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Abstract: Bearing failure generates impulses when the rolling elements pass the cracked surface
of the bearing. Over the past decade, acoustic emission (AE) techniques have been used to detect
bearing failures operated in low-rotating speeds. However, since the high sampling rates of the AE
signals make it difficult to design and extract discriminative fault features, deep neural network-based
approaches have been proposed in several recent studies. This paper proposes a convolutional
neural network (CNN)-based bearing fault diagnosis technique. In this work, the normalized
bearing characteristic component (NBCC) is used as the input of CNN, which is an effective form
of representing bearing failure symptoms. In addition, importance-weight is extracted using
gradient-weighted class activation mapping (Grad-CAM) for visual explanation of CNN. In the
experiment result, the proposed approach achieves high classification accuracy with reasonable
visualization, which shows that CNN successfully learned the components of bearing characteristic
frequency for each type of bearing failure.
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1. Introduction

Bearings are vital components of heavy rotating machines that reduce friction between a rotating
shaft and fixed components such as bearing housings. It is known that 45–55% of failures of rotating
machines are caused by bearing faults [1]. Hence, it is important to detect the arising bearing faults at
the early stages to prevent the secondary failure of the manufacturing equipment. In the past decades,
many bearing fault diagnosis techniques have been developed based on acoustic emission (AE). AE is
the process of the generation of transient elastic waves from sudden cyclic fatigue, fraction, impacting,
etc. [2–5]. Regarding bearings, the acoustic waves can be generated when the rolling elements of the
bearing hit the cracked surface on the inner race, outer race, and rolling element. The advantage of
AE-based analysis is its capability of detecting very low-energy signals caused by bearing failures
at an early-stage or during slow-speed operation [2]. However, since the sampling rate used for
AE signal collection is usually higher than 1 MHz, it is difficult to analyze the AE signal because
of the tremendous amounts of data in the collected time-series (due to high signal sampling rates)
and computational time required for analysis. Model-based feature extraction is one of promising
approaches to overcome these issues because it converts big raw data instances into small feature
vectors. Multipoint optimal minimum entropy deconvolution adjusted (MOMEDA) is introduced to
extract informative features in several papers [6–8]. In these studies, the MOMEDA has been utilized to
extract the fault period impulse component as features, which is the demodulated signal. Other papers
developed deep neural network (DNN)-based bearing fault diagnosis methods [9–14]. DNN-based
bearing diagnosis methods are powerful tools to extract informative features by learning feature
representations from a large amount of raw data. Recently, some papers compared the performance
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of convolutional neural network (CNN) and DNN-based approaches. From these papers we could
conclude that the CNN-based techniques are much better than DNN-based methods in terms of fault
diagnosis performance [3,12,15,16]. Although DNN or CNN-based methods have achieved high
classification accuracy, there are still two issues that must be resolved to make these methods highly
applicable to real applications. The first issue is that the trained neural network, in general, can be only
reliable on the specific machine since the patterns of the raw signals strongly depend on the operating
conditions of the machinery such as load, installation, external vibration, etc. The second concern is
that the trained feature representation is uninterpretable due to the black box-like operation of the
neural networks.

This paper proposes a new CNN-based rolling element bearing fault diagnosis approach to resolve
the aforementioned problems. To address the first issue, the proposed method utilizes the normalized
bearing characteristic components (NBCC) as the input data of CNN rather than raw AE signal itself.
Since the bearing characteristic frequencies are induced by appearing bearing failures, NBCC is a more
effective representation for diagnosing the bearing failure symptoms. To resolve the second issue, this
paper applies the gradient-weighted class activation mapping (Grad-CAM) to visualize important
regions in NBCC. According to the literature, Grad-CAM is a promising method that provides visual
explanations of the classification result of a CNN in object detection and recognition [17].

The remainder of this paper is organized as follows. Section 2 introduces the proposed methodology
for diagnosing rolling element bearing faults using AE signals. In Section 3 the bearing fault simulator
used for collecting AE signals is presented. The fault diagnosis results demonstrated and discussed in
Section 4. Finally, Section 5 contains the concluding remarks.

2. Proposed Method

Figure 1 illustrates the process of diagnosing bearing faults by the proposed method as a flowchart.
In step 1, the envelope power spectra are calculated from pre-acquired AE signals containing healthy
and faulty conditions. In step 2, frequency magnitudes are extracted from the characteristic frequency
range of the bearing and used as features. In step 3, the CNN is trained using the extracted features.
Here, the envelope power spectra of new AE signals are classified into healthy or faulty condition using
the trained CNN. Finally, in step 4, the importance weights with frequency are generated including
valuable regions in the envelope spectrum using Grad-CAM for the acquired AE signals.
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2.1. Envelope Analysis

Since the impulses generated by bearing failures are amplitude-modulated, AE signals should be
first demodulated to extract pure burst signals. As shown in Figure 2, the Hilbert-transform-based
envelope analysis was used to demodulate the AE signal [18,19]. First, the Hilbert-transform was
applied to the AE signal as follows [18]:

x̂(t) =
1
π

∫
∞

−∞

x(τ)
t− τ

dτ, (1)

where t is the time, x(τ) is a sample of the input signal at τ, and x̂(t) is a sample of the Hilbert-transformed
signal at time t. Hilbert-transform shifts the phase of the input signal by 90 degrees.
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Figure 2. The flowchart of the envelope analysis. Hilbert-transform is applied to the acoustic emission
(AE) signal to calculate the 90-degree phase-shifted signal. Then, the analytical signal is calculated by
sum of the original signal and its Hilbert-transform as an imaginary number. Next, the envelope signal
is calculated by applying absolute operation to the previously computed analytical signal. Finally, the
fast Fourier transform of the envelope signal provides an envelope spectrum.

To obtain the analytical signal, z(t), the Hilbert-transformed signal, x̂(t), and input signal, x(t)
were combined as complex numbers [18]:

z(t) = x(t) + ix̂(t), i =
√

−1. (2)

Then, the envelope signal, e(t) was computed as
∣∣∣z(t)∣∣∣. Finally, the envelope spectrum, f (ω) was

calculated as the square root of the fast Fourier transform of e(t) as follows:

f (ω) =
∫
∞

−∞

x(t)e− jωtdt. (3)

2.2. Bearing Characteristic Component Analysis

Bearing failures generate periodic burst signals that are represented as the bearing characteristic
frequency harmonics in the spectrum [20]. The outer race way with a crack on its surface (ORCS)
emits a periodic pulse each time when the rolling element passes over the cracked surface. Since
the outer race is a static component of the bearing and the applied load to cracked surface is always
stable, the amplitude of the impulses does not change. The inner race way with a crack on its surface
(IRCS) generates a series of impulses when each rolling element hits the crack on the inner race of
the bearing. By rotating the inner ring with the shaft, the response of impulses grows up periodically
when the inner race passes loaded zone, which is oriented to the direction of gravity. Since this
phenomenon modulates the impulses by rotating speed, the sideband of rotating speed appears nearby
the characteristic frequency of inner race. The rolling element with a crack on its surface (RECS)
generates impulses by hitting inner and outer races. The magnitude of the impulse is affected by
whether the contact occurred in the loaded or unloaded zones. Similarly, the sideband of RECS is a
fundamental train frequency [20]. Figure 3 illustrates the examples of the ideal signals for ORCS, IRCS,
and RECS.
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Figure 3. Examples of the ideal signals for each type of bearing fault.

Accordingly, the bearing characteristic (or defect) frequencies are categorized into ball pass
frequency on the outer race (BPFO), ball pass frequency on the inner race, (BPFI), and ball spin
frequency (BSF). BPFO, BPFI, and 2×BSF are caused by the bearing failures of the outer race, inner race,
and rolling element, respectively. The bearing characteristic frequencies are defined as follows [20]:

BPFO =
Nb
2
× S×

[
1−

(
Bd
Pd
× cosθ

)]
, (4)

BPFI =
Nb
2
× S×

[
1 +

(
Bd
Pd
× cosθ

)]
, (5)

BSF =
Pd
2Bd
× S×

1− (
Bd
Pd
× cosθ

)2, (6)

where Nb is the number of rolling elements, S is the shaft speed, Bd is the diameter of the rolling
element, Pd is the pitch diameter, i.e., the distance between the center of a rolling element and the
center of the inner race, and θ is a contact angle of the rolling element with respect to the shaft.

The bearing characteristic components (BCCs) were extracted as an input vector of the CNN.
BCCs are defined as follows:

BCC(k) = f (ω), ω = 0, . . . , Fmax, (7)

where f are the values of the envelope spectrum and Fmax is the frequency, which is higher than all the
harmonics of bearing characteristic frequencies as below:

Fmax = max(BPFO, BPFI, BSF) × n + fside, (8)

where n is the number of frequency harmonics and f side is the sideband of the highest characteristic
frequency. Table 1 shows f side for each type of bearing characteristic frequency. In this paper, Fmax was
equal to BPFI, which is the highest among the bearing characteristic frequencies. Figure 4 depicts the
extraction process of BCCs.
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Table 1. The specification of the target bearing, FAG NJ206-E-TVP2.

Bearing Characteristic Frequency Sideband (fside)

BPFO No sideband
BPFI Shaft speed
BSF Fundamental train frequency 1

1 This frequency is generated when the roller cage enters the load zone [20] (3.3 Hz in this paper).
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Figure 4. The extraction process of bearing characteristic components.

Since the variation of magnitude makes the training CNN unstable, BCCs are min–max normalized
to be used for input data of CNN as follows:

NBCC(i) = (BCC(i) −min(BCC))/(max(BCC) −min(BCC)), i = 0, . . . , Fmax. (9)

2.3. Training and Classification

The structure of CNN is represented in Figure 5. The proposed CNN had six convolutional layers
and two fully connected (FC) layers. Each convolutional layer consisted of a one-dimensional (1-D)
convolutional layer, a batch-normalization layer, and a rectified linear unit (ReLU). All convolutional
layers were connected to each other using a max pooling layer with a down-sampling factor of 2. The
input size of each convolutional layer was half of the input size of the previous convolutional layer,
except for the first layer. The FC layers and softmax role classification were the last layers [21]. For the
training process, multiclass categorical cross-entropy was used as the loss function, and the Adam
optimization algorithm was used for backpropagation [22].
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2.4. Importance-Weight Extraction

Figure 6 illustrates the flowchart of Grad-CAM with an example of CNN structure. Each
convolutional layer consisted of several filters with trainable filter coefficients. CNN applies these
filters to the input data for extracting the informative features from the data. In Grad-CAM, the outputs
of final convolutional layers were used to calculate the importance-weight for each characteristic
frequency in NBCC. To obtain the importance-weight, a partial derivative of the score for class c was
calculated of the k-th activation map. The following equation represents the definition of pc

k [17]:

pc
k =

1
N

∑N

i=1

∂yc

∂Ak
i

, (10)

where pk
c indicates the importance-weight of the k-th filter for class c, yc is a classification score of class

c, and Ak
i is i-th element in k-th activation map. When CNN was being trained, ∂yc

∂Ak
i

was calculated in

the back-propagation step. Finally, the importance-weight of class c was calculated as follows [17]:

Mc =
∑

k
pc

kAk. (11)
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3. Experimental Setup and Data Acquisition

To validate the proposed method, a bearing fault simulator was used for measuring healthy
and faulty-state AE signals of the rolling element bearing. The established bearing fault simulator
is illustrated in Figure 7. On the drive-end shaft, a three-phase induction motor was connected to
a gearbox by flexible coupling. The gearbox transferred the torque of the induction motor to the
non-drive-end shaft with a gear reduction ratio of 1.52:1. A tachometer was installed to measure the
rotating speed of the non-drive-end shaft. A cylindrical roller bearing (FAG NJ206-E-TVP2), which
was the target bearing of the experiment, was installed in the bearing housing of the non-drive-end
shaft. To apply radial and axial load, a fan with adjustable blades was connected to the non-drive-end
shaft via a belt. The shaft speed was 500 revolutions per minute (RPM) in this paper. An AE sensor
was attached on the bearing housing of the target bearing. The measurement device for obtaining
AE signals was a PCI-2-based system. A general-purpose wideband AE sensor, whose frequency
response was between 100 and 1000 kHz, was used to capture resonance frequency signals containing
modulated bearing signals.
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Figure 8 and Table 2 shows the specification of the target bearing. The contact angle was 0 because
the target bearing was a radial bearing. By using Equations (4)–(6) with the bearing parameters and
shaft speed, the bearing characteristic frequencies of BPFO, BPFI, and BSF were equal to 43.68 Hz,
20.72 Hz, and 64.65 Hz, respectively.

Table 2. The specification of the target bearing, FAG NJ206-E-TVP2.

Category Symbol in Equations Value (mm)

Pitch diameter Pd 46.5
The diameter of rolling element Bd 9
Contact angle of rolling element θ 0
The number of rolling elements Nb 13

Pitch diameter Pd 46.5

The seeded bearing faults, which are the outer race way with a crack on its surface (ORCS), inner
race way with a crack on its surface (IRCS), and rolling element with a crack on its surface (RECS), are
shown in Figure 9. The crack dimension of the bearing failures was 6 mm × 0.5 mm × 0.5 mm. In
addition, Figure 10 illustrates an example of the AE signals for each bearing condition in the dataset. As
shown in Figure 10, the healthy bearing (HB) contained less impulses than the ones in faulty conditions.



Appl. Sci. 2020, 10, 2050 8 of 12

On the contrary, the signal of bearing faults such as ORCS, IRCS, and RECS emitted more impulses
created by the cyclic impacts of faults.
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Figure 9. The seeded bearing faults: (a) outer race way with a crack on its surface (ORCS); (b) inner
race way with a crack on its surface (IRCS); and (c) rolling element with a crack on its surface (RECS).
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Figure 10. The examples of AE signals for each bearing conditions listed as: (a) the AE signal of the
healthy bearing; (b) the AE signal of ORCS; (c) the AE signal of IRCS; and (d) the AE signal of RECS.

4. Experimental Results and Discussion

To validate the performance of Grad-CAM for the bearing fault diagnosis, AE signals from the
healthy-state and three types of bearing fault were acquired using the testbed. The length of a measured
AE signal was 1 second with a 1 MHz sampling rate and the number of AE signals for each condition
was 600. Half of the data instances from the collected dataset were randomly selected for training the
CNN. The remaining unseen samples were used for validating the fault diagnosis capabilities of the
trained CNN. The trained CNN achieved 99% classification accuracy on the validation dataset, as
shown in the confusion matrix depicted in Figure 11.
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Figure 12 demonstrates the importance-weight over frequency component of the envelope
spectrum. As shown in the figure, the CNN learned that the harmonics of defect frequencies were
important information for classifying the states of the bearing. In this study, BPFO, BPFI, BSF, and the
shaft speed were 44, 42, 65, and 8.33 Hz, respectively. For the healthy condition, CNN learned that low
frequency band components were important since the low frequency band contained the harmonics of
the shaft speed frequency that could be clearly observed in the healthy condition of the bearing. Since
the defect and shaft speed frequencies are also valuable in traditional bearing fault diagnosis methods,
it seems that the CNN was trained without any fault-related information. In the case of outer race
fault, the values of 2×BSF and BPFO harmonics were too similar that made it difficult to classify the
input data based on these characteristic frequencies. Therefore, the CNN chose the sideband of BPFO
as useful information instead of BPFO, itself.
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5. Conclusions

In this paper, we proposed NBCC, which contains bearing characteristic frequencies for training
CNNs when used for the task of rolling element bearing fault diagnosis. In addition, we analyzed
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the feature representation of the trained CNN for the bearing fault diagnosis using the Grad-CAM
technique. In the experiment, a custom simulator was used to imitate bearing faults. Using the bearing
fault simulator, AE signals were measured for healthy state of the bearing and three different types of
bearing faults such as the outer race way, inner race way, and rolling element with a crack on their
surface. In the experimental result, the CNN achieved 99% accuracy when trained with the proposed
NBCC. The result also demonstrated that the low frequency components were important for classifying
healthy state of the bearing, whereas bearing characteristic frequencies were essential for diagnosing
various types of bearing faults. This result indicates that CNN trained with the proposed NBCC
properly understood the valuable features of the envelop power spectrum for each bearing condition
used in this work. For the application of CNNs in real environment, the proposed approach can be
utilized to verify whether CNN learns inappropriate feature representation or not.
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Nomenclature

The following nomenclatures are used in this manuscript
Ak k-th output of a convolutional layer
BCC bearing characteristic components
Bd the diameter of the rolling element of bearing
BPFO ball pass frequency on the outer race of bearing
BPFI ball pass frequency on the inner race of bearing
BSF ball spin frequency of bearing
e(t) a sample of envelope signal at the time, t

Fmax
the maximum frequency covering bearing characteristic
frequencies and harmonics

f (ω) the magnitude of envelope spectrum at the frequency, ω
fside The sideband of bearing characteristic frequency
Mc the importance-weight for the input data, NBCC

n
the number of harmonics of bearing characteristic
frequencies used in the proposed method

Nb the number of rolling elements
NBCC normalized bearing characteristic components

Pc
k

importance weight vector of k-th filter of a convolutional
layer for class, c

Pd the pitch diameter of rolling element bearing
S shaft rotating speed
x(t) a sample of signal at the time, t
x̂(t) a sample of Hilbert-transformed signal at time, t
yc the score of classification for class, c
z(t) a sample of analytical signal at the time, t
θ the contact angle of rolling element
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