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Abstract: Spatial analysis of hydrological data often requires the interpolation of a variable from
point samples. Commonly used methods for solving this problem include Inverse Distance Weighting
(IDW) and Kriging (KG). IDW is easily extensible, has a competitive computational cost with respect
to KG, hence it is usually preferred for this task. This paper proposes the optimization of finding the
IDW parameter using a nature-inspired metaheuristic, namely Particle Swarm Optimization (PSO).
The performance of the improved algorithm is evaluated in a complex scenario and benchmarked
against the KG algorithm for 51 precipitation series from the Dobrogea region (Romania). Apart from
facilitating the process of applying IDW, the PSO implementation for Optimizing IDW (OIDW)
is computationally lighter than the traditional IDW approach. Compared to Kriging, OIDW is
straightforward to be implemented and does not require the difficult process of identification of the
most appropriate variogram for the given data.

Keywords: inverse distance weighting; kriging; particle swarm optimization; prediction error;
spatial interpolation

1. Introduction

Precipitation data analysis plays a major role in the process of making informed decisions for
water resources management. Such data are gathered at monitoring stations scattered throughout
a region. They are either not readily available for other locations or may be missing at certain time
periods. These issues have negative influences on hydrological studies that rely on precipitation data
as input. Therefore, spatial interpolation methods prove to be useful for estimating precipitation data
at unsampled locations [1].

Spatial interpolation methods are commonly used for the prediction of the values of environmental
variables. Their specificity comes from incorporating information related to the geographic position of the
sample data points. The most used methods are usually classified in the categories [2,3]: (1) deterministic
methods (Nearest Neighbor, Inverse Distance Weighting (IDW), Splines, Classification and Regression
methods), (2) geostatistical methods (Kriging (KG)) or (3) combined methods (regression combined with
other interpolation methods and classification combined with other interpolation methods).

The importance of a successful spatial interpolation of precipitation before the hydrological
modeling and a thorough review of different spatial interpolation methods for its modeling are presented
in [1]. Among them, IDW stands out as a real competitor. It builds estimates for environmental
variables at a location, based on the values of those variables at some nearby sites and on the distances
between that location and those where the variable is known.
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The interpolation method often chosen by geoscientists is IDW, implemented in many Geographic
Information Systems (GIS) packages [4]. Its popularity is mainly due to its straightforward
interpretability, easy computability and good prediction results. Still, the No Free Lunch theorem for
optimization [5] stands also in the case of spatial interpolation: no method stands out as being the
best in all situations [6]. In a study about the rainfall data in the Indian Himalayas, Kumari et al. [7]
performed a comparison of several interpolation methods, among which there were several variants of
multivariate Kriging and IDW. It was shown that none of the methods performs best in all the studied
cases. Principal Component Regression with the Residual correction (PCRR) method, IDW and the
Multiple Linear Regression (MLR) methods were used to compare interpolated annual, daily and
hourly precipitation and the spatial distribution of precipitation in the Xinxie catchment [8], while the
spatial distribution of precipitation deficit over Seyhan River basin using IDW is reported in [9].

The basic IDW method is successfully employed in [10] to estimate the rainfall distribution in a
region of Iraq. The scenario uses incremental values for the power parameter, in the range from 1 to 5.
A modified IDW method is investigated in [11], where the elevation is also considered for estimating
the values at unknown locations. A new method for estimating the regional precipitation (MPPM) has
been introduced in [12] and its performance has been tested against that of IDW and kriging. It was
reported that MPPM avoids the problems that could appear in the application of kriging methods, as (i)
the invertibility of the distance matrix, (ii) the high computational cost related to building the inverse
of the distance matrix in the case of a high number of stations, (iii) the choice of the model for the
estimation of theoretical variogram and (iv) the selection of the optimal parameters of the variogram
model. It was shown that deterministic methods could be good competitors for spatial interpolation
techniques, such as KG, performing better than the last ones in the study cases presented in [12]. In an
engineering setting, Gholipour et al. [13] investigate a hybridization of IDW with a harmony search.
The obtained metamodel significantly reduces the computational effort and improves the convergence
rate. A genetic algorithm is used in [6] to find the optimal order of distances in IDW.

An adaptive version of the IDW method is introduced in [4], where the authors suggest that the
spatial pattern of the sampled stations in the neighborhood could influence the weighting parameter.
The algorithm selects the weights in IDW based on the stations’ density around the unsampled location.
It gave better estimations than KG on the study cases. However, the choices of the membership
functions and the number of relevant neighbors are heuristics, and there is no guarantee that they will
perform well in other scenarios.

Some machine learning models were also investigated in [3], with application to spatial
interpolation of environmental variables. They are compared with several traditional spatial
interpolation methods, among which is inverse distance squared. The study found that the combination
of random forest and IDW, respectively random forest with OK were the best methods, with similar
accuracies. At the same time, OK was found to perform similarly to IDW in the tested scenarios.
A hybrid method that combines IDW with support vector machines is reported in [14], applied to
multiyear annual precipitation. In [15], temporal predictions obtained with an ensemble approach are
used as inputs to spatial interpolation by IDW, with improved overall results.

The main difficulty faced when applying IDW is setting the value of the power parameter. This is
usually done before the algorithm is applied. The usual approach for searching for the optimal value
of the power parameter is by exhaustive search, by sampling all possible values in a given interval, at a
user chosen step size [2]. The results of this method depend on the search window. The method is only
guaranteed to find a local optimum [2].

In this paper, we target the optimization of the process of setting the power parameter in IDW,
using a nature-inspired metaheuristic—Particle Swarm Optimization. We automate the process of
identifying the suitable parameter, while maintaining, if not optimizing, the prediction accuracy of the
standard IDW method. Experiments are performed on maximum annual precipitation data gathered in
the Dobrogea region (Romania). An evaluation of the proposed hybrid method is performed, against
standard IDW and Kriging.
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The paper structure is the following. Section 2 begins with a brief presentation of the meteorological
stations locations in the study area. Sections 2.2 and 2.3 present the spatial interpolation methods IDW
and KG. The Particle Swarm Optimization (PSO) metaheuristic is presented in Section 2.4. The section
ends with the presentation of the hybrid algorithm Optimizing IDW (OIDW), obtained by optimizing
the β parameter of IDW with PSO. The experimental settings are described in Section 3, while the
results are discussed in Section 4. The paper ends with the conclusion section.

2. Materials and Methods

2.1. Study Area

The studied area is Dobrogea, a region of 15,500 km2 located in the South-East of Romania,
between the Danube River and the Black Sea, between 27◦15′15”–29◦30′10” eastern longitude and
43◦40′4”–45◦25′3” northern latitude [16]. Its geographic structure is that of a plateau with a hilly aspect,
the altitude decreasing from north to south. The climate is temperate–continental, but the region is
subject to drought and desertification [16,17].

The study data consists of 51 series of 1-day maximum annual precipitation registered during the
period January 1965–December 2005 at 10 main meteorological stations and 41 hydro-meteorological
points in the region of Dobrogea, Romania (Figure 1). When working only with the data recorded at the
main stations, the input data will be a table with 41 rows and 10 columns (in the A1 and B1 scenarios
presented in Section 3), while when working with all data, the input will consist of a table with 41 rows
and 51 columns (in the A2 and B2 scenarios presented in Section 3). The data were collected at the
stations under the National Authority Romanian Waters; they are without gaps and they are reliable.
The maximum annual series collected at the main meteorological stations are represented in Figure 2.Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 21 
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2.2. IDW Interpolation

Essentially, all spatial interpolation methods compute weighted averages of sampled data,
as estimations for unknown data [2,3]. Given a set of spatial data of an attribute z at n locations,
the general estimation formula is:

ˆz(s0) =
n∑

i=1

wi(s0)·z(si) (1)

where ˆz(s0) is the interpolated value estimated for the variable of interest at the station s0, z(si) is the
sample value at the station si, wi(s0) is the weight attached to the station si and n is the stations’ number.

The main difference between all spatial interpolation methods relies in computing the weights wi
used in the interpolation.

The problem we tackled consists of estimating precipitation values for some locations where
these values are unknown, using as input data the precipitation values recorded at several locations
in the neighborhood. The general Formula (1) is also valid for IDW. The simplest version of weights
estimation uses the inverse distances from all the points to the target one [18]:

wi(s0) =
1/d(s0, si)

β∑n
i=1

(
1/d(s0, si)

β
) , β > 1, (2)

where d(s0, si) is the distance from s0 to si and β is a parameter that must be determined.
Thus, the weights decrease as the distance increases, especially if the value of β is large. The parameter
β determines the degree of influence the neighboring stations have upon the estimates for a given
station (it is expected that nearer neighbors have more influence upon the estimated value than the
more distant ones).

Choosing β is an optimization process by itself. Usually, the search for the optimal β is a grid
search: a specific range is set (arbitrarily or based on some intuition of the researcher), and then β takes
all values in that range, with a certain step-size, also arbitrarily chosen. The value yielding the lowest
prediction error (among the searched values) is finally attributed to the parameter.

2.3. Kriging

Kriging (KG) is the generic name given to a family of generalized least-squares regression
algorithms, used in geostatistics for data spatial interpolation. The spatial correlation was analyzed in
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geostatistics using the variogram. The main ideas behind the methodology for Kriging are shortly
presented below, based upon the bibliographic resources [19,20].

Given a random function Z(s) that is stationary, with a constant mean E(Z(s)) =µ, the semivariogram
is defined by:

γ(h) =
1
2

E(Z(si) −Z(si + h))2, (3)

where Z(si) and Z(si + h) are the variable values at the study station and at a location situated at the
distance h from the study location. When assuming the direction independence of the semivariance
(isotropy), the variogram can be estimated using

∑
the sample variogram, defined by

γ̂(h) =
1

2Nh

Nh∑
i=1

(Z(si) −Z(si + h))2 (4)

where Nh is the number of sample pairs (Z(si), Z(si + h)) used in estimation and where N(h) is the
number of data pairs, which are approximately separated by the lag h.

After computing the sample variogram, one should determine the empirical semivariogram by
fitting a parametric model to it. This can be done by the Generalized Least Squares (GLS), Maximum
Likelihood or Bayesian methods [19]. GLS is the method used in this article.

The nugget, sill and range are the parameters used to describe a variogram (Figure 3). The nugget
is the random error process, shown by the height of the jump of the semivariogram at the discontinuity
at the origin. The sill is the variogram limit, when the lag tends to infinity. The range is the minimum
lag at which the difference between the variogram and sill becomes negligible [21].Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 21 
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Different types of variograms may be used, as function of the data series, for example spherical,
exponential, Gaussian, Matern and power [19].

At the final modeling stage of ordinary KG, the predictions are based on the model:

Z(s) = µ+ ε(s) (5)

where µ is the mean and ε(s) is the spatially correlated stochastic part of variation. The predictions are
obtained by formula:

ẑ0(s0) =
n∑

i=1

wi(s0)z(si) = λT
0 z (6)

where λT
0 is the transposed KG weights vector (wi), and z is the vector containing the observations at n

neighbor locations.
The Kriging predictions are obtained by:

ẑ0(s0) =
n∑

i=1

wi(s0)z(si) = wT
0 z (7)
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where wT
0 is the transposed kriging weights vector (wi), and z is the vector containing the observations

at n neighbor locations. The weights are based on the covariances among points in the sample and the
covariances between sample points and the point to be predicted. The Kriging estimator should be
unbiased and the error variance is minimized.

The weights for ordinary Kriging can be found by solving the Kriging equations:

w =


C11 . . . C1n 1

...
. . .

...
...

Cn1 . . . Cnn 1
1 . . . 1 0


−1

C10
...

Cn0

1

 (8)

where Ci j = Cov
(
Zi, Z j

)
, Ci0 = Cov(Zi, Z0) and λ is the Lagrange multiplier that appears due to the

constraint
∑n

i=1 wi = 1.
Since the first step of the KG procedure is building a variogram (not a covariogram), one should want

to determine the Kriging equation, in terms of variogram. Under the hypothesis of second-order stationarity:

Ci j = σ2
− γi j, (9)

σ2 is the variance and γi j is the semivariance. Therefore, (8) can be written in the equivalent form:
−γ11 . . . −γ1n 1

...
. . .

...
...

−γn1 . . . −γnn 1
1 . . . 1 0




w1
...

wn

λ

 =

−γ10

...
−γn0

1

 (10)

The generalized least squared (GLS) estimate of the global mean of the data in the study region is
given by:

m̂GLS = (1TC−1
1 1)

−1
1TC−1

1 z (11)

where 1 = (1, . . . , 1) and C1 =


C11 · · · C1n

...
. . .

...
Cn1 · · · Cnn

 [22].

The KG goodness of fit is influenced by the spatial data structure, the variogram choice and the
number of data points chosen for the computation [23]. KG is more reliable when the number of
stations is big enough [24]. For details on different approaches to Kriging study, the readers may refer
to [19,20,25].

2.4. Particle Swarm Optimization (PSO)

Metaheuristics are problem-independent (stochastic optimization) techniques [26]. They are
strategies that guide the search process, for an efficient exploration of the search space, for finding
near-optimal solutions. Metaheuristic algorithms are approximate and usually non-deterministic,
and they usually find “good” solutions in a “reasonable” amount of time [27]. Their advantage is that
they are noise tolerant; they do not need the source code of the evaluation simulation, which can be
used as a black box.

Swarm Intelligence (SI) comprises a class of novel population based intelligent metaheuristics,
inspired from the emergent intelligent behavior of flocks of birds, fish, ants, immune system, bacteria,
etc. In such collectivities, social interactions lead to complex social behavior, and that behavior
is modified in dynamic environments. Particle Swarm Optimization (PSO) represents a branch of
algorithms of SI, which implements a computational model for social learning [28]. The algorithm
works with a population of particles (swarm) that, initially, are randomly generated throughout the
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search space of the problem. The particles are evaluated against a fitness function, each of them
searching for locations in the fitness landscape with better fitness values. Each particle has neighbors,
with which it exchanges information, and which are dictated by the representation of the particle and
the neighborhood topology.

The PSO algorithm consists in a swarm of particles that move in a (multidimensional) search
space. Each particle has a position x, a speed v, a memory of its most recent success (pbest—personal
best—the position where the particle has obtained the best fitness) and a memory of the best neighbor
(gbest—global best—the particle with the best neighbor in the neighborhood). The particles’ speed
and positions are updated after each iteration, according to the following equations:

v[t + 1] = w1v[t] + w2rand() + w3rand(gbest− x) (12)

x[t + 1]= x[t] + v[t + 1] (13)

The parameters that appear in Equation (5) are:

- w1 the inertia weight, which forces the particle to move in the same direction; it balances
exploration and exploitation. When w1 is high, PSO is focused on the search space’s exploration.
When w1 is small, PSO focuses on exploitation rather than on exploration. Scenarios in which w1

decreases in time are usually used;
- w2 and w3 the learning factors—they are weights of the acceleration that attracts the particle

towards its personal best position or the global best position. w2 is the cognitive learning factor,
that suggests the tendency to repeat personal actions that proved more successful, while w3 is
the social learning factor—a measure of the tendency to follow the success of the best individual
from its neighborhood.

After updating the speed, a speed limitation rule is usually applied, to prevent the particles from
moving chaotically in the search space:

v[t + 1] = max(−vmax, min(vmax, v[t + 1]) (14)

where vmax is a parameter of the algorithm.
The basic structure of the PSO Algorithm 1 is the following:

Algorithm 1

1: t = 0;
2: Create the initial swarm P(0)
3: repeat
4: Evaluate particles in P(t) using the fitness function
5: Update pbest for each particle
6: Update gbest
7: t = t + 1;
8: foreach particle in P(t)
9: Update its speed using Equation (12)
10: Update its speed using Equation (14)
11: Update its position using Equation (13)
12: end foreach
13: until stopping criterion is met

2.5. Optimization of the IDW Parameter with PSO

The optimization we propose is to identify the value of the optimal β, from (2) using PSO as the
search algorithm. The PSO metaheuristic was chosen due to its simplicity with respect to coding,



Appl. Sci. 2020, 10, 2054 8 of 20

small computational cost and reduced number of parameters (by comparison with genetic algorithms,
for example). PSO’s documented success in optimization applications in a wide range of engineering
problems [28,29] was also a decisive factor in choosing PSO over other metaheuristics.

The particles’ positions in the PSO algorithm encode candidate solutions for the power parameter
in Formula (2) of the IDW weights. They are randomly generated initially within the interval [1.0001, 5]
(since β > 1, from the IDW definition).

The fitness function used in the algorithm assigns to each particle the mean squared error (MSE) of
the predictions made with IDW, using as weight the power parameter βencoded by the respective particle:

fitness(β) =
1
n

n∑
i=1

(pi −mi)
2 (15)

where:

• n is number of stations used in the IDW,
• pi is the value predicted by IDW for the precipitation at station i,
• mi is the (known) measured value for the precipitation at station i.

As far as we know, the proposed approach is new in the literature.
In the following we will refer to the improved algorithm as Optimized IDW (OIDW). Figure 4

presents the flowchart of the OIDW algorithm.
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3. Experimental Settings

The experiments were run using an improved deterministic PSO variant from [30], which is
among the most popular versions of the PSO algorithm [31]. We are interested in assessing the quality
of predictions for OIDW and compare them with the traditional grid search IDW (denoted, in the
following. by IDW*).
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The experiments were run in 2 scenarios:
(Scenario A)
First, we used PSO and grid search to identify a single β that minimizes the sum of prediction

error over all stations. The β value identified is characteristic of the entire Dobrogea region, hence
it can be useful to infer values at points where no recordings are available, for example. When the
predicted values for a given station are computed, the weights in Formula (1) corresponding to that
station are set to 0.

(Scenario B)
We used PSO and grid search to search a β for each station that minimizes the prediction error

when the series from that station is estimated using the other series from the other stations.
For example, if we have ten stations, to estimate the precipitation at the station I, the series

recorded at the stations II-X are used as input, while the series recorded at the station I are hold out as
control values. Thus, they are used for comparison with the values computed by applying Formula
(2) with the parameter β1 identified by OIDW. The β1 obtained minimizes the MSE for the station I.
Another example: to estimate the values of the series from the station V, the series recorded at station
I-IV and VI-X are used as an input, and a β5 is computed, corresponding to the minimum MSE for the
station V, and so on.

Further, we refined the experimental settings by performing experiments in two stages. First, we
employed a reduced dataset comprising the series from ten main meteorological stations. We will
refer to these scenarios as (A1) and (B1). The same experiments were repeated with the extended
dataset that contains all 51 series. We will refer to these scenarios as (A2) and (B2). Hence we obtained
four scenarios. We took a special interest in type (A) experiments because they should yield a unique
empirically determined β to be characteristic for the entire region.

For each scenario, 50 different runs of the PSO algorithm were performed. The default Mersenne
twister randomizer with an initial seed of 0 was used in the experiments reported in the tables below.

Setting the PSO parameters to optimal values is a very difficult optimization problem by
itself [30,32]. In our experiments, the PSO parameters are chosen to match those widely used in the
literature [30]:

• The swarm size is 24,
• Personal best influence is 2,
• Global best influence is 2,
• The inertia weight, decreasing during the iterations of the algorithm from 0.9 to 0.4,
• The number of epochs (i.e., PSO iterations) is 100,
• β is searched in the interval (1, 5).

The results are compared with those obtained by applying IDW and KG. For IDW, we identified
the parameter β performing a grid search with the step-size of 10−4, in the interval [1.001, 5]. The grid
search identifies the parameter β that yields the minimum prediction error (that will be listed in the
results tables).

The experiments for OIDW and IDW* were performed in the Matlab environment, in Matlab
R2012, on a computer with Intel Core i5 quad-core processor at 2.30 GHz with 8 GB RAM, using the
PSO toolbox, available online [33]. Matlab was also used for performing the IDW* computation (IDW
with the grid search).

For KG, we used Ordinary Kriging and report the mean prediction error obtained. The Kriging
algorithm was run using the gstat, sp, spacetime, automap and geoR libraries from the R software.
Different types of variograms (spherical, exponential, Gaussian, linear and power) were fit to the
data, using autofitVariogram (from automap package) [34] and the best one (in terms of the lowest
MSE) was selected. While for using the fit.variogram function (from gstat package) [35] the user
has to supply an initial guess (estimate) for the sill, range, etc. to fit a certain type of variogram, the
use of the autofitVariogram function (from automap package) does not necessitate any initial guess.
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autofitVariogram has the advantage to provide this estimate by computing it based on the data,
and then calls the fit.variogram function [35]. So, autofitVariogram automatically provides fit
parameters (sill, nugget and range) of the best variogram. For a deeper insight on the variogram fitting,
one can see the vignettes of the mentioned packages on the website of R software [34,35]. In our case,
the fit variogram was of an exponential type, with the parameters sill = 144.9766 and range = 48,843.73.

To check if the MSE obtained in OIDW (A and B scenarios) and IDW* are not statistically different,
the following statistical tests have been performed:

• The Anderson–Darling test [36], for testing the null hypothesis of data series normality:
The series is Gaussian (has a normal distribution),
Against the alternative that:
The series is not Gaussian (has not a normal distribution).
• The Levene’s test [36] for verifying the null hypothesis that:
The MSE series (from the scenarios A, B and IDW*) have the same variance,
Against the alternative that:
The MSE series do not have the same variance;
• The non-parametric Kruskal–Wallis test [37], for checking the null hypothesis that:
The mean ranks of the groups of MSE series (from the scenarios A, B and IDW*) are the same.
Against the alternative:
The mean ranks of the groups are not the same.
• The non-parametric eqdist.etest test [38], for verifying the null hypothesis that:
The MSE series (from the scenarios A, B and IDW*) have the same distribution,
Against the alternative:
The MSE series did not have the same distribution.
These nonparametric tests were selected because the normality hypothesis was rejected for some

MSE series in A, B scenarios and IDW*. These tests were performed at the significance level of 5%,
using the R software, version R 3.5.1.

4. Results and Discussion

The experimental results of the study are presented in Tables 1–4, which contain:

â β values rounded up to 4 decimals (which are mean values for the β’s obtained over the 50 runs
of the PSO algorithm);

â Standard deviations of the computed β values, denoted by st.dev.;
â Mean squared errors (MSE) of the series values obtained in the experiments. The MSE is the

average squared difference between the estimated values and the actual values; it is a measure of
a model’s quality (Formula (15)). The smaller the MSE, the better the model is.

â The time (in seconds) for running an experiment in the case of IDW*;
â The average run time (in seconds) over all the 50 experiments and the standard deviation of the

time in the OIDW experiments.

PSO is a stochastic algorithm; hence, mean and standard deviations are reported for both the
optimized parameter, and the time consumed by the algorithm. The standard deviation is a proof of
the algorithm stability (i.e., when the standard deviation is very small it means that the algorithm
converges in every run; hence, it is stable and reliable).

The results obtained using only the series recorded at the ten main stations in the experiments
done in the scenario A1 are displayed in Table 1, as follows: IDW* (columns 2–4), OIDW (columns 5–7)
and KG (column 8). The values of the β parameter are equal up to the fourth decimal in IDW* and
OIDW. The average run time for IDW* is 82.19 times greater than that for running OIDW (column
4-60 s and column 7-0.73 s).

Table 2 displays the results of the experiments performed using the series recorded at the main
meteorological station, in the scenario B1.
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We remarked that the PSO convergence was very good. The standard deviations of time and
β in the OIDW algorithm are of the order of 10−4, respectively 10−6, hence they are not reported
individually in the table. The values identified by OIDW coincide with those identified by IDW*, by the
4th decimal. A significant difference appears in the computational time. In the scenario B1, the average
computational time for an OIDW run is more than 60 times smaller than the time for a IDW* run.

Table 1. The values of the β parameter obtained in experiments performed using the series recorded at
the ten main meteorological stations, in scenario A1. For OIDW, the values in the parenthesis are the
standard deviation of the parameter identified, computed over the 50 independent runs. Comparison
with KG.

IDW* OIDW KG

Station β MSE Time (s) β (std.dev) MSE Time (s)
(std.dev) MSE

Adamclisi

1.1933

32.4184

60
1.1933618

(3.2533 × 10−4)

32.4184

0.73 (0.132)

32.73
Cernavoda 22.9189 22.9189 23.40
Constanta 30.3249 30.3249 30.22
Corugea 22.4062 22.4062 22.48
Harsova 35.6281 35.6281 35.03
Jurilovca 24.1018 24.1018 23.04
Mangalia 42.0429 42.0429 42.73
Medgidia 22.3809 22.3809 22.58

Sulina 44.0204 44.0204 43.54
Tulcea 33.0844 33.0844 34.47

Table 2. The values of the β parameter obtained in experiments performed using the series recorded at
the 10 main meteorological stations, in the scenario B1. Comparison with KG.

IDW* OIDW KG

Station β MSE Time (s) B MSE Time (s) MSE

Adamclisi 5 28.5774 3.6 5 28.5774 0.059 32.73
Cernavoda 1.0001 22.6682 3.6 1.0001 22.6820 0.049 23.40
Constanta 1.0001 30.1713 3.6 1.0001 30.1713 0.049 30.22
Corugea 1.0001 22.3283 3.6 1.0001 22.3283 0.049 22.48
Harsova 3.0589 35.2566 3.6 3.05951 35.2566 0.056 35.03
Jurilovca 1.0001 23.9813 3.6 1.0001 23.9813 0.05 23.04
Mangalia 1.0001 41.9517 3.6 1.0001 41.9517 0.049 42.73
Medgidia 1.5189 22.3073 3.6 1.5189 22.3073 0.081 22.58

Sulina 2.6220 43.4118 3.6 2.6219 43.4118 0.065 43.54
Tulcea 1.0001 33.0501 3.6 1.0001 33.0501 0.049 34.47

Table 3. Parameter β values obtained in experiments performed using the series recorded at all (51)
meteorological stations, in the scenario A2. For OIDW, the values in the parentheses are the standard
deviation of the parameter identified, computed over the 50 independent runs. Comparison with KG.

IDW* OIDW KG

Station β MSE Time (s) β (std.dev.) MSE Time (s)
(std.dev) MSE

Adamclisi

1.5921

29.1151

190
1.59207

(1.1813 × 10−4)

29.1151

4.846
(1.0498)

31.78
Cernavoda 22.166 22.166 25.78
Constanta 29.2801 29.28 36.47
Corugea 17.9985 17.9984 29.95
Harsova 36.2216 36.2214 31.51
Jurilovca 32.2055 32.2054 37.43
Mangalia 39.0367 39.0366 27.38
Medgidia 29.2706 29.2702 31.47

Sulina 46.5612 46.5612 28.05
Tulcea 24.5771 24.5772 28.94
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Table 4. Parameter β values obtained in experiments performed using the series recorded at all (51)
meteorological stations, in the scenario A2. For OIDW, the values in the parentheses are the standard
deviation of the parameter identified, computed over the 50 independent runs. Comparison with KG.

IDW* OIDW KG

Station β MSE Time (s) β (std.dev.) SE Time (s)
(std.dev) MSE

Agigea

1.5921

26.8233

190
1.59207

(1.1813 × 10−4)

26.8233

4.846
(1.0498)

23.92
Albesti 39.1014 39.1016 21.38

Altan Tepe 26.3154 26.3154 23.51
Amzacea 25.5319 25.5319 23.47

Baia 24.9642 24.9642 32.85
Baltagesti 31.246 31.2461 24.62
Biruinta 40.4631 40.4633 26.39
Casian 28.3496 28.3496 18.97

Casimcea 27.3955 27.3956 32.10
Ceamurlia 25.3455 25.3455 19.54

Cerna 28.2859 28.2859 39.45
Cheia 19.4690 19.4690 46.48

Cobadin 30.3138 30.3138 38.22
Corbu 25.2591 25.2591 21.94
Crucea 30.8561 30.8562 26.21

Cuza Voda 23.8778 23.8777 25.27
Daieni 47.0681 47.0681 24.30

Dobromir 29.2771 29.2771 22.91
Dorobantu 35.8369 35.8369 34.72

Greci 26.8270 26.8271 25.23
Hamcearca 29.0369 29.0370 22.56

Independenta 35.639 35.6389 18.11
Lipnita 27.4559 27.4559 33.12
Lumina 31.1541 31.1540 36.45

Mihai Viteazu 30.7684 30.7684 74.91
Negru Voda 40.186 40.1860 43.82

Negureni 73.7331 73.7331 2.69
Niculitel 45.067 45.067 48.99
Nuntasi 21.0675 21.0675 29.32

Pantelimon 49.9444 49.9444 21.09
Peceneaga 22.1274 22.1275 38.29
Pecineaga 31.8819 31.8821 33.92

Pestera 35.9176 35.9176 26.19
Pietreni 31.7759 31.7759 22.79

Posta 24.7646 24.7646 21.12
Sacele 20.8606 20.8606 27.64
Saraiu 25.9453 25.9453 23.21

Satu Nou 23.8919 23.8919 47.47
Silistea 22.8196 22.8195 33.66
Topolog 30.4321 30.4321 24.51

Zebil 26.6736 26.6736 29.31

In both scenarios (A1 and B1), OIDW found the optimum, as it was exhaustively identified by
IDW. Moreover, the differences between the mean squared errors of the approximations computed with
IDW using the β values identified with grid search (IDW*) and OIDW were not statistically significant.
Additionally, the MSEs associated to the IDW algorithms are almost identical; in some cases, these
are better than those obtained by KG. The standard deviations of β are very small in both scenarios.
This signifies that the PSO search for β is stable—PSO converged in all the 50 runs to very similar
values. The average MSE are 30.9327 for IDW* and OIDW in scenario A1; 30.3704 for IDW* and 30.3718
for OIDW in scenario B1 and 31.022 for KG, respectively (Tables 1 and 2). It was expected that OIDW
in the scenario A1 (Table 1) would yield larger prediction errors than the individual OIDW’s in the
scenario B1 (Table 2), since in B1 the algorithm tries to fit a much smaller number of data points.

Nevertheless, the differences with respect to KG are significant only in one case (e.g., Adamclisi).
OIDW is run for each station in scenario B1, hence the computational times in Table 2 add up, for a
fair comparison; OIDW is run only once for the entire set in A1, with the time as reported in Table 1.
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Therefore the time to run the experiments in scenario B1 is smaller than in A1 (1.31 times in for IDW*
and 1.66 times for OIDW).

Tables 3–6 contain the results obtained in experiments performed using the 51 meteorological
stations, in scenario A2 and B2, respectively. Results in Table 3 prove that PSO converges to the optimal
β, as it was identified by grid search (standard deviation of 1.1813 × 10−4).

For the main stations, the standard deviations are equal up to the third decimal for almost all
the series. The computational effort, reported as run time, was significantly smaller (40 times) in the
case of the OIDW algorithm (190 s for IDW* and 4.846 s for OIDW). The average MSE computed in A2
experiments were the following: 30.64324 (IDW*), 30.64315 (OIDW) and 30.876 (KG)—computed using the
MSE for the main series; 31.0671 (IDW*), 31.0671(OIDW) and 29.5480 (KG)—computed using the MSE for
the 41 secondary series and 30.9840 (IDW*), 30.9840 (OIDW) and 29.7924 (KG)—computed using all series.
We found that the average MSE was smaller in all situations in scenario A2 for the main series, by comparison
to scenario A1. The smallest average MSE in scenarios A1 and A2 corresponded to KG, when extracting
only the secondary series (followed by the case when using all the series) for the MSE computation.

The results from Table 5 reveal little to no difference between the β’s identified by grid search and
those identified by PSO search. Therefore, the MSE’s associated to the computed IDW approximations
were identical. The significant difference comes from the computational time: PSO identified the
optimal value 50 times faster than the grid search.

The MSE’s in scenario B2 are smaller in the experiments with 51 stations than those in the
experiments with only ten main stations.

In scenario B1, when taking into account only the results for the main stations, they were as
follows: 30.3704 vs. 29.22245 for IDW*, 30.37178 vs. 29.22245 for OIDW and 31.022 vs. 30.876 (Table 7,
rows 3 and 6). This was to be expected because the algorithms received far more information in the
scenario B2 than in B1. On the other hand, from the same reason, β st.dev in OIDW increased, while
remaining very small.

All the results from Table 7 that summarizes the average MSE in all experiments show similar
performances of IDW*, OIDW and KG. None of the algorithms were the best in all situations, confirming
the literature findings [39].

Therefore, one can remark that OIDW yields competitive results in terms of MSE’s of estimated
values when compared to KG. This is important because it proves OIDW to be a reliable method.

Finding the minimum MSE in the grid search is not straightforward because the MSE evolution
patterns are different, as it is illustrated in Figure 5, for two series, where the MSE is computed using all
the series, with a grid search step of 10−4. For Cernavoda, the trend is almost linear, while for Adamclisi,
it decreases them it increases and presents an inflexion point. Figure 6 depicts the dependence of the
average MSE for all series as a function of β. The chart has a similar behavior as for the Adamclisi series.

Table 5. Parameter β values obtained in experiments performed using the series recorded at all the
meteorological stations in the scenario B2. Comparison with KG.

IDW* OIDW KG

Station β MSE Time β MSE Time (s) MSE

Adamclisi 1.8504 28.9823 4.2 1.8504 28.9823 0.100 31.78
Cernavoda 1.0743 22.0317 4.2 1.07435 22.0317 0.100 25.78
Constanta 1.0001 28.0778 4.1 1.0001 28.0778 0.056 36.47
Corugea 1.4043 17.7585 4.1 1.40429 17.7585 0.110 29.95
Harsova 1.0001 34.104 4.2 1.0001 34.104 0.056 31.51
Jurilovca 1.0001 29.6876 4.3 1.0001 29.6876 0.056 37.43
Mangalia 1.0001 38.6895 4.3 1.0001 38.6895 0.064 27.38
Medgidia 1.0001 23.4367 4.2 1.0001 23.4367 0.058 31.47

Sulina 2.5714 46.4455 4.2 2.57303 46.4455 0.059 28.05
Tulcea 2.9100 23.0109 4.3 2.91002 23.0109 0.071 28.94
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Table 6. Parameter β values obtained in experiments performed using the series recorded at all the
meteorological stations in the scenario B2. Comparison with KG.

IDW* OIDW KG

Station β MSE Time B MSE Time (s) MSE

Agigea 1.8838 26.6137 4.1 1.8838 26.6137 0.070 23.92
Albesti 3.4336 35.5855 4.1 3.43379 35.5855 0.067 21.38

Altan Tepe 1.5072 26.3112 4.1 1.50717 26.3112 0.120 23.51
Amzacea 1.4064 25.4654 4.2 1.40655 25.4654 0.099 23.47

Baia 1.722 24.9073 4.3 1.72191 24.9073 0.120 32.85
Baltagesti 2.3856 30.1228 4.3 2.38567 30.1228 0.086 24.62
Biruinta 3.1188 36.8629 4.3 3.11882 36.8629 0.110 26.39
Casian 1.6395 28.346 4.3 1.6394 28.346 0.100 18.97

Casimcea 2.3905 26.6605 4.2 2.39077 26.6605 0.084 32.1
Ceamurlia 1.5454 25.3378 4.3 1.54547 25.3378 0.086 19.54

Cerna 1.8537 28.126 4.2 1.85357 28.126 0.084 39.45
Cheia 1.6433 19.4619 4.1 1.64323 19.4619 0.120 46.48

Cobadin 1.0001 30.1472 4.1 1.0001 30.1472 0.055 38.22
Corbu 1.5919 25.2591 4.2 1.59192 25.2591 0.110 21.94
Crucea 2.3662 29.745 4.1 2.36621 29.745 0.120 26.21

Cuza Voda 1.0001 23.4537 4.1 1.0001 23.4537 0.067 25.27
Daieni 5 44.9327 4.1 5 44.9327 0.065 24.3

Dobromir 1.4430 29.2665 4.2 1.44297 29.2665 0.072 22.91
Dorobantu 1.3107 35.8154 4.2 1.31057 35.8154 0.097 34.72

Greci 3.8756 25.9016 4.2 3.87535 25.9016 0.087 25.23
Hamcearca 3.6478 26.9690 4.2 3.648 26.9690 0.077 22.56

Independenta 1.0001 33.7906 4.2 1.0001 33.7906 0.057 18.11
Lipnita 1.6913 27.4506 4.5 1.6900 27.4506 0.08 33.12
Lumina 1.0001 30.1164 4.4 1.0001 30.1164 0.066 36.45

Mihai Viteazu 1.4875 30.7659 4.2 1.48901 30.7659 0.071 74.91
Negru Voda 1.0001 39.9995 4.3 1.0001 39.9995 0.061 43.82

Negureni 2.3998 73.5851 4.2 2.39992 73.5851 0.093 2.69
Niculitel 1.1157 44.7084 4.2 1.11566 44.7084 0.11 48.99
Nuntasi 1.6074 21.067 4.2 1.60745 21.067 0.11 29.32

Pantelimon 5 45.7025 4.5 5 45.7025 0.061 21.09
Peceneaga 3.4614 19.9815 4.4 3.46124 19.9815 0.081 38.29
Pecineaga 3.1474 29.0975 4.4 3.14738 29.0975 0.092 33.92

Pestera 1.0001 35.5876 4.4 1.0001 35.5876 0.057 26.19
Pietreni 1.5219 31.772 4.5 1.52222 31.772 0.082 22.79

Posta 1.7224 24.747 4.2 1.7224 24.747 0.100 21.12
Sacele 1.5402 20.8558 4.2 1.54022 20.8558 0.089 27.64
Saraiu 2.9462 25.1995 4.2 2.94627 25.1995 0.073 23.21

Satu Nou 1.1494 23.694 4.1 1.14939 23.694 0.092 47.47
Silistea 1.1135 22.4699 4.2 1.11361 22.4699 0.084 33.66
Topolog 2.6361 29.9864 4.3 2.63624 29.9864 0.072 24.51

Zebil 1.6260 26.6716 4.2 1.6260 26.6716 0.092 29.31

Table 7. Mean values of standard error (average mean squared error (MSE)) over all the series in
different scenarios.

IDW* OIDW
KG 1,2

Scenario A1 1 B1 2 A1 1 B1 2

Main stations 30.93269 30.3704 30.93269 30.37178 31.022

IDW* OIDW
KG

Scenario A2 B2 A2 B2

Main stations 30.64324 3 29.22245 5 30.64315 3 29.22245 5 30.876 3

Secondary stations 31.0671 4 30.30585 6 31.0671 4 30.30585 6 29.5280 4

All stations 30.9840 3,4 30.0934 5,6 30.9840 3,4 30.0934 5,6 29.7924 3,4

Note: 1–6 means that the values have been computed using the values from Tables 1–6, respectively. 3,4 means that
the values have been computed using the values from Tables 3 and 4. 5,6 means that the values have been computed
using the values from Tables 5 and 6
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With respect to computational effort: for detecting the β that minimizes the MSE for fitting the
values of a series in IDW* using a grid search with a step r, on an interval [a. b], the computation
should be performed [(b− a)/r] + 1 times (where [] is the integer part of the number inside the bracket).
For example, for a grid search with a step of 0.1, IDW* was performed 50 times for each station, so 500
times when only the main stations were employed and 2550 times when all the 51 series were used.

Once again, taking into account the consumed time in scenarios A1 or A2, B1 or B2 is more
convenient to run OIDW. This idea is supported by the fact that the β’s identified with OIDW in all the
runs were identical to optimal values of β found by grid search IDW* up to the third digits (so, OIDW
converged to a global optimum, in all cases).

OIDW performed better than KG in 60% of cases in scenario A1, in 80% of cases in scenario B1,
and in 49.01% cases in scenarios A2 and B2. While in the scenarios A1 and B1, the OIDW MSE and KG
MSE are comparable, in the A2 and B2 scenarios, there are some discrepancies between them, as for
example, for Sulina, Cheia, Negureni, Pantelimon and Mihai Viteazu (in A2 and B2). This situation
could be explained by the following reasons: (a) the low number of series used in A1 and B1 scenario,
(b) the inhomogeneity of the stations on the in the Dobrogea region, (c) the climate differences on the
different part of the region and (d) the possible anisotropy was not considered.

The results of the statistical tests on the SE series for OIDW and IDW* are presented in the
following. The normality test for the MSE series corresponding to the experiments in scenarios A1, B1,
OIDW, KG and IDW* from Tables 1 and 2, A2, B2, IDW*, KG from Tables 3 and 5, KG from Table 3 +

Table 4 and KG from Table 5 + Table 6 could not reject the normality hypothesis. The same test led
to the normality rejection for the IDW* MSE and OIDW MSE series corresponding to the secondary
stations from Tables 4 and 6, but not for OIDW MSE corresponding to all the series in Table 3 + Tables 4
and 5 + Table 6.
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A spatial map containing illustration the distribution of MSE in OIDW form B2 scenario (values
from Table 5 + Table 6) is presented in Figure 7. The highest MSEs correspond to the station near the
region border, where the stations had few close neighbors.

Figure 7. MSE in OIDW (scenario B2).

To offer a different perspective of the OIDW performance, we computed the Mean Absolute
Percentage Error (MAPE) and the Kling–Gupta efficiency (KGE).

The MAPE is given by the formula:

MAPE =
1
n

n∑
i=1

∣∣∣∣∣pi −mi

mi

∣∣∣∣∣ (16)

where n is number of stations used in the IDW, pi is the value predicted by IDW for the precipitation at
station i and mi is the measured value for the precipitation at station i.

The KGE coefficient is introduced in [40]; it is defined by formula:

KGE = 1 − ED (17)

where:

ED =

√
(r− 1)2 +

(
σs

σ0
− 1

)2

+

(
µs

µ0
− 1

)2

(18)

where µs is mean of the values resulted from the model, µ0 is the mean of the recorded values, σs is the
standard deviation of the values resulted from the model and σ0 standard deviation of the recorded values.

MAPE is a scale-independent indicator that could be used in order to compare the performance
of a given method on separate data sets. The lower MAPE is, the better the model is. The KGE
coefficient is dimensionless as well and has an ideal value of unity. Although, in this study, the models
were calibrated using the MSE as the model calibration criterion, the KGE and MAPE provide further
validation of the obtained models.

Table 8 provides the MAPE values together with the Root Mean Square Errors (RMSE =
√

MSE)
and the KGE for the ten main stations.
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Table 8. Mean Absolute Percentage Error (MAPE) values for the predictions computed with OIDW for
the series recorded at all the meteorological stations in the scenarios A1 and B1.

Station Scenario A1 Scenario B1

Station RMSE MAPE KGE RMSE MAPE KGE

Adamclisi 5.6937 0.2197 0.5285 5.3458 0.2104 0.6339
Cernavoda 4.7874 0.1788 0.6711 4.7626 0.1736 0.6696
Constanta 5.5068 0.2299 0.5370 5.4928 0.2254 0.5353
Corugea 4.7335 0.1753 0.6847 4.7253 0.1745 0.6799
Harsova 5.9689 0.3490 0.4525 5.9377 0.3372 0.5139
Jurilovca 4.9094 0.2760 0.6529 4.8971 0.2754 0.6549
Mangalia 6.4840 0.2601 0.3447 6.4770 0.2588 0.3418
Medgidia 4.7308 0.2026 0.7105 4.7231 0.2019 0.7202

Sulina 6.6348 0.7615 0.2210 6.5888 0.7566 0.2400
Tulcea 5.7519 0.2454 0.4451 5.7489 0.2443 0.4457

Similar results for MAPE and KGE were obtained in the A2 and B2 scenarios, so we are not
presenting them here.

The highest MAPE value (so the worst data fit) was noticed for the Sulina station in both scenarios.
It was expected, since Sulina is situated 12 km offshore, in the Danube Delta, and the climate presents
different particularities compared with the rest of Dobrogea region. The same was true for the KGE
coefficient: its lowest values were obtained for the Sulina and Mangalia stations (the most isolated stations).

Since the values of both goodness-of-fit indicators, dimensional-RMSE and dimensionless-MAPE
are small, and most of the KGE values are bigger that 0.5, it resulted in the OIDW performing well.

The Levene’s test could not reject the hypotheses that groups of MSE from Tables 1–4 (together),
Tables 5 and 6 (together) and Tables 3–6 were homoskedastic, the corresponding p-values associated to
this test were greater than the significance level of 5%.

The Kruskal—Wallis test could not reject the null hypothesis, the corresponding p-values being
0.9356 (Tables 1 and 2), 0.8348 (Table 3 + Table 5), 0.6437 (Table 4 + Table 6) and 0.7519 (Tables 3–6 all the
stations), respectively. The eqdist.etest test applied to the same groups of series as in the previous test
could not reject the hypothesis that each group of series has the same distribution, the corresponding
p-values being greater than the significance level of 5%.

Concluding, the MSE’s of the estimations obtained by OIDW, IDW* and KG were not
significantly different.

When KG is not very straightforward to be applied and searching for the best parameter β for
IDW with grid search is computationally intensive, OIDW proves to be a convenient and rapid to
use solution.

Other optimization methods can be applied for the power parameter of IDW calibration, such
as methods based on the Golden Section (GS) method, provided that the hypotheses of this method
are satisfied. As an example, we tried to calibrate the parameter β by this additional optimization
method, namely by the fminbnd Matlab function [41]. This function applies GS, followed by parabolic
interpolation; the boundaries for the search are to be specified as parameters. In the experiments
performed on the series from the ten main stations with the fminbnd method, we obtained an
approximation of 1.1903 f or β with a duration of 1 s, with MSE = 30.75. The results are comparable
in this situation with those obtained by both OIDW and IDW. The assumptions for this method
include that the function to be minimized should be continuous, which is hardly the case in real world
problems. Additionally, since in some situations the fminbnd fails to find the optimum (as in the case
of independent stations, where there are local minima or when minimum lies on the boundary of the
search domain [41]), we consider that an extensive study should be done to compare our approach
with that of fminbnd. The results will be communicated in another article.
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5. Conclusions

The paper describes a hybrid PSO-IDW algorithm for the modeling of data; it is applied on
maximum precipitation data in the experimental part. The algorithm is based on a well-known
spatial interpolation method (IDW). Since the application of IDW makes use of the power parameter β,
we proposed the use of the PSO algorithm to identify a suitable value for this parameter. Empirical
results proved that the IDW performance was maintained, while the new method offered lower
computational costs. Results of the IDW and OIDW were further compared to Kriging.

The optimization of IDW with PSO described in this paper offered an alternative to an exhaustive
search for the problem of tuning the power parameter in the IDW method. In cases when the estimations
provided by the traditional application of IDW are good, the results obtained with OIDW should
preserve the quality of the prediction and be better in terms of computational effort.

Kriging is a powerful geostatistical method, suitable to be applied in certain cases, and its
application assumes profound knowledge of spatial statistics. When the spatial correlation is strong
and the variogram can depict well the spatial variability, the KG algorithm predicts very well. Even so,
for our precipitation data, the results are not substantially better by KG, as it was the case for other
environmental variables studied in [17]. In cases where the nature of the input data does not support
KG, instead of using IDW for prediction it is wiser to choose OIDW since it automates the process
of identifying the appropriate power parameter, with smaller computational effort. Our approach
also benefits from the advantages of the PSO algorithm: a simple implementation, robustness, small
number of parameters to adjust and a high probability and efficiency in finding the global optima,
fast convergence, short computational time and modeling accuracy. OIDW is easy to use by people
that do not have statistical knowledge [29,42].

The limitations of IDW are preserved by OIDW: in locations with sparse neighbors (such as those
near the borders of the study region), the errors for IDW simulated data are larger. While providing a
solution for optimizing the IDW parameter, OIDW uses PSO, which has several parameters of its own
that need to be set (e.g., swarm size, the weights in the Equations (7) and (8)). In our experiments,
setting these parameters to values commonly used in the literature led to very good results.

The contribution of our paper was two-fold. For hydrologists, we introduced an optimization
of a well-known and widely used spatial interpolation method—namely IDW. For the artificial
intelligence community, we proved the utility of the application of the PSO metaheuristic on a
parameter optimization problem.

The results obtained in our case study using time series data from 51 meteorological locations
in the Dobrogea region (Romania) encouraged us to consider OIDW as a good choice for the spatial
interpolation of precipitation data. Still, more experiments will be performed, using various types
of environmental data and various measures of performance of the models, in order to decide the
appropriateness of OIDW as a general spatial interpolator.
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