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Abstract: The steepest descent method is frequently used for neural network tuning. Mini-batches
are commonly used to get better tuning of the steepest descent in the neural network. Nevertheless,
steepest descent with mini-batches could be delayed in reaching a minimum. The Hessian could be
quicker than the steepest descent in reaching a minimum, and it is easier to achieve this goal by using
the Hessian with mini-batches. In this article, the Hessian is combined with mini-batches for neural
network tuning. The discussed algorithm is applied for electrical demand prediction.
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1. Introduction

Networks have many applications like detection [1,2], recognition [3,4], classification [5,6], and
prediction [7,8]. Steepest descent is a supervised algorithm that is frequently used for neural network
tuning, wherein the value of the scale parameters is adjusted according to the cost map. Steepest
descent evaluates the first-order partial derivatives of the cost map with respect to the scale parameters
in the neural network.

Mini-batches are commonly used to get better tuning of the steepest descent in a neural network;
the training data are divided in mini-batches, and the training of the steepest descent is applied to all
the mini-batches taking into account one tuning of the scale parameters for each mini-batch. One tuning
of all the mini-batches is one epoch.

There are several applications for mini-batches. In [9–12], mini-batches were employed for tuning.
In [13,14], mini-batches were used for clustering. In [15,16], mini-batches were utilized for optimization.
Since mini-batches have been used in several applications, they could be a good alternative to get
better tuning using steepest descent.

Steepest descent with mini-batches is used during tuning with a search for each mini-batch.
Nevertheless, steepest descent with mini-batches could be delayed in reaching a minimum. The Hessian
has been used as an alternative for neural network tuning, wherein the Hessian evaluates the
second-order partial derivatives of the cost map with respect to the scale parameters.

The Hessian has the same form as the steepest descent. However, steepest descent takes into
account constant values in its tuning rate and momentum, while the Hessian takes into account the
second-order partial derivatives of the cost map with respect to the scale parameters in its tuning rate
and momentum. This is the main reason why the steepest descent method may be delayed in reaching
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a minimum, while the Hessian could be quicker in reaching a minimum, and it is easier to reach this
minimum by using the Hessian with mini-batches.

There have been several applications of the Hessian. In [17–20], the Hessian was used for tuning.
In [21–24], the Hessian was employed for segmentation. In [25–28], the Hessian was utilized for
optimization. In [29–32], the Hessian was used for pattern recognition. In [33,34], the Hessian was
utilized for modeling. In [35,36], the Hessian was employed for identification. In [37,38], the Hessian
was used for control. Since the Hessian has been used in several applications, it could be a good
alternative for neural network tuning.

In this article, the Hessian is combined with mini-batches for neural network tuning. The full
training data are divided in mini-batches, and we take into account each mini-batch to get better tuning
of the Hessian in a neural network. One tuning of the mini-batches is known as one epoch.

Finally, we compare the tuning of the neural network using steepest descent, steepest descent
with mini-batches, the Hessian, and the Hessian with mini-batches for electrical demand prediction,
based on data provided by the International Organization for Standardization (ISO) of Great Britain.

The remainder of this article is organized as follows: Section 2 presents neural network tuning via
the Hessian. Better tuning of the Hessian using mini-batches is explained in Section 3. Section 4 shows
the comparison results of steepest descent, steepest descent with mini-batches, Hessian, and Hessian
with mini-batches for electrical demand prediction. Conclusions and future work are presented in
Section 5.

2. The Hessian for Neural Network Tuning

The algorithms for neural network tuning frequently evaluate the first derivatives of the cost map
with respect to the scale parameters. Nevertheless, there are several cases where it is interesting to get
the second derivatives of the cost map with respect to the scale parameters. The second derivatives of
the cost map with respect to the scale parameters are known as the Hessian.

2.1. Design of the Hessian

In this article, we utilize a neural network with only one hidden layer. It could be expanded to a
multilayer neural network, but in this article, we utilize a small neural network. This neural network
utilizes sigmoid maps in the hidden layer and a linear map in the output layer. We express the neural
network as

ql =
∑

j

ϕl jg(
∑

i

θ jibi) (1)

where θ ji is the scale parameter of the hidden layer, ϕl j is the scale parameter of the output layer, g is
the activation map, bi are the inputs, and ql are the outputs.

We take into account the neural network in Figure 1 where n is the input layer, l is the hidden
layer, and m is the output layer. We express the scale parameters from the input layer to the hidden
layer as θ ji and the scale parameters from the hidden layer to the output layer as θlm.

We express the cost map as

E =
1
2

LT∑
l=1

(ql − tl)
2 (2)

where ql is the output of the neural network and tl is the target, LT is the total output number. We
express the forward propagation as

z j =
∑
i
θ jibi

o j = g(z j)

xl =
∑
j
ϕl jo j

ql = f (xl) = xl

(3)
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where bi is the input, ql is the output of the neural network, θ ji are hidden layer scale parameters, and
ϕl j are output layer scale parameters.Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 14 
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Figure 1. The neural network.

We take into account the activation map in the hidden layer as

g(z j) =
1

1 + e−z j
. (4)

The first and second derivatives of the sigmoid map (4) are

g/(z j) = g(z j)
(
1− g(z j)

)
,

g//(z j) = g(z j)
(
1− g(z j)

)(
1− 2g(z j)

)
.

(5)

We take into account the activation map of the output layer as the linear form

f (xl) = xl. (6)

The first and second derivatives of the linear map (6) are

f /(xl) = 1,
f //(xl) = 0.

(7)

The first and second derivatives of the cost map (2) are

∂E
∂ql

= (ql − tl),
∂2E
∂q2

l
= 1.

(8)

Using the cost map (2) and f (xl) = xl (6), we express the propagation of the output layer as

∂E
∂ϕl j

= ∂E
∂ql

∂ql
∂xl

∂xl
∂ϕl j

= (ql − tl)
∂ f (xl)
∂xl

o j

= (ql − tl)
∂xl
∂xl

o j

= (ql − tl)(1)g(z j),
⇒

∂E
∂ϕl j

= (ql − tl)g(z j).

(9)
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Using the cost map (2) and g/(z j) =
∂o j
∂z j

=
∂g(z j)

∂z j
= g(z j)

(
1− g(z j)

)
(5), we express the propagation

of the hidden layer as
∂E
∂θ ji

= ∂E
∂ql

∂ql
∂xl

∂xl
∂o j

∂o j
∂z j

∂z j
∂θ ji

= (ql − tl)(1)ϕl jg/(z j)bi,
⇒

∂E
∂θ ji

= (ql − tl)ϕl jg(z j)
(
1− g(z j)

)
bi.

(10)

We express the second derivative of E as the Hessian H:

H = ∇∇E =
∂2E
∂θ2 =


∂2E
∂θ2

ji

∂2E
∂θ ji∂ϕl j

∂2E
∂θ ji∂ϕl j

∂2E
∂θϕ2

l j

 (11)

and the Hessian is symmetrical:
∂2E

∂θ ji∂ϕ jl
=

∂2E
∂ϕ jl∂θ ji

. (12)

The Hessian terms are
∂2E
∂θ2

ji
= bibT

i ϕl j
[
g//(z j)σi + g/(z j)

2ϕl jSi
]

∂2E
∂θ ji∂ϕl j

= big/(z j)
[
σi + o jϕl jSi

]
∂2E
∂ϕ2

l j
= o joT

j

[
f //(xl)σi + f /(xl)

2Si
] (13)

and
Si =

∂2E
∂q2

l
= 1,

g/(z j) = g(z j)
(
1− g(z j)

)
, f /(xl) = 1,

g//(z j) = g(z j)
(
1− g(z j)

)(
1− 2g(z j)

)
, f //(xl) = 0,

o j =
∂xl
∂ϕl j

= g(z j), bi =
∂z j
∂θ ji

= inputs,

g(z j) =
1

1+e−zj , f (xl) = xl,

σi = (ql − tl).

We substitute (13) and (11); then the Hessian is

H = ∇∇E = ∂2E
∂θ2 =


∂2E
∂θ2

ji

∂2E
∂θ ji∂ϕl j

∂2E
∂θ ji∂ϕl j

∂2E
∂ϕ2

l j


∂2E
∂θ2

ji
= bibT

i ϕl j
[
g(z j)

(
1− g(z j)

)(
1− 2g(z j)

)
(ql − tl)

+g(z j)
2
(
1− g(z j)

)2
ϕl j

]
∂2E

∂θ ji∂ϕl j
= big(z j)

(
1− g(z j)

)[
(ql − tl) + g(z j)ϕl j

]
∂2E
∂ϕ2

l j
= g(z j)g(z j)

T

(14)

where bi are the inputs, ql are the outputs, g(z j) =
1

1+e−zj are the activation maps, tl are the targets,
z j = θ jibi are the hidden layer outputs, and ϕl j are the scale parameters of the hidden layer.

In the next step, we evaluate the Hessian using the Newton method.
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2.2. Design of the Newton Method

It is necessary to express a method to tune the scale parameters of the Hessian. The Newton
method is one alternative to tune the scale parameters of the Hessian. We express the basic tuning of
the Newton method as follows:

[
θ ji,k+1
ϕl j,k+1

]
=

[
θ ji,k
ϕl j,k

]
− αH−1

k


∂Ek
∂θ ji,k
∂Ek
∂ϕl j,k


Hk =


∂2Ek
∂θ2

ji,k

∂2Ek
∂θ ji,k∂ϕl j,k

∂2Ek
∂θ ji,k∂ϕl j,k

∂2Ek
∂ϕ2

l j,k


(15)

where ∂2Ek
∂θ2

ji,k
, ∂2Ek
∂ϕ2

l j,k
, ∂2Ek
∂θ ji,k∂ϕl j,k

are as in (14) for each k; ∂Ek
∂ϕl j,k

, ∂Ek
∂θ ji,k

are as in (9), (10); θ ji,k, ϕl j,k are the scale

parameters; and α is the tuning factor. The Newton method can quickly reach a minimum. The Newton
method requires the existence of the inverse of the Hessian (H−1

k ).
Now, we express the Newton method of (15) by terms. First, from (15), we obtain the inverse of Hk as

H−1
k =


∂2Ek
∂θ2

ji,k

∂2Ek
∂θ j,k∂ϕl j,k

∂2Ek
∂θ ji,k∂ϕl j,k

∂2Ek
∂ϕ2

l j,k


−1

=

 1 ∂2Ek
∂θ2

ji,k


 ∂2Ek
∂ϕ2

l j,k

−( ∂2Ek
∂θ ji,k∂ϕl j,k

)2

∗


∂2Ek
∂ϕ2

l j,k
−

∂2Ek
∂θ ji,k∂ϕl j,k

−
∂2Ek

∂θ ji,k∂ϕl j,k

∂2Ek
∂θ2

ji,k


.

(16)

We substitute H−1
k of (16) and θk, ∂Ek

∂θk
of (16) into θk+1 of (16) as follows:

[
θ ji,k+1
ϕl j,k+1

]
=

[
θ ji,k
ϕl j,k

]

−

α 1 ∂2Ek
∂θ2

ji,k


 ∂2Ek
∂ϕ2

l j,k

−( ∂2Ek
∂θ ji,k∂ϕl j,k

)2

∗


∂2Ek
∂ϕ2

l j,k
−

∂2Ek
∂θ ji,k∂ϕl j,k

−
∂2Ek

∂θ ji,k∂ϕl j,k

∂2Ek
∂θ2

ji,k




∂Ek
∂θ ji,k
∂Ek
∂ϕl j,k


.

(17)

We express (17) by terms as

θ ji,k+1 = θ ji,k − βHji,k
∂Ek
∂θ ji,k

+ γH,k
∂Ek
∂ϕl j,k

ϕl j,k+1 = ϕl j,k − βHlj,k
∂Ek
∂ϕl j,k

+ γH,k
∂Ek
∂θ ji,k

βHji,k = α

∂2Ek
∂ϕ2

l j,k ∂2Ek
∂θ2

ji,k


 ∂2Ek
∂ϕ2

l j,k

−( ∂2Ek
∂θ ji,k∂ϕl j,k

)2

βHlj,k = α

∂2Ek
∂θ2

ji,k ∂2Ek
∂θ2

ji,k


 ∂2Ek
∂ϕ2

l j,k

−( ∂2Ek
∂θ ji,k∂ϕl j,k

)2

γH,k = α

∂2Ek
∂θ ji,k∂ϕl j,k ∂2Ek

∂θ2
ji,k


 ∂2Ek
∂ϕ2

l j,k

−( ∂2Ek
∂θ ji,k∂ϕl j,k

)2

(18)
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where ∂2Ek
∂θ2

ji,k
, ∂2Ek
∂ϕ2

l j,k
, ∂2Ek
∂θ ji,k∂ϕl j,k

are as in (14) for each k; ∂Ek
∂ϕl j,k

, ∂Ek
∂θ ji,k

are as in (9), (10) for each k; θ ji,k, ϕl j,k are

the scale parameters for each k; and α is the tuning factor. Thus, (18) is the Newton method by terms.
For comparison, we express the steepest descent method as

θ ji,k+1 = θ ji,k − βGji,k
∂Ek
∂θ ji,k

+ γG,k
∂Ek
∂ϕl j,k

ϕl j,k+1 = ϕl j,k − βGlj,k
∂Ek
∂ϕl j,k

+ γG,k
∂Ek
∂θ ji,k

βGji,k = α
βGlj,k = α
γG,k = 0

(19)

where ∂Ek
∂ϕl j,k

, ∂Ek
∂θ ji,k

are as in (9), (10) for each k; θ ji,k, ϕl j,k are the scale parameters for each k; and α is the

tuning factor. Thus, (19) is the steepest descent method.
It can be seen that the Newton method by terms (Hessian) (18) has the same form as the steepest

descent (19). However, the steepest descent (19) takes into account constant values in its tuning rate
βGij,k, βGji,k and momentum γG,k, while the Hessian (18) takes into account the second-order partial
derivatives of the cost map with respect to the scale parameters in its tuning rate βHij,k, βHji,k and
momentum γH,k.

We express the mini-batches in the next section to get better tuning of the Hessian.

3. Mini-Batches to Get Better Tuning of the Hessian

The form to update the scale parameters of the neural networks is that each neuron assigns
information to the next neuron and it receives information from the previous neuron. We need training
for successful neural network tuning. The training is developed from one epoch to the next until the
scale parameters reach constant values and the cost map reaches a minimum. In addition, we need the
training data to be tuned in a random form with the goal to quickly reach a minimum.

In the training stage, the neural network computes its outputs each time to obtain a result, and we
compare the outputs with targets; in this way, the cost map of the neural network decreases. The scale
parameters take random initial values, and these scale parameters are tuned through time.

We use other testing data as the basic method to evaluate the neural network efficacy. This consists
of taking 80% of the data for training and taking 20% of the data for testing. The first stage is the
training, and the second stage is the testing.

In the tuning, the training and testing stages are important.

Design of the Mini-Batches

We take into account training data v and u characteristics:

Buv = [b1, b2, b3, . . . , bv]
b1,uv

, (20)

Qv = [q1, q2, q3, . . . , qv]
q1,v

. (21)

In the mini-batches, we divide the training data v into w-many mini-batches of size y, with the
goal to quickly reach a minimum.

Buv =

|bu1, . . . , buy
b1,uy

|buy+1, . . . , bu2y
b2,uy

|. . . , buwy|
bw,uy

 (22)

Qv =

|q1, . . . , qy
q1,y

|qy+1, . . . , q2y|
q2,y

, . . . , qwy|
qw,y

 (23)
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We express the Hessian with mini-batches as (we divide the training data v in w-many mini-batches
of size y):

(1) For each epoch.
(2) Evaluate the mini-batches and tune each of the mini-batches c = 1, 2, . . . , w with (24). These

values are expressed in (15), (18).
(3) Repeat for the next epoch.

θk+1 = θk − α

y∑
d=1

H−1
k,d
∂Ek,d

∂θk
(24)

We express the properties of the mini-batches below:

• Most of the time, we do not need to utilize all data to reach an acceptable descent direction.
A small number of mini-batches could be sufficient to estimate the target.

• Obtaining the Hessian using all the training data could have high computational cost.

The neural network tuning is performed using the Hessian with mini-batches (15), (18) where
∂2Ek
∂θ2

ji,k
, ∂2Ek
∂ϕ2

l j,k
, ∂2Ek
∂θ ji,k∂ϕl j,k

are as in (14); ∂Ek
∂ϕl j,k

, ∂Ek
∂θ ji,k

are as in (9), (10); and θ ji,k, ϕl j,k are the scale parameters.

We tune the neural network with a tuning factor of α and l neurons in the hidden layer, and we use e
epochs. In this kind of tuning, we divide the training data into mini-batches as in (22,23).

4. Comparisons

In this section, we compare steepest descent (SD), steepest descent with mini-batches (SDMB)
from [9–12], the Hessian (H) from [17–20], and the Hessian with mini-batches (HMB) from this
investigation for electrical demand prediction. The goal of these algorithms is that the neural network
output ql must reach the target tl as soon as possible.

Efficient electrical demand prediction is critical for acceptable operations and planning with
the intention of achieving profits. The load forecast influences a series of decisions, including the
generators to be used for a given period, and influences the wholesale prices and the market prices in
the electrical sector.

The training data used were a table with the history of electrical demand for each hour and
temperature observations provided by the International Organization for Standardization (ISO) of
Great Britain. The meteorological information includes the dry bulb temperature and the dew point.
We took into account the data of the hourly electrical demand.

For the electrical demand prediction, we took into account eight characteristics to tune the neural
network:

• The dry bulb temperature;
• The dew point;
• Hour of the day;
• Day of the week;
• A mark indicating if this is a free or a weekend day;
• Medium load of the past day;
• The load of the same hour, in the past day;
• Load of the same hour, the same day of the past week.

Further, we utilized the load of the same day as the target.

1. Using the training data (34800× 8), we trained the neural network for electrical demand prediction.
After the training stage of the neural network, we used 8770 datapoints for the testing for each
characteristic, yielding a matrix with dimensions (8770× 8)
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2. The neural network had three layers—one input layer, one hidden layer, and one output layer.
The input layer had eight neurons, the hidden layer had six neurons, and the output layer had
one neuron.

We obtained neural network tuning by using the Hessian with the following steps:

1. We initialized the scale parameters with random values between 0 and 1;
2. We obtained the forward propagation;
3. We obtained the cost map;
4. We obtained the back propagation;
5. We utilized the Hessian tuning.

To evaluate the tuning of the neural network, we employed the determination coefficient (R2), the
mean absolute error (MAE), and the mean absolute percent error (MAPE), determined as follows:

R2 = 1−

LT∑
l=1
(ql−tl)

2

LT∑
l=1
(tl−tl)

2

MAE =
LT∑
l=1

∣∣∣ql − tl
∣∣∣

MAPE = 100
LT

LT∑
l=1

∣∣∣ql − tl
∣∣∣

(25)

where ql is the neural network output, tl is the target, and tl is the mean of the target. R2 generates
values from 0 to 1; LT is the total output number. If a method provides good tuning, it has R2 values
near to 1, and if a method provides bad tuning, it has R2 values near to 0. If a method provides good
tuning, it has MAE values near to 0 MWh, and if a method provides good tuning, it has MAPE values
near to 0%. We also used the cost map E (2) to evaluate the tuning of the neural network. If a method
provides good tuning, it has E values near to 0.

Results of the Comparison

It should be noted that the neural network trained by steepest descent (SD) (19) had l = 6 neurons
in its hidden layer, a tuning factor of α = 0.0004, and a number of epochs of e = 40.

It should be noted that the neural network trained by steepest descent with mini-batches (SDMB)
in [9–12] and using (19), (22), (23) had l = 6 neurons in its hidden layer, mini-batches with a size of
y = 32, a tuning factor of α = 0.0004, and a number of epochs of e = 40.

It should be noted that the neural network trained by the Hessian (H) in [17–20] and using (15),
(18), (14), (9), (10) had l = 6 neurons in its hidden layer, a tuning factor of α = 0.0004, and a number of
epochs of e = 40.

It should be noted that the neural network trained by the Hessian with mini-batches (HMB) in
this investigation and using (15), (18), (14), (9), (10), (22), (23) had l = 6 neurons in its hidden layer,
mini-batches with a size of y = 32, a tuning factor of α = 0.0004, and a number of epochs of e = 40.

Figure 2 shows the cost maps during the training of the neural network with steepest descent
(SD), steepest descent with mini-batches (SDMB), Hessian (H), and Hessian with mini-batches (HMB).
As we can see, the Hessian with mini-batches provides better tuning when it comes to training the
neural network and tends to converge more directly (with the help of the information provided from
the second derivative) than with the use of the steepest descent. The issue with the normal downward
steepest descent is that often a minimum cannot be quickly found. The use of mini-batches helps to
quickly reach a minimum.
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(SDMB), Hessian (H), Hessian with mini-batches (HMB).

Figure 3 shows a zoom of the cost maps after 40 epochs during neural network training using
SD, SDMB, H, and HMB. The Hessian provides better tuning in comparison with steepest descent,
and the Hessian with mini-batches provides better tuning in comparison with steepest descent
with mini-batches.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 14 

Figure 3 shows a zoom of the cost maps after 40  epochs during neural network training using 

SD, SDMB, H, and HMB. The Hessian provides better tuning in comparison with steepest descent, 

and the Hessian with mini-batches provides better tuning in comparison with steepest descent with 

mini-batches. 

 

Figure 3. A zoom of the cost maps after 40 epochs during training. 

The tuning of the neural network with SD, SDMB, H, and HMB during training is shown in 

Figure 4. During 40  epochs, the neural network trained with steepest descent failed to tune, and its 

tuning was very slow when compared to the neural network trained with Hessian and mini-batches, 

which provided better tuning. The Hessian provided better tuning than steepest descent. 

 

Figure 4. The neural network with the algorithms during training. 

Figure 3. A zoom of the cost maps after 40 epochs during training.

The tuning of the neural network with SD, SDMB, H, and HMB during training is shown in
Figure 4. During 40 epochs, the neural network trained with steepest descent failed to tune, and its
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tuning was very slow when compared to the neural network trained with Hessian and mini-batches,
which provided better tuning. The Hessian provided better tuning than steepest descent.
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The neural network tuning using SD, SDMB, H, and HMB during testing is shown in Figure 5.
Similar to the training results, the neural network trained using steepest descent did not have the
ability to predict. The neural network prediction using the Hessian with mini-batches was better
than that using the other methods, as can be seen in Figure 6, which is a zoom of the neural network
prediction with SD, SDMB, H, and HMB during testing.
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Figure 6. A zoom of the neural network with the algorithms during testing.

Table 1 compares the results of SD, SDMB, H, and HMB during training and testing with 40
epochs in terms of the determination coefficient (R2) and cost (E). It should be noted that the neural
network had 6 neurons in its hidden layer and each mini-batch had a size of y = 32.

Table 1. Comparison results in terms of R2 and cost (E).

R2 (Training) R2 (Testing) E (Training)

SD 0.306 0.107 0.032
SDMB 0.875 0.891 0.0031

H 0.298 0.257 0.0086
HMB 0.882 0.897 0.0014

R2 has values between 0 and 1, where values close to 1 correspond to algorithms with better
tuning. Since HMB obtained the biggest value of R2 during training and testing and obtained the
smallest value of E during training, HMB provides the best tuning in comparison with H, SDMB,
and SD.

Table 2 compares the results of SD, SDMB, H, and HMB during training and testing for 40 epochs
in terms of the mean absolute error (MAE) and the mean absolute percent error (MAPE).

Table 2. Comparison results in terms of mean absolute error (MAE) and mean absolute percent
error (MAPE).

MAE (Testing) MAPE (Testing)

SD 2396.78 MWh 16.54%
SDMB 699.39 MWh 4.85%

H 1888.61 MWh 14.50%
HMB 681.42 MWh 4.77%
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Smaller values of MAE and MAPE correspond to algorithms with better tuning. Since HMB
obtained the smallest values of the MAE and MAPE during testing, HMB provides the best tuning in
comparison with H, SDMB, and SD.

As we decrease the mini-batch size, we speed up the training of the algorithm, but we also increase
the computation cost. This means a trade-off between computation cost and training speed.

5. Conclusions

Our goal in this article was to design the Hessian with mini-batches to get better tuning than
steepest descent for a neural network. The Hessian with mini-batches was compared with steepest
descent, steepest descent with mini-batches, and the Hessian for electrical demand prediction; since
we reached the nearest approximation between the neural network output and the target and reached
the smallest value of the cost map using the proposed algorithm, we got the best tuning with our
proposed algorithm. In future work, we will find the convergence of the Hessian with mini-batches,
we will propose other algorithms different to the Hessian to compare our results, and we will apply
our algorithm for the prediction of other processes.
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