development of cross-device user
interfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
Rome, Italy, 17-20 June 2014; ACM: New York, NY, USA, 2014; pp. 2793-2802.

Speicher, M.; Hall, B.D,; Yu, A.; Zhang, B.; Zhang, H.; Nebeling, J.; Nebeling, M. XD-AR: Challenges and
opportunities in cross-device augmented reality application development. In Proceedings of the ACM on
Human-Computer Interaction, Montreal, QB, Canada, 21-26 April 2018; Volume 2, p. 7.

Azure Spatial Anchors. Microsoft. 2019. Available online: https://azure.microsoft.com/id-id/services/
spatial-anchors/ (accessed on 17 March 2020).

Spectator View. Microsoft. 2019. Available online: https://docs.microsoft.com/en-us/windows/mixed-
reality /spectator-view/ (accessed on 17 March 2020).

Merriam-Webster’s Definition of Collaboration. 2019. Available online: https://www.merriam-webster.
com/dictionary/collaboration (accessed on 17 March 2020).

Dissanayake, M.G.; Newman, P.; Clark, S.; Durrant-Whyte, H.E,; Csorba, M. A Solution to the Simultaneous
Localization and Map Building (SLAM) problem. IEEE Trans. Robot. Autom. 2001, 17, 229-241. [CrossRef]
Soldani, J.; Tamburri, D.A.; Van Den Heuvel, W.J. The pains and gains of microservices: A systematic grey
literature review. J. Syst. Softw. 2018, 146, 215-232. [CrossRef]

Minecraft. 2019. Available online: https://www.minecraft.net/en-us/ (accessed on 17 March 2020).
Minecraft Earth. 2019. Available online: https://www.minecraft.net/es-es/about-earth (accessed on 17
March 2020).

League Of Legends Game. 2019. https://www.leagueoflegends.com (accessed on 17 March 2020).

SARA in Action, Video on YouTube. Available online: https://youtu.be/EBMPeK7gJ0Q (accessed on 17
March 2020).

® (© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3934/ElectrEng.2019.2.181
https://azure.microsoft.com/id-id/services/spatial-anchors/
https://azure.microsoft.com/id-id/services/spatial-anchors/
https://docs.microsoft.com/en-us/windows/mixed-reality/spectator-view/
https://docs.microsoft.com/en-us/windows/mixed-reality/spectator-view/
https://www.merriam-webster.com/dictionary/collaboration
https://www.merriam-webster.com/dictionary/collaboration
http://dx.doi.org/10.1109/70.938381
http://dx.doi.org/10.1016/j.jss.2018.09.082
https://www.minecraft.net/en-us/
https://www.minecraft.net/es-es/about-earth
https://www.leagueoflegends.com
https://youtu.be/EBMPeK7gJ0Q
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	State of the Art
	Analysis of the Collaboration in AR Context
	Definition of Collaboration in AR Context and Its Main Characteristics
	Conceptual Framework to Define Collaboration

	SARA: Main Characteristics and Architecture Components
	The Communication Service (CS)
	The SARA Client (SC)
	The Collaboration Services

	SARA Data Model
	Sessions
	Events
	Managing Collaboration Models

	Creating and Deploying Applications Over SARA: The Case of a Collaborative Voxel-Based Game
	Conclusions and Future Work
	References

