
applied  
sciences

Article

Asymptotic Performance Analysis of the MUSIC
Algorithm for Direction-of-Arrival Estimation

So-Hee Jeong 1, Byung-kwon Son 2 and Joon-Ho Lee 3,*
1 Smart Mobility Research Section, Electronics and Telecommunications Research Institute Daegu-Gyeongbuk

Research Center, Daegu 42994, Korea; Soheej@etri.re.kr
2 MFG HQ Qutomation TFT, Amkor Technology Korea, Inc., Incheon 21991, Korea; hellosbk@nate.com
3 Department of Information and Communication Engineering, Sejong University, Seoul 05006, Korea
* Correspondence: joonhlee@sejong.ac.kr; Tel.: +82-2-3408-3195

Received: 29 January 2020; Accepted: 12 March 2020; Published: 18 March 2020
����������
�������

Abstract: We consider the performance analysis of the multiple signal classification (MUSIC)
algorithm for multiple incident signals when the uniform linear array (ULA) is adopted for estimation
of the azimuth of each incident signal. We derive closed-form expression of the estimation error
for each incident signal. After some approximations, we derive closed-form expression of the
mean square error (MSE) for each incident signal. In the MUSIC algorithm, the eigenvectors of
covariance matrix are used for calculation of the MUSIC spectrum. Our derivation is based on how
the eigenvectors of the sample covariance matrix are related to those of the true covariance matrix.
The main contribution of this paper is the reduction in computational complexity for the performance
analysis of the MUSIC algorithm in comparison with the traditional Monte–Carlo simulation-based
performance analysis. The validity of the derived expressions is shown using the numerical results.
Future work includes an extension to performance analysis of the MUSIC algorithm for simultaneous
estimation of the azimuth and the elevation.

Keywords: analytic performance analysis; multiple signal classification (MUSIC); uniform linear
array (ULA); Taylor series; root mean square (RMS)

1. Introduction

The multiple signal classification (MUSIC) algorithm [1] has been one of the most widely used
direction-of-arrival (DOA) algorithms [2,3]. It exploits the orthogonality between the noise eigenvectors
of the covariance matrix and the array vectors associated with the true angles of the incident signals.
Since the noise subspace is orthogonal to the signal subspace, the array vectors corresponding to the
true incident angles should belong to the signal subspace of the covariance matrix.

In practice, the covariance matrix itself, which is defined from the ensemble average, is not usually
available, and the sample covariance matrix is obtained from time average. In the assumption of the
ergodicity, the covariance matrix can be replaced with the sample covariance matrix when the number
of snapshots is very large. When the number of snapshots is finite, the time-average-based sample
covariance is not equal to the ensemble-average-based true covariance matrix.

Since the true covariance matrix is not available, we use the eigenvectors of the sample covariance
matrix, not the eigenvectors of the true covariance matrix. When the number of the snapshots is finite,
the eigenvectors of the sample covariance matrix are not identical to those of the covariance matrix
due to the difference between the true covariance matrix and the sample covariance matrix.

Although the array vectors corresponding to the true incident angles belong to the signal subspace
of the true covariance matrix, the array vector corresponding to the true incident angles do not belong
to the signal subspace of the sample covariance matrix. Note that, in the MUSIC algorithm, angles
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spanning the signal subspace of the sample covariance matrix, not the true covariance matrix, are used
as estimates of incident signals since true covariance matrix is not available. The mathematical and
statistical theories used for derivation of the results are as follows:

Statistical description of perturbations How various perturbations can be statistically described in
terms of probability density function, moments to get a closed-form expression of the
MSE of the estimate.

Taylor series How Taylor series can be adopted to obtain explicit expression of the MSE of the estimate
Eigenvector perturbation and eigenvalue perturbation How the eigenvectors and the eigenvalues of

a matrix are perturbed due to the perturbations in the entries of the matrix.

In [2], the authors carried out a performance analysis of the MUSIC algorithm and derived an
implicit expression of the estimate. On the other hand, in this paper, explicit expressions of the estimate
itself and the MSE of the estimate have been derived. In Figure 1, the performance analysis proposed in
this paper is summarized. Figure 2 clearly indicates how the proposed scheme in this paper is different
from the existing performance analysis of the MUSIC algorithm in [2]. In this paper, we obtain the
explicit expressions of θ

(1)
n , θ

(2)
n and θ

(3)
n . The estimate with superscript (1) denotes the estimate of the

original MUSIC algorithm. Note that no approximation is used in getting the estimate with superscript (1).
The estimate with superscript (2) denotes the estimate based on the first approximation, and that with
superscript (3) represents the estimate based on the first approximation and the second approximation.

The difference between θ
(1)
n and θ

(2)
n quantifies the error due to the first approximation since the

first approximation is applied in getting θ
(2)
n . Note that no approximation is applied in getting θ

(1)
n .

Similarly, the difference between θ
(2)
n and θ

(3)
n quantifies the error due to the second approximation

since the first approximation and the second approximations are applied in getting θ
(3)
n . Based on this

intuition, by comparing θ
(1)
n , θ

(2)
n and θ

(3)
n , we can easily determine which approximation results in the

dominant approximation error. This inspection cannot be obtained from the scheme presented in the
previous study [2].

As far as the authors know, no previous study on the performance analysis of the MUSIC algorithm
presented explicit expressions of each estimate in successive approximations [4–10]. Depending on how
many approximations out of all the approximations are applied, the estimates for all the intermediate
stages are rigorously derived in this paper.

In this paper, we consider the case in which multiple signals are incident on the uniform linear
array (ULA). To quantify the difference between the signal subspace of the true covariance matrix
and that of the sample covariance matrix, the Taylor series expansion is adopted to get an analytic
expression of the MSE.

For getting θ
(1)
n , for n = 1, . . . , d, in the original MUSIC algorithm, the MUSIC spectrum has to

be evaluated as the azimuth angle takes discrete search angles. Note that d denotes the number of
incident signals. To estimate both azimuth and elevation, the MUSIC spectrum has to evaluated as
two variables of azimuth and elevation take discrete search angles, which can be computationally
intensive, especially for small increments of the azimuth and the elevation. Note that the estimate is
obtained from the search angle which optimizes the MUSIC cost function. Therefore, in the original
MUSIC algorithm, the final estimate depends on how the search range and the search step are chosen.
Improperly chosen search angles in the MUSIC algorithm implementation result in an inaccurate
estimate, which degrades the performance of the original MUSIC algorithm.

In short, there are two problems in getting θ
(1)
n : Firstly, it can be computationally intensive for

simultaneous estimation of azimuth and elevation. Secondly, the estimate is highly dependent on the
selection of the search range and the search step.

It is described how the first problem with θ
(1)
n can be overcome by adopting δθ

(2)
n and δθ

(3)
n

proposed in this paper. δθ
(2)
n is given by (38), and δθ

(3)
n is given by (39). Since (38) and (39) are

closed-form expressions, evaluation of δθ
(2)
n and δθ

(3)
n does not require computationally intensive
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exhaustive search over search angles. Therefore, getting δθ
(2)
n and δθ

(3)
n is much less computationally

intensive than getting θ
(1)
n .

 

Figure 1. Summary of performance analysis of the multiple signal classification (MUSIC) algorithm.
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Existing method Ref. [2]

Implicit expression of MSE of azimuth estimate

Proposed scheme

Explicit expression of MSE of azimuth estimate 
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Figure 2. Difference between the existing method and the proposed scheme.

The second problem with θ
(1)
n can also be circumvented. Since δθ

(2)
n and δθ

(3)
n are analytically

given by (38) and (39), they do not depend on the choice of search parameters such as the search step
and the search range.

To get δθ
(2)
n analytically from (38), the first approximation has to be applied to the cost function of

the original MUSIC algorithm. On the other hand, in getting θ
(1)
n , no approximation is applied to the

cost function of the original MUSIC algorithm. Therefore, δθ
(2)
n can be regarded as an estimation error

associated with the approximated cost function.
Similarly, to get δθ

(3)
n analytically from (39), the first approximation and the second approximation

should be applied to the cost function of the original MUSIC algorithm. Although θ
(1)
n is obtained from

an exhaustive search of the cost function of the original MUSIC algorithm, no approximation is applied to
get θ

(1)
n . δθ

(3)
n can also be regarded as an estimation error associated with the approximated cost function.

Due to search-free characteristics of evaluating (38) and (39), single evaluation of (38) and (39)
once is not computationally intensive at all. On the other hand, many evaluations of (38) and (39) can
be computationally intensive, especially for large number of repetitions. Note that (38) and (39) should
be evaluated many times to empirically quantify the accuracy of δθ

(2)
n and δθ

(3)
n and that the number

of repetitions should be large enough to make the estimated accuracy more reliable.
To obviate this problem, it is shown in this paper that the MSE of δθ

(3)
n can be analytically given

by (40). Empirical MSE from many evaluations of (39) can be replaced with analytic MSE given by (40):
single evaluation of (40) is much less computationally intensive than many evaluations of (39).

It should also be noted that, unlike δθ
(3)
n , it is impossible to get an analytic expression of the MSE

of δθ
(2)
n . Therefore, the MSE of θ

(2)
n should be evaluated empirically from many evaluations of (38).

Different realization of Gaussian-distributed noise should be used for each evaluation of (38).
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In summary, the performance of the MUSIC algorithm can be evaluated very efficiently via (40)
in comparison with the Monte–Carlo simulation-based performance analysis.

The rest of this paper is structured as follows. In Section 2, we explain how the notation can be
used to describe the proposed method. In Section 3, we address the conventional MUSIC algorithm.
In Section 4, the explicit expression of the difference between the true covariance matrix and the
sample covariance matrix has been derived. In Section 5, we have derived an expression of difference
between the signal eigenvector of the true covariance matrix and that of the sample covariance matrix
in terms of the difference between the true covariance matrix and the sample covariance matrix.
In Section 6, a few closed-form expressions of an estimation error, depending on whether specific
approximation is applied or not, are derived. In Section 7, for one of the many closed-form expressions
of an estimation error, we have derived an explicit representation of the estimate accuracy in terms of
the MSE. In Section 8, we address performance analysis of the MUSIC algorithm for multiple incident
signals. The simulation results are shown to validate the closed-form estimation error of the proposed
method in comparison with an estimation error of the conventional MUSIC method.

In [11], an explicit closed-form expression of the MSE of the direction-of-arrival (DOA) estimation
algorithm based on maximum-likelihood (ML) criterion is presented. On the other hand, in this paper,
the performance analysis of the MUSIC DOA estimation algorithm for the uniform linear array is
proposed. In [11], the derivation is based on the Taylor series expansion of the sample covariance
matrix itself since the cost function of the ML DOA estimation algorithm can be explicitly written
in terms of the sample covariance matrix. In this paper, we adopt the Taylor series expansion of the
eigenvectors of the sample covariance matrix, not the Taylor series expansion of the sample covariance
matrix itself, since the cost function of the MUSIC algorithm can be written in terms of the eigenvectors
of the sample covariance matrix, not in terms of the sample covariance matrix.

In [12], the authors have presented the statistical analysis of MUSIC algorithm for general sparse
linear arrays in the presence of sensor location uncertainty. Both cases of deterministic sensor location
error and stochastic sensor location error have been considered.

In [13], the authors have considered basis mismatch problem in DOA estimation. The authors
have indicated why dense sampling grids cannot solve basis mismatch problem completely, and they
proposed new scheme which is superior to the previous method for handling basis mismatch problem.
The superiority of the proposed scheme has been validated in terms of computational complexity and
estimation accuracy.

In [14], the authors have presented a new scheme, called sG-MUSIC, which is superior to the
previous G-MUSIC algorithm in the viewpoint of a bias of the estimate. The authors have shown that
the scheme is quite effective when the number of snapshots is small.

In [15], the authors have proposed how the dimension of DOA estimation can be reduced when
only a few snapshots are available. The scheme can be applied to 2D-DOA estimation as well as 1-D
DOA estimation.

In [16], the authors have presented the performance analysis of G-MUSIC algorithm. The authors
have shown in what situation G-MUSIC is superior to the original MUSIC algorithm. The authors
have also presented asymptotic variances of G-MUSIC.

There has been a great deal of research on the determination of emitter location. Localization
algorithm consists of two parts: measuring localization parameters between nodes, and the use
of these parameters to estimate location. The localization parameters can be angle-of-arrival
(AOA), time-difference-of-arrival (TDOA), frequency-difference-of-arrival (FDOA), and received signal
strength (RSS). In this paper, we consider performance analysis of the MUSIC algorithm, which is
one of the DOA estimation algorithms. The DOA estimation is the main application of array signal
processing. Radar and sonar are also good examples of the application of array signal processing.

The authors have presented performance analysis for use with amplitude comparison monopulse
DOA algorithm under measurement uncertainty. The derived results can be used for determining
how the performance of the amplitude comparison monopulse algorithm degrades due to an additive
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measurement noise without computationally intensive Monte–Carlo simulation. The difference
between the scheme in [17] and the proposed scheme in this paper is as follows: the scheme in [17]
deals with the performance analysis of monopulse algorithm, which is usually used in tracking radar
in the sense that an initial estimate of the DOA should be given in advance. This paper deals with the
performance analysis of the MUSIC algorithm, where an initial estimate is not required.

In monopulse algorithm, the tracking radar transmits a radar signal and uses a reflected signal
from a radar target to update the DOA. On the other hand, in MUSIC algorithm, direction-finding
(DF) station does not transmit a signal to estimate the DOA of an emitter: the DF station just receives a
signal of an active emitter, and uses a received signal to estimate the DOA of the emitter. Therefore, the
monopulse algorithm is an active DOA estimation algorithm, and the MUSIC algorithm is a passive
DOA estimation algorithm.

In [18], the authors proposed how to suppress motion-induced phase in frequency modulated
continuous wave (FMCW) radar for automotive application. The motion compensation method is
not computationally intensive. Conventional beamforming algorithm is used for DOA estimation.
Although the authors illustrate that the motion compensated algorithm results in smaller estimation
error than the uncompensated algorithm, they do not derive the closed-form expression of the
MSE of the azimuth estimate: the authors illustrate that the peak of the DOA spectrum for the
motion-compensated conventional beamforming algorithm is closer to true incident angle than the
peak of the DOA spectrum for the original conventional beamforming algorithm. On the other hand,
in this paper, the closed-form expression of the MSE of the azimuth estimate for the MUSIC DOA
algorithm is presented.

If the MUSIC algorithm, not the conventional beamforming algorithm, is employed for DOA
estimation of FMCW radar, the approach leading to Equation (40) of this paper can be applied to get
the closed-form expression MSEs of the azimuth estimate both for uncompensated MUSIC algorithm
and for compensated MUSIC algorithm. Note that, to obtain the closed-form expression of the MSE
of the motion-compensated MUSIC algorithm in [18], the derivation leading to (40) in this paper is
modified so that the motion-compensation proposed in [18] can be taken into account in the MUSIC
DOA estimation.

In [19], the authors proposed how to improve performance of the minimum variance distortionless
response (MVDR) beamforming algorithm by exploiting signal self-cancellation phenomenon in DOA
estimation of underwater acoustic sources. The proposed algorithm is called self-signal cancellation
MVDR (SCC-MVDR).

In Figures 4 and 5 of [19], they illustrated the root mean square errors (RMSEs) of the MVDR, the
MUSIC, the root-MUSIC, TLS-ESPRIT, the propagator method and the SCC-MVDR. The RMSEs are
obtained from Equation (17) of [19]: the RMSEs are obtained empirically, not analytically, from
the Monte Carlo simulation with the number repetitions of 100. That is, 100 repetitions of the
MUSIC algorithm should be performed to get the RMSEs for the MUSIC algorithm. On the other
hand, the RMSEs for the MUSIC algorithm can be obtained analytically, without time-consuming
repetitive execution of the MUSIC algorithm, by taking the square root of the MSE value in (40)
of this paper. In Figure 4 of [19], the RMSEs with respect to SNRs for fixed number of snapshots,
100, are given. In Figure 5 of [19], the RMSEs with respect to the number of snapshots for fixed
SNR are presented. Note that, in this paper, the number of snapshots and the SNRs are explicitly
taken into account in deriving the MSE in (40), implying that the empirical RMSEs for the MUSIC
algorithm in Figures 4 and 5 of [19] can be analytically by taking the square root of the MSE value
given by (40). Note that analytical approach is much less computationally intensive than Monte–Carlo
simulation-based empirical approach.
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In [20], a new DOA estimation algorithm for use with direction estimation of sound source.
The preprocessing of the scheme is based on the intuition that isolation of a target speaker can be
achieved by selecting dominant time-frequency bin of the time-frequency distribution. Furthermore,
neural network approach is employed to finally estimate the DOA of sound source. The performance
of the proposed DOA estimation algorithm is given by the mean absolute error (MAE), not the MSE.
The MAE is empirically estimated from the Monte–Carlo simulation with the number of repetitions
of 200. In summary, they proposed a new DOA estimation algorithm, and the performance of the
proposed algorithm is given by the empirically obtained MAE. If the MUSIC algorithm is used for the
DOA estimation in the sound source experiment described in [20], the expression in Equation (40) of
this paper can be employed to yield the performance of the MUSIC algorithm in terms of the MSE
analytically, not empirically.

In [21], the authors are concerned with how to enhance target sound sound when multiple sound
sources are present. Preprocessing for the proposed enhancement scheme is to estimate the DOA of
the target sound source. That is, the DOA of the sound source should be available for implementation
of the proposed target enhancement scheme. In experiment 3 using simulated data and in experiment
5 using recorded data in an anechoic chamber, the authors show how performance of the source
enhancement depends on the DOA mismatch, which is the difference between the true DOA and the
estimated DOA. If the MUSIC algorithm is employed for preprocessing DOA estimation, the expression
in (38) and (39) can be used for calculation of the DOA mismatch.

In the presence of sensor measurement noise, DOA estimate is a random variable. Therefore, it is
better to use the MSE of the DOA than to use the DOA mismatch as a measure of DOA estimation
accuracy. In that case, the expression in (40) is used to quantify how accurate the DOA estimate for use
with the sound source enhancement in [21] is.

In [22], a survey on RSS and AOA-based localization scheme is presented. For the localization
scheme to be successful, accurate estimation of RSS and AOA is very important. Performance of
localization algorithm is dependent on the estimation accuracy of the RSS and AOA. The scheme
presented in this paper can be used for determining the accuracy of the estimates in the MUSIC DOA
algorithm, which is one of the most popular DOA algorithms.

In [23], to improve ultrasonic image, Rician beamforming is applied. Sparse sampling in
spatial domain is adopted. Basically, beamforming algorithm can be considered as spatial filtering.
Beamforming and DOA estimation including the MUSIC algorithm are parts of array signal processing
research. Rician beamforming-based array design can be formulated as a convex optimization problem.
In this paper, the estimate is obtained from the property that the partial derivative of MUSIC cost
function with respect to the azimuth angle at the estimate should be zero: therefore, the estimate of the
convex optimization problem can be obtained from the observation that the partial derivative of the
cost function with respect to each variable should be zero at an optimal point. Given the estimation
error, the MSE can be obtained by exploiting the statistical description of noise or interference.

In [24], a novel beamforming scheme is proposed to improve the previously used beamforming
algorithm. Since beamforming technique is a spatial filtering, it can be employed in interference
suppression. More specifically, TDMA-beamforming is proposed, and it is shown that the proposed
scheme improves the signal to interference plus noise ratio (SINR) by approximately 18 dB.

In [25], a hybrid beamforming employing variable phase shifters (VPSs) and constant phase
shifters is proposed. To optimally combine VPSs and CPSs, greedy algorithm is adopted to get a
near-optimal solution, since getting exact solution is intractable.

In [26], for improvement of audio enhancement, a new improved distributed minimum variance
distortionless response (MVDR) beamforming algorithm is proposed. The algorithm can be applied
to wireless acoustic sensor networks. The proposed scheme outperforms two classical methods in
the view point of the segmental signal to noise ratio, mean square error, and perceptual evaluation of
speech quality.



Appl. Sci. 2020, 10, 2063 8 of 25

In Table 1, algorithms, applications, main ideas and contributions of the recently published works
are tabulated. In Table 2, it is tabulated how the schemes presented in [17–26] are validated. In Table 2,
it is also described how the explicit expressions of the azimuth estimate and the MSE of the azimuth
estimation error derived in this paper can be applied to the problems in [17–26].

Table 1. Algorithms, applications, main ideas and contributions of the recently published works on
direction-of-arrival (DOA) estimation and beamforming.

Ref. Algorithm Application Main Idea Contribution

[17] Amplitude comparison Radar Analytic performance Computationally inexpensive
monopulse DOA tracking analysis performance analysis
estimation

[18] Conventional FMCW Motion compensated Estimation error reduction by
beamforming automotive Bartlett beamforming explicitly taking the motion
(Bartlett beamforming) radar induced phase into account
algorithm

[19] MVDR beamforming- DOA of Signal self-cancellation Performance improvement of
based DOA algorithm underwater MVDR MVDR algorithm for

acoustic underwater acoustic
sources source localization

[20] New DOA estimation Acoustic Isolation of target Performance improvement of
algorithm based on source speaker by time- DOA estimation of target
Complex Watson mixture localization frequency selection speaker
model and time-
frequency selection

[21] DOA estimation with Enhancement Estimated DOA-based Superiority of AVS-SMASK
acoustic vector sensor of target isolation of target speech over AVS-FMV
(AVS): Preprocessing speech in time-frequency
for target speech distribution for
enhancement enhancement

[22] Array signal processing- AOA-based Not applicable Not applicable
based DOA estimation localization [Review paper] [Review paper]
algorithms using array
antennas and DOA
estimation using single
directional antenna

[23] Rician beamforming Ultrasonic Rician beamforming- Improved despeckle in
for array design imaging based array design for ultrasonic imaging via
[Not beamforming-based ultrasonic imaging using beamforming-based array
DOA estimation algorithm] convex optimization design

[24] TDMA-beamforming Interference Interference suppression Improved interference
for array design suppression in via spatial filtering avoidance
[Not beamforming-based communication
DOA estimation algorithm] system

[25] Hybrid beamforming Massive Optimal combination Improvement in
for array design MIMO of variable phase shifters beamforming performance
[Not beamforming-based system and constant phase
DOA estimation algorithm] shifters

[26] MVDR beamforming Bird audio Beamforming method Efficient implementation of
for array design enhancement based on a local acoustic wireless sensor
[Not beamforming-based average consensus network for surveillance
DOA estimation algorithm] algorithm
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Table 2. How to validate the schemes presented in [17–26], and how to apply the derivations of this
paper to the problems in [17–26].

Ref. How to Validate the Schemes Presented How to Apply the Derivations of This Paper
in [17–26] to the Problems in [17–26]

[17] Agreement between analytic MSE [17]: Performance analysis of amplitude
and simulation-based MSE comparison monopulse algorithm. This paper:

Performance analysis of the MUSIC algorithm

[18] Reduction in estimation error of the The analytic expression of the MSE of
motion compensated conventional motion-compensated Bartlett beamforming
beamforming algorithm in comparison with algorithm can be obtained by modifying
the estimation error of original the derivation in this paper
conventional beamforming algorithm without
motion compensation in the DOA spectrum

[19] Superiority of performance of SCC- The analytic expression of the MSE of
MVDR algorithm over MVDR algorithm SCC-MVDR algorithm can be obtained by
in the view point of RMSE modifying the derivation in this paper

[20] Superiority of the proposed scheme over the Performance of the proposed algorithm
previously existing algorithms in terms of gross in terms of the MSE can be analytically obtained
error rate (GER) and mean square error (MSE) by modifying the derivation in this paper

[21] Performance comparison in terms of signal- Performance of preprocessing DOA estimation
to-noise ratio, signal-to-interference ratio, with AVS algorithm, given by estimation error,
signal-to-interference ratio, signal-to-interference can be obtained by modifying the derivation leading
plus noise ratio, log spectral density, to (38) and (39), since the derivation of the MUSIC
and perceptual evaluation of speech quality estimate should be modified to the derivation

of the AVS-based DOA estimate

[22] Not applicable [Review paper] Performance of AOA-based localization algorithm
depends on performance of DOA estimation:
The MSE of the MUSIC algorithm can be obtained
from (40) of this paper. The MSE of other
DOA estimation algorithm can be obtained
by modifying the derivation leading to (40).

[23] Comparison of images in terms of quality Rician beamforming-based array design is
and localized estimations on image noise formulated as a convex optimization problem, and

the MSEs of the array design parameters can be
analytically obtained by modifying the derivation
leading to (40) since array design can be
formulated as parameter estimation problem

[24] Superiority of the proposed scheme in The MSEs of the estimated array parameters in
terms of throughput, Jain’s fairness model, array design problem can be analytically derived
and SINR. by modifying the approach leading to (40).

[25] Superiority of the proposed algorithm The MSEs of the estimates in hybrid beamforming
in terms of average sum-rate and energy based array design can be evaluated by
efficiency modification of the derivation leading to (40).

[26] Improvement in MSE, SegSNR and PESQ The MSE of the estimated array design
parameters can be evaluated by modification
of the derivation leading to (40).
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2. Notation

L The number of snapshots
M The number of antennas
n The index of incident signal (n = 1, . . . , d)
(·)T Transpose of a matrix
(·)H Hermitian of a matrix
(·)−1 Inverse matrix
E (·) Statistical expectation
θ
(0)
n The n-th true azimuth of d incident signals (n = 1, . . . , d)

θ̂
(1)
n The n-th azimuth estimate in (47)

δθ
(1)
n The difference between θ̂

(1)
n and θ

(0)
n

θ̂
(2)
n The n-th azimuth estimate in (38)

δθ
(2)
n The difference between θ̂

(2)
n and θ

(0)
n

θ̂
(3)
n The n-th azimuth estimate in (39)

δθ
(3)
n The difference between θ̂

(3)
n and θ

(0)
n

n (ti) zero-mean Gaussian random vector representing the noise on the antenna
Λ The wavelength of a incident signal
k The unit vector indicating the DOA of the incident signal
zm The coordinate of the m-th antenna
∆ The distance between the adjacent antenna elements
r Radius of antenna array
R The true covariance matrix
R̂′ The sample covariance matrix
δR The difference between the sample covariance and the true covariance matrix
ES The signal eigenvector matrix of R matrix whose columns are the signal eigenvectors of R
Ê′S The signal eigenvector matrix of R̂ matrix whose columns are the signal eigenvectors of R
δÊS The difference between Ê′S and ES

P The projection matrix onto the column space of ES

P̂′ The projection matrix onto the column space of Ê′S
δP The difference between P̂

′
and P

F (θ) MUSIC spectrum as a function of azimuth associated with covariance matrix R
F̂ (θ) MUSIC spectrum as a function of azimuth associated with covariance matrix R̂′

F(g) (θ) Approximate MUSIC spectrum due to the g-th order approximation of the signal eigenvectors,
Approximation of F (θ)

F(g,h) (θ)The h-th Taylor expansion-based approximation of F(g) (·)

3. MUSIC Algorithm

Let θ
(0)
1 , . . . , θ

(0)
d represent the true incident angles of d incident signals. The noisy array output

vector is written as
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x′ (ti) =


x′1 (ti)

x′2 (ti)
...

x′M (ti)

 =


x1 (ti) + n1 (ti)

x2 (ti) + n2 (ti)
...

xM (ti) + nM (ti)



=


exp

(
jψ1

(
θ
(0)
1

))
· · · exp

(
jψ1

(
θ
(0)
d

))
exp

(
jψ2

(
θ
(0)
1

))
· · · exp

(
jψ2

(
θ
(0)
d

))
...

. . .
...

exp
(

jψM

(
θ
(0)
1

))
· · · exp

(
jψM

(
θ
(0)
d

))


 s1 (ti)

...
sd (ti)

+


n1 (ti)

n2 (ti)
...

nM (ti)

 (1)

=
[

a
(

θ
(0)
1

)
· · · a

(
θ
(0)
d

) ]  s1 (ti)
...

sd (ti)

+


n1 (ti)

n2 (ti)
...

nM (ti)



= A
(

θ
(0)
1 · · · θ

(0)
d

)  s1 (ti)
...

sd (ti)

+ n(ti),

where M denotes the number of antenna elements, and n (ti) denotes zero-mean Gaussian noise vector.
Note that x′(tn) and x(tn) denote the noisy array output vector and the noiseless array output vector,
respectively. The Gaussian noise vector is a random vector in that entries of the vector are zero-mean
Gaussian random variables. The variances of all the random variables are equal, and given by σ2.
The real part and the imaginary part of each random variable are independent. The variance of the real
part of each random variable is denoted by σ2

2 , and the variance of the imaginary part of each random
variable is also given by σ2

2 .
Assume that the uniform linear array (ULA) is adopted to estimate azimuth angles of the incident

angles. The phase at the m-th antenna, with phase reference at the origin (x = 0, y = 0), can be
expressed as

ψm

(
θ
(0)
n

)
= ∆ sin θ

(0)
n

2π

Λ
(m− 1) , m = 1, . . . , M, n = 1, . . . , d (2)

where Λ denotes the wavelength of the incident signal, and ∆ is the distance between the adjacent
antenna elements. Let the superscript H denote conjugate transpose of a matrix. In the signal
subspace-based MUSIC algorithm, the DOAs are estimated from the angles which maximize the
MUSIC spectrum:

F̂(θ) = aH(θ)Ê′sÊ
′H
s a(θ), (3)

where the steering vector can be written as

a (θ) = [exp (jψ1 (θ)) exp (jψ2 (θ)) . . . exp (jψM (θ))]T (4)

where Ê
′
s is a matrix whose columns consist of the signal eigenvectors of the sample covariance matrix.

Since the number of signal eigenvectors is equal to the number of the incident signals, there are d
signal eigenvectors associated with d incident signals.
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4. Difference between the True Covariance Matrix and the Sample Covariance Matrix: δR

The true covariance matrix, obtained from the ensemble average, is expressed as

R = A
(

θ
(0)
1 . . . θ

(0)
d

)
E
(

s (t) sH (t)
)

A
(

θ
(0)
1 . . . θ

(0)
d

)H
+ E

(
n (t) nH (t)

)
, (5)

where E (·) denotes statistical expectation, and

E
(

s (t) sH (t)
)
=

 E
(
s1 (t) s∗1 (t)

)
· · · E

(
s1 (t) s∗d (t)

)
...

. . .
...

E
(
sd (t) s∗1 (t)

)
· · · E

(
sd (t) s∗d (t)

)
 (6)

is the source covariance matrix. The superscript asterisk denotes a complex conjugate of a complex
quantity. The noise covariance matrix in (5) is simplified to

E
(

n (t) nH (t)
)
= σ2IM (7)

when the noises on antenna elements are spatially uncorrelated. Note that IM denotes M-by-M
identity matrix.

(5) can be expressed in matrix form:

R =



d
∑

p=1

d
∑

i=1
exp

(
j
(
ψ1 (θi)− ψ1

(
θp
)))

E
(

sis∗p
)

· · ·
d
∑

p=1

d
∑

i=1
exp

(
j
(
ψ1 (θi)− ψM

(
θp
)))

E
(

sis∗p
)

...
. . .

...
d
∑

p=1

d
∑

i=1
exp

(
j
(
ψM (θi)− ψ1

(
θp
)))

E
(

sis∗p
)
· · ·

d
∑

p=1

d
∑

i=1
exp

(
j
(
ψM (θi)− ψM

(
θp
)))

E
(

sis∗p
)


+ σ2IM .

(8)

The sample covariance matrix, which is an ML estimate of the true covariance matrix, is obtained
from time-average:

R̂′ =
1
L

L

∑
i=1

x′ (ti) x′ (ti)
H =

1
L

L

∑
i=1

(x (ti) + n (ti))(x (ti) + n (ti))
H

=
1
L



L
∑

i=1

(
x1 (ti) x∗1 (ti) + x1 (ti) n∗1 (ti) + n1 (ti) x∗1 (ti) + n1 (ti) n∗1 (ti)

)
· · ·

...
. . .

L
∑

i=1

(
xM (ti) x∗1 (ti) + xM (ti) n∗1 (ti) + nM (ti) x∗1 (ti) + nM (ti) n∗1 (ti)

)
· · ·

L
∑

i=1

(
x1 (ti) x∗M (ti) + x1 (ti) n∗M (ti) + n1 (ti) x∗M (ti) + n1 (ti) n∗M (ti)

)
...

L
∑

i=1

(
xM (ti) x∗M (ti) + xM (ti) n∗M (ti) + nM (ti) x∗M (ti) + nM (ti) n∗M (ti)

)

 . (9)

The difference of the sample covariance matrix, R̂′, and the true covariance matrix, R, denoted by
δR, is given by

δR = R̂′ − R. (10)
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From (8) and (9), the entries of δR in (10) are explicitly written as

(δR)kl =
1
L

(
L

∑
i=1

(xk (ti) x∗l (ti) + xk (ti) n∗l (ti) + nk (ti) x∗l (ti) + nk (ti) n∗l (ti))

)

−
d

∑
p=1

(
d

∑
i=1

exp
(

j
(

ψk

(
θ
(0)
i

)
− ψl

(
θ
(0)
p

)))
E
(

sis∗p
)
− σ2βkl

)
(11)

≡ (δR)R
kl + (δR)C

kl

where (δR)R
kl and (δR)C

kl are explicitly written as

(δR)R
kl ≡ 1

L

(
L

∑
i=1

(xk (ti) n∗l (ti) + nk (ti) x∗l (ti) + nk (ti) n∗l (ti))

)
(12)

(δR)C
kl ≡ 1

L

(
L

∑
i=1

xk (ti) x∗l (ti)

)
−

d

∑
p=1

(
d

∑
i=1

exp
(

j
(

ψk

(
`(0)i

)
− ψl

(
`(0)p

)))
E
(

si (ti) s∗p (ti)
)

−σ2δkl

)
. (13)

δkl in (13) is defined as

δkl =

{
1 k = l
0 k 6= l

. (14)

5. Eigenvector Perturbation

Let ES and Ê′S represent matrices whose columns consist of the signal eigenvectors of R and R̂′,
respectively. The projection matrices onto the column space of ES and the column space of Ê′S are
given by

P ≡ ESEH
S (15)

P̂′ ≡ Ê′SÊ
′H
S . (16)

Using (15) and (16), the MUSIC spectrum in (3) is rewritten as

F(θ) = aH(θ)P̂a(θ). (17)

The symmetric positive semi-definite matrix R has the decomposition:

R = EVEH , (18)

with the unitary matrix E =
[

e1 · · · eM

]
and the diagonal matrix V = diag (λ1, · · · , λM).

Note that e1, · · · , eM and λ1, · · · , λM are the eigenvectors and eigenvalues of R, respectively.
The eigenvalues are in descending order. For d incident signals, Es is given by

Es =
[

e1 · · · ed

]
. (19)

Let δEs represent the difference between Ê′s and Es:

δEs = Ê′s − Es. (20)
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Using (20) in (16) yields

P̂′ ≈ (ES + δES) (ES + δES)
H

= P +
[

e1 · · · ed

] [
δe(g=1)

1 · · · δe(g=1)
d

]H
+
[

δe(g=1)
1 · · · δe(g=1)

d

] [
e1 · · · ed

]H

+
[

δe(g=1)
1 · · · δe(g=1)

d

] [
δe(g=1)

1 · · · δe(g=1)
d

]H

≡ P+δP(a)+δP(b) + δP(c) = P+δP. (21)

The first order perturbation of the eigenvectors due to the perturbation in the entries of the
covariance matrix can be expressed as [27]

δe(g=1)
k =

M

∑
i=1,i 6=k

t(g=1)
i,k ei (22)

t(g=1)
a,b ≡ eH

a δReb
λb − λa

=

M
∑

p=1

(
M
∑

q=1
e∗a,p (δR)pq eb,q

)
λb − λa

, (23)

where the superscript (g = 1) denotes the first order perturbation, ea,p and eb,q denote the p-th entry of
ea and q-th entry of eb, respectively.

The explicit expressions of (δP)(a)
kl , (δP)(b)kl and (δP)(c)kl are

(δ (P))(a)
kl =

d

∑
u=1

 M

∑
i=1,i 6=u

eu,k

M
∑

p=1

M
∑

q=1
ei,p (δR)qp e∗u,q

λu − λi
e∗i,l

 (24)

(δ (P))(b)kl =
d

∑
u=1

 M

∑
i=1,i 6=u

M
∑

p=1

M
∑

q=1
e∗i,p (δR)pq eu,q

λu − λi
ei,ke∗u,l

 (25)

(δ (P))(c)kl =
d

∑
u=1

(
M

∑
i=1,i 6=u

(
M

∑
p=1

(
M

∑
q=1

(
M

∑
i′=1,i′ 6=u

(
M

∑
p′=1

(
M

∑
q′=1

1
(λu − λi) (λu − λi′ )

e∗i,peu,qei,lei′ ,p′ eu,q′ ei′ ,k

× (δR)pq (δR)p′q′
))))))

. (26)

6. Closed-Form Expression of Estimation Error

DOAs are estimated from the angle satisfying

dF (θ)

dθ
= 0, (27)

which follows from the fact that the DOAs are obtained from the angles maximizing F (θ). When we
use the projection matrices onto the column space of ES, the MUSIC spectrum is written as

F (θ) =
M

∑
l=1

(
M

∑
k=1

exp
(

j
2π

Λ
(l − k)∆ sin θ

)
(P)kl

)
. (28)

Since DOA estimation of the MUSIC algorithm using the true covariance matrix, not the sample
covariance matrix, should result in an accurate estimate, F(θ) must have maximum value at θ =

θ
(0)
1 ,· · · , θ = θ

(0)
d . Differentiation of F(θ) at θ = θ

(0)
1 ,· · · , θ = θ

(0)
d should be identically equal to zero:
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dF (θ)

dθ

∣∣∣∣
θ=θ

(0)
n

=
M

∑
l=1

 M

∑
k=1

d
[
exp

(
j 2π

Λ (l − k)∆ sin θ
)]

dθ

∣∣∣∣∣
θ=θ

(0)
n

(P)kl


=

M

∑
l=1

(
M

∑
k=1

fkl (θ)|θ=θ
(0)
n

(P)kl

)
= 0 n = 1, · · · , d. (29)

Substituting (4) in (17) yields

F̂ (θ) =
M

∑
l=1

(
M

∑
k=1

exp (j (ψl (θ)− ψk (θ)))
(
P̂′
)

kl

)
. (30)

Using (21), (30) can be approximated as

F̂(g=1) (θ) =
M

∑
l=1

(
M

∑
k=1

exp (j (ψl (θ)− ψk (θ))) ((P)kl + δ (P)kl)

)

=
M

∑
l=1

(
M

∑
k=1

exp
(

j
2π

Λ
(l − k)∆ sin θ

)
((P)kl + δ (P)kl)

)
, (31)

where the superscript (g = 1) implies that the first order approximation of the eigenvector is adopted.
Angles, at which F̂(g=1) (θ) is maximized with respect to θ, are given by

dF̂(g=1) (θ)

dθ

∣∣∣∣∣
θ=θ

(0)
n +δθn

=
M

∑
l=1

 M

∑
k=1

exp
(

j
2π

Λ
(l − k)∆ sin θ

)
j
2π

Λ
(l − k)∆ cos θ ((P)kl + δ (P)kl)

∣∣∣∣∣
θ=θ

(0)
n +δθn


=

M

∑
l=1

(
M

∑
k=1

fkl

(
θ
(0)
n + δθn

)
((P)kl + δ (P)kl)

)
= 0 n = 1, · · · , d, (32)

where from (32), fkl (θ) is defined as

fkl (θ) = exp
(

j
2π

Λ
(l − k)∆ sin θ

)
j
2π

Λ
(l − k)∆ cos θ. (33)

Let F̂(g=1,h=1) (θ) denote the first order Taylor expansion-based approximation of F̂(g=1) (θ),
where (h = 1) implies that the first order Taylor expansion is used. The angles, θ = θ

(0)
1 + δθ1,· · · ,

θ = θ
(0)
d + δθd, maximizing F̂(g=1,h=1) (θ), are given by [28]

dF̂(g=1,h=1) (θ)

dθ

∣∣∣∣∣
θ=θ

(0)
n +δθn

=
M

∑
l=1

M

∑
k=1

(
(P)kl fkl

(
θ
(0)
n

)
+ (P)kl δθn

d
dθ

fkl (θ)
∣∣∣
θ=θ

(0)
n

+ δ (P)kl fkl

(
θ
(0)
n

)
+ δ (P)kl δθn

d
dθ

fkl (θ)
∣∣∣
θ=θ

(0)
n

)
= 0 n = 1, · · · , d. (34)

From (29), (34) is simplified to

M

∑
l=1

(
M

∑
k=1

(
(P)kl δθn

d
dθ

fkl (θ)
∣∣∣
θ=θ

(0)
n

))
+

M

∑
l=1

(
M

∑
k=1

(
δ (P)kl fkl

(
θ
(0)
n

))

+
M

∑
l=1

(
M

∑
k=1

(
δ (P)kl δθn

d
dθ

fkl (θ) | θ=θ
(0)
n

))
= 0. (35)
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Since
(

M
∑

l=1

M
∑

k=1
δ(P)kl δθn

d
dθ fkl(θ)

∣∣∣∣
θ=θ

(0)
n

)
is much smaller than

(
M
∑

l=1

M
∑

k=1
(P)kl δθn

d
dθ fkl(θ)

∣∣∣∣
θ=θ

(0)
n

)
and(

M
∑

l=1

M
∑

k=1
δ(P)kl fkl

(
θ
(0)
n

))
, (35) can be approximated as

M

∑
l=1

M

∑
k=1

(
(P)kl δθ

d
dθ

fkl (θ)
∣∣∣
θ=θ

(0)
n

+ δ (P)kl fkl

(
θ
(0)
n

))
= 0 n = 1, · · · , d. (36)

From (33), d fkl(θ)
dθ is explicitly written as

d fkl (θ)

dθ
= exp

(
j
2π

Λ
(l − k)∆ sin θ

)(
j
2π

Λ
(l − k)∆ cos θ

)2

− exp
(

j
2π

Λ
(l − k)∆ sin θ

)
j
2π

Λ
(l − k)∆ sin θ. (37)

7. Closed-Form Expression of Mean Square Error

Let δθn in (36) with δ (P)kl = δ (P)(a)
kl + δ (P)(b)kl + δ (P)(c)kl be denoted by δθ

(2)
n :

δθ
(2)
n =

−
M
∑

l=1

(
M
∑

k=1

(
δ (P)(a)

kl + δ (P)(b)kl + δ (P)(c)kl

)
fkl

(
θ
(0)
n

))
M
∑

l=1

(
M
∑

k=1
(P)kl

d
dθ fkl(θ)

∣∣∣
θ=θ

(0)
n

) , n = 1, · · · , d (38)

where δ (P)(a)
kl , δ (P)(b)kl and δ (P)(c)kl are given by (24), (25) and (26) respectively.

Similarly, δθ
(3)
n represents δθn in (36) with δ (P)kl = δ (P)(a)

kl +δ (P)(b)kl :

δθ
(3)
n =

−
M
∑

l=1

(
M
∑

k=1

(
δ (P)(a)

kl + δ (P)(b)kl

)
fkl

(
θ
(0)
n

))
M
∑

l=1

(
M
∑

k=1
(P)kl

d
dθ fkl(θ)

∣∣∣
θ=θ

(0)
n

) , n = 1, · · · , d (39)

where δ (P)(a)
kl and δ (P)(b)kl are defined in (24) and (25), respectively.

The analytic expression of MSE of δθ
(3)
n in (39) is expressed as

E
(

δθ
(3)
n

2
)

=

M
∑

l=1

M
∑

k=1

M
∑

l′=1

M
∑

k′=1

(
fkl

(
θ
(0)
n

)
f ∗k′ l′

(
θ
(0)
n

)
E
((

δ (P)(a)
kl + δ (P)(b)kl

) (
δ (P)(a)

k′ l′ + δ (P)(b)k′ l′

)∗))
M
∑

l=1

M
∑

k=1

M
∑

l′=1

M
∑

k′=1

(
(P)kl

d
dθ fkl (θ)

∣∣∣
θ=θ

(0)
n

(P)∗kl
d
dθ f ∗k′ l′ (θ)

∣∣∣
θ=θ

(0)
n

) ,

n = 1, · · · , d (40)

where E
((

δ(P)(a)
kl +δ(P)(b)kl

) (
δ(P)(a)

k′ l′ +δ(P)(b)k′ l′
)∗)

is defined as, from (39),

E
((

δ (P)(a)
kl + δ (P)(b)kl

) (
δ (P)(a)

k′ l′ + δ (P)(b)k′ l′

)∗)
= E

(
δ (P)(a)

kl

(
δ (P)(a)

k′ l′

)∗)
+ E

(
δ (P)(b)kl

(
δ (P)(b)k′ l′

)∗)
+E

(
δ (P)(a)

kl

(
δ (P)(b)k′ l′

)∗)
+ E

(
δ (P)(b)kl

(
δ (P)(a)

k′ l′

)∗)
. (41)

From (24)–(26), E
(

δ(P)(a)
kl

(
δ(P)(a)

k′ l′
)∗)

, E
(

δ(P)(b)kl

(
δ(P)(b)k′ l′

)∗)
, E
(

δ(P)(a)
kl

(
δ(P)(b)k′ l′

)∗)
and E

(
δ(P)(b)kl

(
δ(P)(a)

k′ l′
)∗)

in
(41) are explicitly written as
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E
(

δ (P)(b)kl

(
δ (P)(b)k′ l′

)∗)
=

d

∑
u=1

 M

∑
i=1,i 6=u

 M

∑
p=1

 M

∑
q=1

 d

∑
u′=1

 M

∑
i′=1,i′ 6=u′

 M

∑
p′=1

 M

∑
q′=1

(
1

λu − λi

)(
1

λu′ − λi′

)

e∗i,peu,qei,ke∗u,lei′ ,p′ e
∗
u′ ,q′ e

∗
i′ ,k′ eu′ ,l′E

(
(δR)qp

(
(δR)q′ p′

)∗))))))))
(42)

E
(

δ (P)(b)kl

(
δ (P)(b)k′ l′

)∗)
=

d

∑
u=1

 M

∑
i=1,i 6=u

 M

∑
p=1

 M

∑
q=1

 d

∑
u′=1

 M

∑
i′=1,i′ 6=u′

 M

∑
p′=1

 M

∑
q′=1

(
1

λu − λi

)(
1

λu′ − λi′

)

e∗i,peu,qei,ke∗u,lei′ ,p′ e
∗
u′ ,q′ e

∗
i′ ,k′ eu′ ,l′E

(
(δR)pq

(
(δR)p′q′

)∗))))))))
(43)

E
(

δ (P)(b)kl

(
δ (P)(b)k′ l′

)∗)
=

d

∑
u=1

 M

∑
i=1,i 6=u

 M

∑
p=1

 M

∑
q=1

 d

∑
u′=1

 M

∑
i′=1,i′ 6=u′

 M

∑
p′=1

 M

∑
q′=1

(
1

λu − λi

)(
1

λu′ − λi′

)

eu,kei,pe∗u,qe∗i,lei′ ,p′ e
∗
u′ ,q′ e

∗
i′ ,k′ eu′ ,l′E

(
(δR)qp

(
(δR)p′q′

)∗))))))))
(44)

E
(

δ (P)(b)kl

(
δ (P)(b)k′ l′

)∗)
=

d

∑
u=1

 M

∑
i=1,i 6=u

 M

∑
p=1

 M

∑
q=1

 d

∑
u′=1

 M

∑
i′=1,i′ 6=u′

 M

∑
p′=1

 M

∑
q′=1

(
1

λu − λi

)(
1

λu′ − λi′

)

e∗i,peu,qei,ke∗u,le
∗
u′ ,k′ e

∗
i′ ,p′ eu′ ,q′ ei′ ,l′E

(
(δR)pq

(
(δR)q′ p′

)∗))))))))
(45)

where E
(
(δR)kl((δR)k′ l′)

∗) is defined as, from (12) and (13), as

E
(
(δR)kl ((δR)k′ l′)

∗) = E
(
(δR)R

kl

(
(δR)R

k′ l′

)∗)
+ E

(
(δR)R

kl

(
(δR)C

k′ l′

)∗)
+E

(
(δR)C

kl

(
(δR)R

k′ l′

)∗)
+ E

(
(δR)C

kl

(
(δR)C

k′ l′

)∗)
. (46)

E
(
(δR)R

kl((δR)R
k′ l′ )

∗)
, E
(
(δR)R

kl

(
(δR)C

k′ l′
)∗)

, E
(
(δR)C

kl ((δR)R
k′ l′ )

∗) and E
(
(δR)C

kl

(
(δR)C

k′ l′
)∗) are derived in [11],

Appendices A, B and C, respectively.

8. Numerical Results

δθ
(1)
n is defined as

δθ
(1)
n = θ̂

(1)
n − θ

(0)
n , (47)

where θ̂
(1)
n is defined as estimates of the MUSIC algorithm and θ

(0)
n is the true value of the n-th

incident angle.
Empirical MSEs of θ̂

(1)
n , θ̂

(2)
n and θ̂

(3)
n are defined as

MSE
(

δθ
(1)
n

)
= E

(
δθ

(1)
n

2
)
=

1
T

T

∑
t=1

δθ
(1)
n(t)

2
(48)

MSE
(

δθ
(2)
n

)
= E

(
δθ

(2)
n

2
)
=

1
T

T

∑
t=1

δθ
(2)
n(t)

2
(49)

MSE
(

δθ
(3)
n

)
= E

(
δθ

(3)
n

2
)
=

1
T

T

∑
t=1

δθ
(3)
n(t)

2
, (50)

where δθ
(1)
n , δθ

(2)
n and δθ

(3)
n are defined in (47), (38) and (39), respectively. The subscript (t) denotes the

t-th estimate out of T repetitions = 10,000.
The results for d = 2 are presented in the numerical results. The number of antennas, M, is equal

to five, and the distance between the antenna element is equal to ∆ = 0.3Λ, where Λ is wavelength of
the incident signal. The true incident angles are −40◦ and 20◦.

Figures 3–5 illustrate how MSEs are dependent on the number of snapshots for the fixed number
of repetitions of 10,000. It is clearly shown that MSEs for all the estimates improve as the number of
snapshots increases. It is illustrated that the empirical MSEs with respect to the number of snapshots
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of δθ
(2)
1 and δθ

(3)
1 are close to that of δθ

(1)
1 . In the upper plot of Figure 3, it is clear that the agreement

between empirical MSE of δθ
(3)
1 , and analytic MSE of δθ

(3)
1 improves as the number of snapshots

increases, which is quite reasonable. The same is true for the upper plots of the Figures 4 and 5.
The above observations for the MSEs are illustrated in the lower plots of Figures 3–5, where the MSEs
of the second incident signal are shown.

In Figures 3–5, we illustrate how small the MSEs of δθ
(1)
n , δθ

(2)
n and δθ

(3)
n are. The results with

“Simulation E
((

δθ
(1)
n

)2
)

”, “Simulation E
((

δθ
(2)
n

)2
)

”, and “Simulation E
((

δθ
(3)
n

)2
)

” are obtained from (48),

(49), and (50), respectively.
In Figures 3–5, the agreement between the simulation results with superscript (3) and the analytic

results improves as the number of snapshots increases, since the analytic results are essentially
based on ensemble-average, and the simulation results are based on time-average. Therefore, the
agreement between the simulation results and the analytic results should be checked for large number
of snapshots.

In Figures 3–5, the agreement between the simulation results with superscript (1) and the analytic
results is not as good as that between the simulation results with superscript (3) and the analytic results,
since the analytic results are associated with the simulation results with superscript (3). Similarly, the
agreement between the simulation results with superscript (2) and the analytic results is not as good
as that between the simulation results with superscript (3) and the analytic results.

Figure 3. Mean square error of δθ with respect to the number of snapshots (SNR = −10 dB).
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Figure 4. Mean square error of δθ with respect to the number of snapshots (SNR = 0 dB).

Figure 5. Mean square error of δθ with respect to the number of snapshots (SNR = 10 dB).

Figures 6–8 illustrate how the MSEs are dependent on the number of repetitions for the fixed
number of snapshots of 1024. It is clearly shown that the MSEs for all the estimates improve as the
number of repetitions increases. It is shown in Figures 6–8 that the agreements between analytic results
and simulation results with superscript (3) are quite good for the number of repetitions of 10,000.
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Note that the number of repetitions in the Monte–Carlo simulation should be large enough for the
simulation-based MSEs to be reliable.
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M
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                               MSE of the first azimuth estimate (SNR=-10 dB)

1000 5000 10000
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M
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E

                                MSE of the second azimuth estimate (SNR=-10 dB)

Figure 6. Mean square error of δθ with respect to the number of repetitions (SNR = −10 dB).
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Figure 7. Mean square error of δθ with respect to the number of repetitions (SNR = 0 dB).



Appl. Sci. 2020, 10, 2063 21 of 25

1000 5000 10000

the number of repetitions

10-5

100

M
S

E

                               MSE of the first azimuth estimate (SNR=10 dB)

1000 5000 10000

the number of repetitions

10-5

100

M
S

E

                                MSE of the second azimuth estimate (SNR=10 dB)

Figure 8. Mean square error of δθ with respect to the number of repetitions (SNR = 10 dB).

9. Applications of Derived Analytic Expression of MSE of the MUSIC Algorithm

9.1. Evaluation of cOvariance Matrix of AOA-Based Localization in Underwater Acoustics

Once the sound source is detected, localization can be applied to pinpoint the location of an
emitter. AOA-based localization can be adopted in this stage. Sensor locations and line-of-bearings
(LOBs) from DOA estimation algorithm should be available to implement AOA-based localization
algorithm. Any DOA estimation algorithm, including the MUSIC, the maximum-likelihood (ML),
the conventional beamforming, the Capon beamforming, can be employed to get the LOBs used for
localization. Note that the mean-square-error (MSE) of the location estimation algorithm is highly
dependent on the MSE of the DOA estimation algorithm, which implies that, for accurate localization
of an emitter location, the MSE of the DOA estimation algorithm should be small. The accuracy of the
localization algorithm is quantified in terms of the covariance matrix of the position error δr [29]:

E
[
δrδrT

]
= H#ΛH#T

(51)

where H and Λ are defined from

Λ =

 σ1
2d1

2 · · · 0
...

. . .
...

0 · · · σN
2dN

2

 (52)

H =


− sin θ1

(0) cos θ1
(0)

...
...

− sin θN
(0) cos θN

(0)

 . (53)
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The superscript # in (51) denotes a pseudo inverse operator. Note that σi, di in (52) and θi
(0) in

(53) are standard deviation of the DOA estimate at the i-th sensor location, the distance from the i–th
sensor location to an emitter, and true DOA at i-th sensor location, respectively. For an unbiased DOA
estimator, θi

(0) can be obtained from the square root of the MSE of DOA estimate.
If the MUSIC algorithm is employed to get DOA estimate, the MSE of the estimate in (40) can be

used for calculation of σi in (52).

9.2. Evaluating the Performance of Ultrasonic Imaging

In [30], the MUSIC algorithm for DOA estimation is considered. Basically, the MUSIC algorithm
is super resolution algorithm in that it can resolve closely spaced signals, Super resolution in the
ultrasonic imaging is very important: Whether two closely located objects can be resolved or not
is highly dependent on the resolution of the adopted imaging algorithm. Therefore, the MUSIC
algorithm can be a good candidate for ultrasonic imaging. In, the authors derived the expression of the
resolution, which is a measure of resolving capability of two closely located objects. Although, in [30],
the explicit expression of the resolution is derived, the explicit expression of the estimation accuracy is
not presented, and the derived explicit expression of the MSE of the MUSIC algorithm can be used to
evaluate the MSE of the MUSIC-based estimates. Therefore, the difference between [30] and this paper
is that the resolution is evaluated in [30] and the MSE is evaluated in this paper. In imaging, usually,
resolving two closely-spaced objects is important, which is why many studies on derivation of the
expression of the resolution of the MUSIC algorithm have been conducted. Absolute peak location can
also be important in some ultrasonic imaging when the estimation of the exact location of the object is
important. In that case, the MSE should be obtained to quantify the accuracy of the peak location in
the MUSIC-based imaging.

The peak location of the MUSIC algorithm-based imaging corresponds to the location of an object,
and the MSE implies how close the estimated location is to the true location of the object.

9.3. Evaluation of Ranging Accuracy in the MUSIC-Based Laser Ranging Algorithm in Terms of the Mean
Square Error

In [31], the authors proposed to apply the MUSIC algorithm in range estimation for use with
frequency-modulated continuous wave (FMCW) laser. Traditionally, the fast Fourier transform (FFT)
is for ranging. For improvement of ranging accuracy via the super resolution property of the MUSIC
algorithm, the MUSIC algorithm can be employed for frequency estimation. The ranging accuracy in
terms of the mean square error can be obtained from (40) of this paper if the laser measurement noise
can be modelled as an additive Gaussian noise.

9.4. Localization Accuracy in the MUSIC Algorithm for Use With Super Resolution Fluorescence Microscopy

The authors in [32] propose a new algorithm called MUSICAL which is a modified version of the
classical MUSIC algorithm. The MUSICAL is proposed to solve a few problems in the classical MUSIC
algorithm. Although the authors show that the MUSICAL algorithm outperforms the conventional
MUSIC algorithm, they do not derive an explicit expression of the MSE of the distance estimate for
the MUSICAL algorithm. The derivation leading to (40) in this paper can be modified to derive the
expression of the MSE of the MUSICAL algorithm. The modification should reflect the difference
between the MUSICAL algorithm and the MUSIC algorithm.

9.5. Accuracy in the MUSIC-Based Scattering Center Estimation

One of popular remote sensing sensors is radar. In radar target recognition, range profile of a
radar target is a good feature vector in that the peaks of a range profile correspond to scattering centers
of the radar target. For a specific aspect angle, the distance between each peak location of range profile
and true location of scattering center can be defined as estimation accuracy. Traditionally, the FFT is
used to get the range profile. In [33], the authors employ the MUSIC algorithm to get range profile.
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Although the authors proposed a new MUSIC-based scheme to get range profile, which is superior
to the conventional FFT-based scheme, they did not present an expression of the MSE associated
with the estimate obtained from the peaks of the MUSIC-based range profile. By modifying the
derivation leading to (40), the MSE of the estimate from MUSIC-based range profile can be obtained.
The modification should reflect how the MUSIC algorithm for generation of the range profile is
different from the original MUSIC algorithm for generation of DOA spectrum.

10. Conclusions

Based on some approximations and the Taylor series expansion, we have derived a few expressions
of an approximation of estimate of the MUSIC algorithm. The estimates are obtained by approximating
the signal eigenvector and the projection matrix onto the column space of the eigenvector matrix.
Two closed-form expressions of the DOA estimate have been derived by applying two approximations.
For one of two expressions, closed-form expression of the MSE of the estimate as well as the closed-form
of the estimate itself have been derived. The closed-form expression of the MSE has been validated by
comparing it with empirically obtained MSE. The derived expression of the MSE of the estimates can be
used for the performance analysis of the MUSIC algorithm. From the viewpoint of the computational
complexity, an analytic MSE of the estimate can be evaluated much more easily in comparison with an
empirical MSE from the time-consuming Monte–Carlo simulation.

The proposed scheme can be used for the performance analysis in predicting how accurate
the estimate of the MUSIC algorithm is without resorting computationally intensive Monte–Carlo
simulation. The performance of the MUSIC algorithm is dependent on various parameters, such as the
number snapshots, the number antenna elements in the array, inter-element spacing between adjacent
antenna elements and the SNR. Therefore, making Monte–Carlo simulations for different values of the
various parameters is computationally very intensive, and the analytic performance analysis proposed
in this paper can be employed to predict how well the MUSIC algorithm works, given the specific
values of the parameters.
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Appendix A. Calculation of E
(
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(
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k′ l′
)∗)

From (12) and (13), E
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(
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k′ l′
)∗)

can be rewritten as
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(
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(
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)) (
(δR)C

k′ l′

)∗
, (A1)

since, from (13), (δR)C
k′ l′ is not stochastic when the noise is zero-mean Gaussian distributed, E

(
(δR)R

kl

)
is

expressed as
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)
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L
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∑
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0 k 6= l
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Appendix B. Calculation of E
(
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From (12) and (13), E
(
(δR)C

kl

(
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)∗)

can be rewritten as
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)∗)
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kl

(
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k′ l′
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, (A3)

since, from (13),
(
(δR)C

kl

)∗
is deterministic. E

((
(δR)R

k′ l′
)∗)

is expressed as

E
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(δR)R
k′ l′

)∗)
=

1
L

L

∑
i=1

σ2δk′ l′ , (A4)

where δk′ l′ is defined as

δk′ l′ =

{
1 k′ = l′

0 k′ 6= l
. (A5)

Appendix C. Calculation of E
(
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k′ l′
)∗)

Since (δR)C
k′ l′ is deterministic, not stochastic, E

(
(δR)C

kl

(
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k′ l′
)∗)

is given by
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