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Abstract: The article focuses on the bending problem for a cantilever beam with a straight
through-thickness crack, perpendicular to its axis under bending by concentrated force. Depending
on the crack location in relation to the axis, crack faces may be in three states: perfect contact,
particular contact, or noncontact. Using the theory of functions of complex variable and complex
potentials, the considered problem was reduced to a linear conjunction one. An analytical solution of
the problem was obtained. In the case of particular contact, the length of the contact area and stress
intensity factors were determined. The ultimate force that causes beam destruction was determined.
Numerical analyses of the problem were also performed.

Keywords: cantilever beam; concentrated force; crack; complex potentials; stress intensity factor;
ultimate force.

1. Introduction

Beam elements of structures are widely used in engineering practices. They may contain cracks
that are powerful stress concentrators, decreasing the reliability and durability of such structures.

Under external load, crack faces may be in contact. Many researchers have studied plane contact
problems in crack theory of homogeneous bodies and developed methods for solving this problem.
They are: Mosakovskyy V.I., Zagubizhenko P.A. [1,2], Bojko L.T., Berkovych P.E. [3], Grylitskyy N.D.,
Kit G.S. [4], Grylitskyy D.V,, Lytsyshyn R.M. [5], Kryvcun M.G., Grylitskyy N.D. [6], Lozovyy B.L.,
Panasjyk V.V. [7,8], Savruk M.P. [9], Filshtynskyy L.A., Hvorost V.E. [10], Bowie O.L., Freese C.E. [11],
and Guz A.N., Zozulya [12].

There are lots of various fracture criteria for cracked bodies in scientific literature. Several of them
are of significant interest [13-19].

The problem of bending of a cantilever-cracked beam by concentrated force applied at its end,
perpendicular to its axes, is investigated in the papers [7,8]. It was assumed that the crack is straight,
through-thickness, perpendicular to beam axis, and its faces are particularly contacting. Using the
theory of complex variable functions and complex potentials, the considered problem was reduced
to a linear conjunction problem, and to a singular integral equation in unknown contact stresses.
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The complex potentials of the problem, the length of the contact area of crack faces, and the ultimate
value of the force responsible for beginning of crack propagation were determined.

A similar problem for nonsymmetrical cracks was studied in this paper. Depending on the location
of a crack, its faces may be in perfect contact, particular contact, or have no contact.

On the base of energy [15,16] and improved [17-19] criteria, an ultimate value causing beam
fracture was derived.

Mark meaning are listed in Table 1 to improve understanding article by reader’s.

Table 1. Mark meaning.

Mark Mark meaning
Ls the distance from the left edge of the strip to the crack line
2h crack width
2b crack thickness
A(dy,0) and B(d,,0). crack tips
2 crack length
Ly unloaded zone AC of the crack
L crack faces are smooth closed in area CB
ayy and Yihy components of stress tensor
v the second component of displacement vector of the beam point
P(z), O(z) complex potentials
shear modulus
k Mushelishvili’s constant
u the first component of displacement vector of the beam point
Do(z), Qo(2), crack potentials
by and by unknown constants
A length of non-contacted zone of the crack
cj(j=0,3) unknown coefficients
K§ K stress intensity factors

the ultimate value of the force causing beam fracture for contacted
crack tip, where sign “+” corresponds to tip A and “~“ to tip B.

Kic, Ky constants responsible for fracture strength of material

=~ the ultimate force causing beam fracture for non-contacted crack
Q tip, where sign “+” corresponds to tip A and “~ to tip B.

2. Materials and Methods

We considered an isotropic cantilever strip of 2L3 length that was rigidly fixed at left end. Its width
and thickness were designated 2/ and 2b, respectively.

A Cartesian coordinate system was placed in symmetry axes of the strip as shown in Figure 1.
The strip was weakened by a through crack of 2/ length, non-symmetrically placed on the Ox- axis
about the Oy- axis. Parameter d denotes the distance from the left edge of the strip to the crack line
(d < Lg). It was assumed that the crack length was essentially less than the width of the strip. The strip
was loaded by a concentrated force Q, applied at its end, perpendicularly to the Oy- axis. Crack tips
were in the points A(dq,0) and B(dy,0) (Id;] < 1).



Appl. Sci. 2020, 10, 2037 30f12

21
d 3 2h

A

AN
AN

Figure 1. Scheme of loading of the cracked beam.

We considered three possible cases of stress-strain state of the cracked beam.

Case 1. Crack with particularly contacting faces.

We assume that under external load, crack faces are smooth and enclosed in area CB, denoted by
L. Point C has coordinates C(A,0), where A is unknown parameter, responsible for length of contact
zone. The unloaded zone AC of the crack is denoted by L;.

According to the problem statement, there are the following boundary conditions at the crack faces

0+

= = Lx .
yy = Oyy/V v fO,xeL,ayny,xeLl, 1)

Ofy = 0 €L+, 2)

where o,y and yy,, are components of stress tensor; signs “+” and “-” stand for limit values
of appropriate magnitude as 0 — +0; v is the second component of displacement vector of the
beam point.

Stresses and displacements may be expressed in terms of complex potentials ®(z), ()(z) according
to [13]

oyy —ioxy = P(z) + Q(Z) + (z-2)P’(2), 3)
20 +i0)'y, = k®(z) - Q) - (-2 (2), @
where 1 is shear modulus; k— Mushelishvili’s constant; f’ = % ; uis the first component of displacement

vector of the beam point, z = x +iy,i = V-1.
Next, we introduce complex potentials @y (z) and Qy(z) [7,8] that describe the stress-strain state
in the cantilever-uncracked strip, under the same load. For large values of |z| they are

®(z) = —iaz? + bz,0(z) = 5iaz® 4 3bz — idah?, (5)

where 4
a=Q/8l = 5bh3, b= -2a(2L3 —d). (6)

We determine the stress-strain state of cantilever-cracked strip by satisfying boundary conditions
(1), (2) at the crack and by demanding that in the considerable distance from the crack potentials ®y(z)
and Qy(z) have the form

D(z) = By (z) + O(1/2%), Q(z) = Qo (2) + O(1/2%). )
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Boundary conditions (1) and (2) may be rewritten as
(oyy — iokhy)+ —(oyy — iakhy)_ =0x€eLlL+1L. (8)
Substitution (3) into (8) leads to the following linear conjunction problem
(@(x) - Q)" = ((x) - Qx))” =0,xe L +L €)

with the solution [13]
D(z) - Q(z) = D1z% + Doz + D3 = D(z), (10)

where
Dy = —6ai,Dy = —2b,D3 = 4ail?.

From (10) we express the function Q)(z) in terms of ®(z):
O(z) = ®(z) - D(2). (11)
Next, we introduce a new function
F(z) = ®(z) - 5D(2) (12)
and rewrite the boundary conditions (1) as
v —v  =0x¢€ L,a;y +0,, =0 xely. (13)

Using (3), (4), (11), and (12), the boundary conditions (13) are reduced to the linear
conjunction problem

(F(ki) + E(kh)) " — (F(kh) + E(k))” = 0,x € L, ”
(F(ki) + E(kh)) " + (F(kh) + E(k))” = 0,x € L.
Solving this problem we obtain the connection
F(z) + F(z) = (b1z + bo)X(2), (15)
where by and by are unknown constants and
S z—A
X(z) = e (16)
For large |z|, this function allows series expansion
_ di— A 3d2-27d; - A2
X(z)=1+2"L4+- +... (17)

2z 822

In order to determine coefficients by and by we present the function F(z) = ®(z) — $D(z) in form
of power series, using formulas (5), (7), and (12). Then, taking into account (17), we equate coefficients
at the same degrees of z in (15). In such a way, we have

by = 4bby = —2b(dy - A), (18)

1
= —=d. 1
A=z (19)
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Parameter A is length of the non-contacted zone of the crack. Since point B lies at a greater distance
from origin O than A (see Figure 1), it is follows from (19) that the crack faces are in particular contact if
dy < _%dl-

In such a way, we have one equation (15) in two functions F(z) + F(z) = (b1z + bo) X (2).

In order to obtain missing the equation, we consider the following boundary condition

a;—i—cr; =0xelL+ L.
Taking into account the relations (3), (11), and (12), we obtain the linear conjunction problem
— + —_ _
(F(kh) —F(kh)) " + (F(kh) = F(kh)) = 0,x € L+Ly.

Its solution is
= C3z3 + c222 +c1z+¢g

F(z)-F(z) = , 20
(2)-F(z) e 0)
where ¢;(j = 0,3) are unknown coefficients and
X(z) = [(z—d1)(z - da). (21)
Then, the function X~!(z) for large values of |z| has a series expansion
1 1 di+d 3(d2 +d2) + 2d1dy 5(d3 + d3) + 3dqdy (d1 + do)
_ 14 1+ 2, 7 2> i +. . (22)

X(z) z 272 823 1624

Taking into account (5), (7), (12), and (22), by expanding both sides (20) into a series at large |z
and equating the coefficients at the same degrees of z after some transformations, we obtain formulas
for the unknown coefficients c;(j = 0, 3)

c3 = din,c; = - 2ia(dy+dy), ¢ = —ial4h? + Y - p)*], co = ia(dy +dy) 212 — }(dy —d)?] (23)

Adding (20) and (15), we find the function

1 = 032° 4+ 22 +c1z + ¢
F(z) ==|(b bo)X 24
(@) = 3|tz + ) () + S @1
Function ®(z) is found from (12) using (16), (21) and (24)
— 3 2
O(2) = 2|D(2) + /2oL (byz 1 by) + D L2E Faz (25)
2 z-d (z—d1)(z—dy)
Stress intensity factors are determined on the base of formula [14]
K —iKf = 2 lim. [ 20x—d)®(x)],
26
K] —iK; —2 hm [ (dy —x)® (x)] (26)
Replacing the function ®(x) by expression (25) in (26) we obtain
K = +2(d1 - A)(byd1 + o), KS = — cid
1 ( 1 )( 141 0) m Z j (27)
K =0,K; = Z c]dl,c] 10]

\/dl ~dy =
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According to (18), (23), Formula (27) can be expressed as
Ky = 4K;. (28)

In (28) we use the following notifications

~\3/2 —~ —_ —~
FH2 K = (3d)"(2Ls ~d)dy = d /b Ly = Ly /hd = d/h,
K=ok = Y@ -1 +@—2|i=1/n 29
1 2 [\ 1 ’ ’ (29)

R = Yo 1" -2+ 37 -2,

e8]

“oymn

where sign “+” corresponds to tip A and “~* to tip B. In order to determine the ultimate value of force
Q" causing the crack propagation, we use the energy fracture criterion [15-17]

. T (x2 2
8b2E( 1+3)
where E is Young’s modulus, y*— the effective density of surface energy of the crack for beam material.
Using (28) dependence (30) can be rewritten as

w__Q _8V2 1
BB VT e (k)

1

(31)

Case 2. Crack with non-contacting faces.

Now we consider the case when crack faces are not contacting. This means that the crack is
completely located in the tensile zone and its faces are unloaded. In this case, dy > —%d1 must be
fulfilled. The part of the axis containing the crack is denoted by L;. On L;, the following boundary
conditions take place

ojy = O,thy =0x€l, (32)

and they also may be written in form (9). Repeating the appropriate transformations we obtain
dependence (11). The boundary condition (32) can be rewritten as
N -
(ayy - zoxy) + (ayy — zaxy) =0x€l,.

Taking into account (3) and (11), we come to the linear conjunction problem

[CD(x) - %D(x)r + [CI)(x) - %D(x)] —Oxely.

Solving this problem and taking into account the behavior of function ®(z) for large values of |z|
(5) we have

3
P(z) = %D(z) + Zajzj/X(z), (33)
=0

where

2
as = 2ia, ap = 2b—ia(dy — dy), @y = _m[zhz } ) ]_ bdy + ), "
AV
ag = ia(dy + o) |12 - }(dy - dp)?] - b 520

In this case, we find the stress intensity factor using Formulas (26) and (33)

K} = gK7, (35)
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where

— I, ~ ~ — 1, ~ —
K = %L(ng - E)(zdl —Y),K; - g(ng - E)(zdl - 37).
The coefficients g and Ezi are expressed by Formulas (29) at 1< %Jl

The ultimate value of force we obtain from formula

(36)

Case 3. Crack with perfectly contacting faces.
Now we consider the case when crack faces were in perfect contact (d; < 0). The part of the Ox— axis
where the contact take place is denoted by L. In this case, we have the following boundary conditions

e
oyy—ayy,oxy—o,v —-v =0x€L. (37)

Similarly to the previous case, we write boundary conditions at L in form (6) and come to the linear
conjunction problem (9). Solution of this problem has the form (11). Then, from the boundary condition

(0" —v7),=0x€L,
taking into account (4) and (11), we obtain another linear conjunction problem
[E(kh) + F(ki)] "~ [Ekh) + E(k)]” =0, x€L.

By solving this problem, we get
F(z) + F(z) = 4bz. (38)

Next, using Formulas (3), (11), and (12), and satisfying the boundary condition
ajy—i—agy =0, x€eL,

we come to the linear conjunction problem. Its solution is given by (20).
Adding (38) and (20), we find the function

3

1 .

F(z)=2 — izl
(z) =2bz+ 2X() Eﬁ ¢z (39)

Substituting (39) into (12) gives
1 19
_ - ]

d(z) =20z + 2D(z) + X ]E_O ciz. (40)

Considering (40) and (26), we find the stress intensity factors
Ki =0,K5 = qK3,

where g, Ezi are determined according to the Formula (29).
The ultimate value of the force causing beam failure is obtained from the formula

8v2 1
20 41
Q R[] (41)
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It is known from scientific literature that the energy criteria of the fracture of cracked bodies do
not always give satisfactory results. Therefore, we use an improved energy fracture criterion presented

in [20]. . )
Ky (X)) _
( ch) + ( ch) 1 (42)

where Kjc and K¢ are constants responsible for the fracture strength of the material and

3 _(Kac _ \ﬁ
1 <(ch _a)< 3 (43)

Using (43) and (44), the ultimate force causing beam fracture for a non-contacted crack tip is

determined as
G — 2V2Q 82 1
3/25 T 3Nn [ma2 = 7’
WK SV (R + (R /o)

(44)

and for contacted crack tip as

2V2Q 82 1
W2 ke  3VT|KE|

Q* = (45)

3. Results and Discussion

Graphical dependences of ultimate force Q** on relative crack length I=1/hat various problem
parameters are presented in Figures 2-7. Calculations were performed at L3 = Lz/h=2,d =d/h = 1.
In Figures 2 and 3 dependences are presented for the case of a crack with non-contacting faces.

Q*“ ! + kA
20 20
181 18
161 16
147 14
121 12
L 3
10 10 2
2 P,
8] I3
> 6 >
0. 04 008 0127 016 02T 004 0.08 012 016 02T
a) Q" was built using formulas (36) b) O"'was built using formulas (36) (curve 2) and

Q*+Vvas built using formulas (44) (curves 3.4)

Figure 2. Dependence of ultimate force Q* on relative lengthTfor the crack with non-contacting faces
atd; =0,3.

In Figure 2, curve 1 corresponds to the crack tip B, and curve 2 to the opposite one. These curves
were built using Formula (36). Curves 3 and 4 were built using Formula (44). Curve 3 corresponds

toa = \/g and curve4 -toa = %. From analysis of these curves it follows that failure of the beam
begins from crack tip A where the ultimate value Q" is lesser.
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Figure 3. Dependences of the ultimate force Q** on the relative length Ifor a crack with non-contacting
faces at the tip B at various values d;.

In Figure 3, curve 1 corresponds to coordinate d, = d/h = 0,3, while curve 2 corresponds to
coordinate d; = 0,4. It is seen that for a fixed crack length, the ultimate force Q" decreases with
increasing distance between the crack center and the beam axis.

Q*A

301
251
201

154

- - T T —— 54 T T T T =
0 0.1 0.2 0.3 0.4 0.57 0 0.1 0.2 0.3 0.4 0.57
a) O™ was built using formulas (36) b) O*'was built using formulas (36) (curve 2) and
O0"was built using formulas (44) (curves 3,4)

Figure 4. Dependence of ultimate force Q" on relative length T of crack with particularly contacting
faces at dy = 0.03.

Dependences in Figures 4 and 5 stand for cracks with particularly contacting faces at 1> (2;11 )/3.
In Figure 4, curve 1 corresponds to contacting tip B and curve 2 — to non-contacting crack tip A.
These curves were built using Formula (36). Curves 3 and 4 were built using Formula (44). Curve

3 corresponds to a = \/g and curve 4 — to @ = 2. It is clear that beam failure begins from a

non-contacting tip.

As shown in Figures 2b and 4b, the energy criterion for the fracture of cracked bodies gives an
overestimated value of the force, in comparison with improved fracture criterion (42). In addition,
with increasing crack length, the ultimate force decreases.

The curves in Figure 5 were constructed for non-contacting crack tip, A. Curve 1 corresponds to
d1 = 0,03, curve2-tod; = 0,3, curve 3 -to d1 = 0,4. We can conclude that with distancing of the tip
A from the beam axis, the ultimate force increases.
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Q*ﬂ;
301

25]
201
151 7
101

—_
51 3

0.03 0.1 02 0.3 04 057

Figure 5. Dependences of ultimate force Q" on relative length 1 for crack with particularly
contacting faces.

The dependences of the ultimate force Q" on relative length 1 of cracks with perfectly contacting
faces at various values of A are presented in Figures 6 and 7.

Q*H;
40/

351
30
251
201 7
151

10

0.02 0.06 0.1 0.14 0.18 T

Figure 6. Dependences of the ultimate force Q" on relative lengthl~for cracks with perfectly contacting
faces at d; = -0, 05.

@*
40

35
30]
251
20]
157

10

0 0.05 01 0.75 02 0257

Figure 7. Dependences of ultimate force Q" on relative length for cracks with perfectly contacting faces
at various values of dy.
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In Figure 6, curve 1 corresponds to crack tip A that is closer to the beam axis, while curve 2
corresponds to remote tip B. It is clear that beam failure begins simultaneously at both tips.

These curves are built for constant crack length. Curve 1 corresponds to d; = —0, 05, while curve
2 corresponds to d; = —0, 1. It follows that with distancing of the crack tip A from the beam axis, the
ultimate force decreases for a fixed relative length of the crack.

4. Conclusions

(1) Without regard to the location of a crack with contacting faces in the beam, expressions of
stress intensity factor Kzi are the same; and of K;—'— are different in all considered cases.

(2) For cracks with non-contacting or particularly contacting faces, beam failure begins distanced
from the beam axis crack tip located in the tensile zone. However, in the case of perfect crack closure,
this process begins closer to the tip.

(3) With increasing crack length, the ultimate force of failure of the beam decreases.

(4) For cracks with non-contacting faces, increasing the distance between the center and beam
axis leads to the ultimate force decreasing, but for cracks with perfectly contacting faces, the ultimate
force increases.

(5) For cracks with particularly contacting faces, the ultimate force decreases with the distance of
the non-contacting tip from the beam axis.

(6) The action of concentrated force on a cantilever beam weakened by cracks with perfectly
contacting faces leads to different stress-strain states, in contrast to the pure bending of the same beam
with the same crack.

(7) With increasing crack length, the ultimate force always decreases.

(8) In calculating the ultimate force for cantilever beams, it is desirable to use the improved
fracture criterion, without regard to location of crack and interaction between its faces.
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