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Abstract: Traditionally, the footwear industry is labor intensive, and cost control is key to ensuring
shoe companies can be competitive. The development of Industry 4.0 concepts, used in high-tech
industries and blockchain production information systems, enables the creation of smart factories
with online alarm management systems, to improve manufacturing efficiency and reduce human
resource requirements. In this paper, the performances of the causal association assessment model
and the technique for order preference by similarity to the ideal solution (TOPSIS) model in evaluating
large data blockchain technologies and quality online real-time early warning systems for production
and raw material supplier management are compared, to increase the intelligence of production and
to manage product traceability.

Keywords: medium-sized enterprise; collaborative technology; Industry 4.0; intelligent alarm
management system (IAMS); cause–effect grey relational analysis (CEGRA); technique for order
preference by similarity to the ideal solution (TOPSIS)

1. Introduction

With improvements in global living standards, the traditional shoe industry has gradually changed;
co-creation design practices have been adopted, allowing the client to dictate the product, while
functional sports shoes, casual shoes, and other types of footwear have become essential items with a
large consumer base. In this industry, upstream raw materials include textiles, rubber, and plastics,
which account for about 60% of the overall cost of the shoe. Different parts of the shoe are produced
with different raw materials. For example, the soles of sports shoes are composed of foam rubber, the
base consists of an economic value added (EVA) foam model, and the upper portions are composed
of leather or mesh. Hence, the shoe production process uses several diverse products, and labor is
intensive but low-cost. As a result, it is difficult to employ high-tech manufacturing processes in
this industry while reducing raw material costs, improving product quality, and reducing human
resource requirements.

In addition, in the footwear industry, a need already exists for more small- and medium-sized
factories. However, it is possible that, in the future, only large factories will be able to continue to survive,
as based on the appreciation of exchange rates, labor and raw material costs will continue to rise. This
makes it difficult for smaller factories to innovate and upgrade, causing them to be uncompetitive. For
Industry 4.0 production technologies to be successful in the shoe industry, the human-based corporate
culture will also require modification. For instance, if a company does not train talent or allocate
resources effectively, the import cost of its product will become too high, complicating the company’s
transformation and operation. In the case discussed in this study, intelligent online manufacturing
and alarm systems from high-tech industry were combined with blockchain production technology, to
reduce the demand for human resources and improve the quality of several mass-produced varieties
of shoes.
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Intelligent alarm management systems (IAMSs) suppress nuisance alarms and provide valuable
advisory information to help operators focus quickly on important information and undertake
corrective actions [1]. An IAMS provides an expert decision-making system for rapid management of
large amounts of data and transformation of data into information, thus reducing human resource
requirements and preventing misjudgment and negligence. These systems have been applied to
distributed control systems, validated in online tests, and accepted by plant operators. To ensure that
a manufacturing process is not interrupted, a real-time IAMS is necessary [2,3]. In addition, since
companies require an IAMS that is tailor-made for their operations, they must cooperate with vendors
in exchanging information and technology to ensure that the software that is eventually purchased
aligns with their business requirements [4,5]. The most effective collaborative technology must select
for software contractors [6,7], and the most appropriate and effective approach for evaluating results.
Essentially, an IAMS must promote cooperation between enterprises in developing software [8–10].
In this study, the performances of the cause-effect grey relational analysis (CEGRA) [11] and the
technique for order preference by similarity to the ideal solution (TOPSIS) [12] models in evaluating
the collaborative technology created by IAMS software contractors are compared, to reduce system
faults that prevent these products from meeting end users’ requirements.

2. Background

This section considers the background to the practical work conducted in this study in two parts.
In the first, evaluation methodologies for intelligent systems are reviewed, while the second part
introduces the CEGRA and TOPSIS algorithms used for decision making in this study.

2.1. Review of Evaluation Methodologies for Intelligent Systems

Determining how to increase the product yield and reduce the costs of small- and medium-sized
enterprises is a major challenge. In the semiconductor industry, manufacturers have gradually
integrated with smaller firms to increase production and reduce costs [13]. Since current manufacturing
systems employ 24-hour production cycles, capacities can decrease, producing fewer profits, if the
system or a machine malfunctions [14,15]. To help factory operators to quickly undertake measures
to prevent accidents, prediction of the risk index is significant. Hence, a number of techniques have
been developed for quantifiable risk evaluation and decision making. By combining the concepts of
fuzzy set theory, entropy, and ideal and grey relational analysis, Liao et al. developed a fuzzy grey
relational method for multiple criteria decision-making problems [16]. Tzeng and Huang [17] proposed
a grey relational analysis approach for selecting and reconfiguring aspired-for global manufacturing
and logistics systems. In optimization of electrical discharge machining processes, Pradhan [18]
used grey relational analysis to estimate the effect of machining parameters on a tool’s response, and
determined the weights of responses using principal component analysis (PCA), further evaluating
the weights of the responses using a response surface methodology. Mondal et al. [19] combined
Taguchi and grey relational analysis to evaluate optimal parameters for laser cladding of a steel surface.
Sun [20] combined grey relational analysis and information entropy, finding that, in evaluation of the
performance of notebook companies, the results obtained with their technique were more objective
than those obtained with other decision-making methods. Fayaz et al. [21] proposed a hierarchical
fuzzy logic model to assess significant risks of accidents in underground facilities. With their technique,
the risk index is predicted using a Kalman filter after a risk is assessed.

Each decision-making method has its advantages and disadvantages, as well as timing and use
restrictions. For example, the analytic hierarchy process (AHP) [22] is applied to decision making
in uncertain situations where the majority of the evaluation criteria is known. However, the AHP
has the following shortcomings: (1) the evaluation scale is a subjective one to nine judgment; (2) the
number of elements in the hierarchy should not exceed seven, as it will affect the consistency of the
level; and (3) the consistency of the results of analysis is affected by deviation from the selection
criteria and evaluation by too large a number of experts. Shih et al. [23] reported that in considering
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the benefit or the cost criterion, the TOPSIS method can only reflect the relative proximity of the
evaluation criteria within each assessment scheme, and does not reflect the relative proximity to
the ideal optimal scheme. Shannon [24] suggested that if data can be obtained directly from the
decision-making environment, the entropy algorithm can be used to calculate the objective weight
of the criterion. More chaotic measurements increase the weight of this criterion, reflecting larger
differences between the importance of different criteria. For such measurements, the entropy method is
more effective in managing uncertainty, and the reduction of subjective factors is greater. With CEGRA,
both qualitative and quantitative relationships can be identified from complex factors with insufficient
information. The main feature of CEGRA is that it can be applied when information is limited, and can
support an objective decision based on different data. This method combines the advantages of AHP’s
expert evaluation, entropy, and TOPSIS, and can be used to effectively manage decision uncertainty,
multi-criteria input, and discrete data.

2.2. The CEGRA Method

The CEGRA method can use decision-making and information evaluation to incompletely explore
the degree of association between two series, quantify the distance between observed and target values
using discrete measures, conduct correlation analyses, establish models, and enable decision making
between various schemes. CEGRA can effectively manage uncertainty, multivariate input, and discrete
data in decision problems [25–27].

In this study, novel algorithms were designed to assess the decision making of an IAMS for the
online manufacturing of sports shoes. The implementation of the algorithms used in this study are
based on the CEGRA and grey situation decision-making system proposed by Deng [11]. The steps in
the algorithms are described as follows:

Step 1.1: Defining evaluations valuable for assessing online sports shoe online manufacturing IAMSs.

Let (EPF, X) be the exploiting resource space when EPF is equipped with mapping functions
as follows:

EPF: Resources→ efficacies (v) (1)

In the above, a general consensus among experts has been reached to establish a model, facilitating
the ultimate goal of evaluating the performance of collaboration between technology companies
according to CEGRA concepts.

Step 1.2: Categorizing data and evaluating performance.

Data from the IAMSs can be categorized as data resources or resources possessing information,
θ(d), as shown below:

θ(d) =
{
v(•), value; s(•), sign; p(•), polarity; b(•), background; c(•), connotation

}
Otherwise, only digits exist, without a resource.

If deco(•) is the entirety of complete decision-making information for event o, the following data
category is obtained:

Decision-making data : θ(d) ∈ deco(•) (2)

Step 1.3: Finding patterns based on grey resource theory.

In grey resource theory, the situation, Sij = (ai, bj), is defined as a pattern, where ai is a decision
maker and bj is a resource. Hence, the effectiveness of ai and bj can expressed using Sij.

GM is defined as a mapping function, GM
(
Si j

)
= Ri j, where Ri j is the value of the mapping

function, such that,
Sij = (ai, bj), Sij = SGM (grey modeling pattern) (3)
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Hence, if the mapping of an event, Ei j, is defined as GM
(
Ei j

)
= Ri j, the synthetic measured effectiveness

value for this event is defined as:

RΣ
i =

1
n

n∑
j=1

Ri j (4)

Step 1.4: Contrasting cause–effect incidences and normalizing data.

In the cause–effect space
(
Pcau, Pe f f

)
, a cause–effect relationship can only be obtained between

individuals with cause–effect incidences that are essential contrasts; no contrasts are required for
irrelevant individuals. In this study, cause–effect incidence contrasting was defined as follows.

First, let α and β be the contrasted individuals, α, β ∈ P. µ = ∆ = α − β then represents a
comparison gene, and for series comparison, ∆ = ∆0i(k) =

∣∣∣χ0(k) − χi(k)
∣∣∣, where ∆→ 0 denotes melt

and ∆→∞ indicates irrelevance.
The contrasted result, v is given as follows:

v =
ς+ π
µ+ π

, ς→ 0 (5)

If (ας, β) is considered a cause–effect related contrast, then α >> β or β << α⇒ µ→∞ if α and
β are irrelevant, such that v→ 0 . Alternatively, if α and β are incident in terms of cause and effect,
then α→ β⇒ µ→ 0⇒ v→ 1 .

Before calculation of the grey relational coefficients, the data series can be analyzed based on the
linearity of normalized data (required to prevent data from being distorted) [28,29], and the following
three metrics:

(1) The upper-bound effectiveness, measured as

x∗i (k) =
xi(k) −min

k
xi(k)

max
k

xi(k) −min
k

xi(k)
(6)

(2) The lower-bound effectiveness, measured as

x∗i (k) =
max

k
xi(k) − xi(k)

max
k

xi(k) −min
k

xi(k)
(7)

(3) Moderate effectiveness, defined as

If min
k

xi(k) ≤ xob(k) ≤ max
k

xi(k), then:

x∗i (k) =

∣∣∣xi(k) − xob(k)
∣∣∣

max
k

xi(k) −min
k

xi(k)
(8)

If max
k

xi(k) ≤ xob(k), then:

x∗i (k) =
xi(k) −min

k
xi(k)

xob(k) −min
k

xi(k)
(9)

If xob(k) ≤ min
k

xi(k), then:

x∗i (k) =
max

k
xi(k) − xi(k)

max
k

xi(k) − xob(k)
(10)
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where xob(k) is the objective value of entity k.

Step 1.5: Examining the architecture of grey relational coefficients.

In a cause–effect resource incidence space
(
Pcau, Pe f f

)
, the architecture of the grey relational

coefficients must enable maximum exploitation of ecological benefits according to cause–effect
incidence contrasting and the adjustable coefficient, ρ, ρ ∈ (0, 1). This coefficient must be based on
cause and effect criteria with complete incidence. The architecture of grey relational coefficients is
expressed as follows:

γ0i(k) = γ(x0(k), xi(k)) =
∆min + ρ∆max

∆0i(k) + ρ∆max
(11)

The grey relational grade (GRG) for a series Xi is given as follows:

Γ0i =

J∑
k=1

wkγ0i(k) (12)

where wk is the weight of the jth entity. If no weights need to be applied, then an average is taken, i.e.,
ωk =

1
J .

2.3. The TOPSIS Method

The TOPSIS method for multiple attribute group decision making was developed by Hwang and
Yoon [12]. It has subsequently been used to evaluate the purchase of business intelligence systems,
product quality improvements, flow control in a manufacturing system, and intelligent home energy
management in smart grids [30–33].

In this paper, a combination of the TOPSIS method as introduced by Hwang and Yoon [12], and
the implementation described by Dutta et al. [34] is applied for evaluation. The calculation steps are
summarized as follows:

Step 2.1: Establishing an IAMS evaluation decision matrix.

The IAMS decision matrix, S, is defined as below,(
b1 b2 · · · b j · · · bn

)

S =

a1

a2
...
ai
...

am



x11 x12 · · · x1 j · · · x1n
x21 x22 · · · x2 j · · · x2n

...
... · · ·

...
...

...

xi1 xi2
... xi j

... xin
...

... · · ·
...

...
...

xm1 xm2 · · · xmj · · · xmn


(13)

where ai denotes the evaluated online manufacturing IAMSs, bj represents the criterion evaluated in
the online manufacturing IAMSs, i = 1, 2, ..., m, j = 1, 2, ..., n, and xij indicates the performance rating of
an evaluated online manufacturing IAMS ai with respect to criterion bj.

Step 2.2: Data Normalization.

Data is transformed to a normalized scale as follows:

for benefit criteriari j =
xi j√
m∑

i=1
x2

i j

(14)
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for cost criteria ri j =
1/xi j√
m∑

i=1
1/x2

i j

for i = 1, 2, . . . , m; j = 1, 2, . . . , n (15)

Step 2.3: Establishing a weighted normalization matrix

In the TOPSIS framework, the weighted normalized performance matrix is defined as

V =



v11 v12 · · · v1 j · · · v1n
v21 v22 · · · v2 j · · · v2n

...
... · · ·

...
...

...

vi1 vi2
... vi j

... vin
...

... · · ·
...

...
...

vm1 vm2 · · · vmj · · · vmn


vi j = w j × xi j, for i = 1, 2, ..., m; j = 1, 2, ..., n,

(16)

where wj denotes the weight of criterion j.

Step 2.4: Calculating the separation measures

To calculate the separation measures, which, in this study, characterize an IAMS’s proximity to
optimal performance, the ideal solution is first calculated as follows

d+ = (v+1 , v+2 , · · · , v+n ), where v+j = max
i

vi j (17)

d− = (v−1 , v−2 , · · · , v−n ), where v−j = min
i

vi j (18)

The distance between the ideal solution and the negative ideal solution for each alternative is
then calculated as

d+i =

√√√ n∑
j=1

(vi j − v+j )
2 i = 1, 2, . . . , m, (19)

d−i =

√√√ n∑
j=1

(vi j − v−j )
2 i = 1, 2, . . . , m, (20)

Step 2.5: Calculating the relative closeness coefficient and rank the center preference order

The relative closeness to the ideal solution of each online manufacturing IAMSs can be calculated as:

a∗i =
d−i

d+i + d−i
, for i = 1, 2, . . . , m (21)

3. Case Study

The Datong Shoes and Materials Company was founded in 1992 with USD $1,000,000 of capital.
After the 2008 global financial crisis, their revenue declined annually and their gross profit margin
turned negative; the more orders received, the larger the losses they made. Thus, the company
decided to reduce its operating costs, investing in new technologies. In 2013, after introducing IAMS
and blockchain production information systems, the business began to grow steadily, with turnover
averaging around USD $3,500,000. With the introduction of automation, manpower was no longer the
most urgent requirement. Hence, the number of factory production line workers decreased from about
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1200 in 2013, to 280 by the end of 2018, which is an annual reduction of 25% in human resources. The
gross profit margin grew rapidly from 8.61% to 36.28% in 2018 as shown in Table 1.

Table 1. Turnover and gross profit margin of Datong Shoe and Materials Company, 2013–2018. (USD).

2013 2014 2015 2016 2017 2018

Turnover $3,483,534 $3,968,090 $3,645,004 $3,624,018 $3,572,838 $3,763,531

Gross
Margin 8.61% 16.89% 35.75% 33.68% 30.45% 36.28%

The company has a corporate culture that supports innovation, believing that exclusive companies
import automated intelligent factory technologies, and that a wealth of manufacturing experience is
an important asset for the sustainable development of a firm. In terms of demographics, 70% of the
engineers at the Datong Shoe Material Company are over 50 years old. Therefore, in the company’s
position, developing an artificial intelligence system as soon as possible is essential for transferring
inherited knowledge from generation to generation, to preserve the knowledge of the older employees.
At the same time, future generations should inherit the company’s goals of innovative development and
sustainable management. Investment in new technologies should include initial input machine data
exchanges, the online cloud, automated operations, big data analysis, and other related technologies [35].
This requires the investment of a large amount of capital and talent training and transformation to
integrate the existing manufacturing technology, quality, and sales and product experience to establish
an adaptable and resource-efficient intelligent plant. In terms of business and value processes, customer
and business partner services must be integrated to provide excellent after-sales service. The company
plans to have 100 staff and 100 employees for operation in 2019, to minimize its human resource
requirements. From the viewpoint of turnover, as shown in Table 1, the goal is to maintain the same
level of substantial growth of about 30%, which before was included as part of the gross margin, not
the revenue.

Four collaborative technology software companies in Taiwan that specialize in code development
were assessed in this study. Company A is Data Systems Consulting Co., Ltd. (Taichung, Taiwan),
which specializes in ERP and customized software. Company B is IBM Co., Ltd., which specializes
in information management systems and customized software. Company C is Elements Innovation
Co., Ltd., which specializes in ISO databases, CRM, and customized software. Company D is Tien
Kang Co., Ltd., which specializes in CPA and BI decision support systems. The CEGRA and TOPSIS
algorithms for assessing online sports shoe manufacturing IAMSs are summarized in Figure 1.
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3.1. Decision Making Using the CEGRA Method

Step 1.1: Defining Valuable Evaluation Criteria

Since a general consensus was reached among experts about the method followed to establish
a model, the ultimate goal of evaluating the performance of collaborative technology companies
according to CEGRA concepts can be achieved. In this study, 17 evaluation criteria were determined, as
summarized in Table 2 [36–38]. Here, larger coefficients for the market share (MS), improving
performance and enhancing morale (IPE), performance reward system (PRS), technology and
engineering (TE), economies of scope (ES), surge capacity (SC), information sharing (IS), IT capability
(ITC), and experience in similar products (ESP) criteria, represent better performance. For all other
criteria, smaller coefficients are better.

Table 2. Evaluation criteria and system definition or requirement.

Evaluation Criteria System Definition or Requirement

Market share (MS) [39] Data related to consumer interaction that is added through the Internet of
Things, to analyze the market share for sports shoes.

Improving performance and
enhancing morale (IPE) [40]

Provision of tools, such as information systems, that assist company
executives in the management of cross-team projects, reduction of errors,

and improvement of job performance and morale.

Performance reward system
(PRS) [41]

Rewards should be based on accomplishments and performance, and
applied consistently across the company. In small business, performance is

measured as a combination of attainment in productivity, efficiency, and
training. The main goal of rewards is to motivate employees with tangible
reasons to continue to improve performance and help the company grow.
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Table 2. Cont.

Evaluation Criteria System Definition or Requirement

Technology and engineering
(TE)

Demand for new sports shoes may change during or after they are in
development. The system should allow for instant customer and

engineering changes and outsourced technology. This metric assesses the
provisions made for such a response.

Economies of scope (ES) [42]

The ability to exploit commonalities in processing for cost-effective
operation. For instance, by sharing the same raw materials in the

production process, a company can produce two different kinds of sports
shoes simultaneously. The approximate cost of each kind of shoe is

consequently lower than the average cost required to produce the two types
of shoes independently.

Surge capacity (SC) [43] The ability to meet sudden, unexpected increases in demand by expanding
production with existing personnel and equipment.

Information sharing (IS) [44]
Information sharing and quality are not impacted by customer or

technological uncertainty, commitment of supply chain partners, or
information technology (IT) enablers.

IT capability (ITC) [45]
The organization’s ability to identify how IT can meet business needs, use IT

to cost-effectively improve business processes, and provide long-term
maintenance and support for IT-based systems.

Delivery performance (DP) [46]
The customer expectation level met by products and services supplied by an

organization. It indicates the potential for the supply chain to provide
products and services to customers.

Flexibility in billing and
payment (FBP) [38]

Conditions that increase goodwill between the partner and the raw material
supplier.

Quality management (QM) [47] The relationships between the quality management practices and various
levels of organizational performance.

Reducing the development and
maintenance costs of

information systems (RD) [48]

This refers to all recurring sustenance, operations, and maintenance costs
accumulated in the planned product life cycle, (in the shoe industry, this
encompasses a 20-year span). The system includes documentation, data,
hardware, software applications, replacement training, and systems and

project management.

Human Information Processing
(HIP) [49]

Activation of a learned sequence in the long-term memory of elements
needed to manufacture sneakers. This is initiated through appropriate

inputs and should proceed automatically, without stressing the capacity
limitations of the system and without demanding attention or management.

Product management (PM) [50]
This metric assesses the institutionalization of methods in the sneaker

manufacturing process, to improve the success rate of projects in terms of
schedule predictability, quality, and project duration.

Experience in similar products
(ESP) [51]

Application of previous interactions with customers, detailed examination
of records of athletes or consumers in different sports, and of different ages

and abilities, or knowledge of previous use and designs, to help clarify
consumers’ requirements for better functional shoes.

More reliable information
system procurement and
performance (MR) [52]

The footwear industry requires the procurement of several diverse raw
materials, which is affected by fluctuations in international futures. This
metric assesses the ability to plan for such fluctuations so that purchase

prices will be less than half the sale price.

Learning new software
management technology (LN)

[53]

Company employees use of new production technology software to learn
new abilities and adapt to different tasks, and scholars are regarded as

affecting the company’s competitiveness.

Step 1.2: Categorizing Data and Evaluating Performance

Ten experienced members of research and development teams in the sports shoe manufacturing
industry were selected as experts to evaluate the modules used in this study with respect to the criteria
identified above. In this evaluation, the grey modeling pattern was used as the decision maker, on the
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basis of Equations (1) and (2). Table 3 lists the average results of evaluation of each different system in
relation to each different criterion.

Table 3. The decision-making matrix.

Company MS IPE PRS TE ES SC IS ITC DP FBP QM RD HIP PM ESP MR LN

Company A 2.98 2.71 3.35 2.30 2.33 2.21 1.72 2.09 2.04 2.25 1.91 2.17 2.16 2.64 2.08 2.04 1.96
Company B 2.19 2.32 2.08 2.62 2.62 2.64 3.39 2.36 2.51 2.43 2.65 2.65 2.54 2.31 2.39 2.72 2.34
Company C 2.35 2.29 2.04 2.65 2.69 2.59 2.61 3.06 3.04 2.59 3.05 2.62 2.62 2.60 2.61 2.71 2.62
Company D 2.49 2.68 2.53 2.43 2.37 2.56 2.28 2.49 2.41 2.74 2.39 2.56 2.68 2.44 2.91 2.53 3.09

Step 1.3: Finding Patterns Based on Grey Resource Theory The criteria for contrasting individuals

representing a comparison gene were set as defined by Equations (3) and (4). In the resource cause–effect
incidence space, the architecture of the grey relational coefficients was consistent with contrasting
cause–effect incidences and the symbols for “top scale,” “button scale,” and “adjustable coefficient,”
and was based on the complete incidence of cause–effect criteria.

Step 1.4: Contrasting Cause–Effect Incidences and Normalizing Data

Based on previous definitions, the reference series in this study is X0 = (2.98, 2.71, 3.35, 2.65, 2.69,
2.64, 3.39, 3.06, 2.04, 2.25, 1.91, 2.17, 2.16, 2.31, 2.91, 2.04, and 1.96). Data were normalized to this
series using Equations (6) and (7), and the relational coefficients were then computed, as summarized
in Table 4.

Table 4. Summaries of the resultant relational coefficients.

MS IPE PR TE ES SC IS ITC DP FBP QM RD HIP PM ESP MR LN Γ0i Rank

Company A 1.00 1.00 1.00 0.50 0.50 0.50 0.50 0.50 1.00 1.00 1.00 1.00 1.00 0.50 0.50 1.00 1.00 0.7941 1
Company B 0.50 0.52 0.51 0.92 0.84 1.00 1.00 0.58 0.68 0.73 0.61 0.50 0.58 1.00 0.61 0.50 0.75 0.6959 2
Company C 0.56 0.50 0.50 1.00 1.00 0.90 0.68 1.00 0.50 0.59 0.50 0.52 0.53 0.53 0.73 0.50 0.63 0.6571 3
Company D 0.62 0.93 0.62 0.61 0.53 0.84 0.60 0.63 0.73 0.50 0.70 0.55 0.50 0.72 1.00 0.58 0.50 0.6565 4

Step 1.5: Examining the Architecture of Grey Relational Coefficients

The γ0i(k) series was computed using Equation (11), following a comparison between X0 and
the relational coefficients. GRG weights were subsequently calculated using Equation (12), with the
results summarized in the right-hand column of Table 4. The performance values of companies A, B, C,
and D were 0.79, 0.70, 0.66, and 0.66, respectively. Hence, Company A has the best performance, based
on CEGRA evaluation. As it sells products at the most reasonable price and is a reputable software
vendor, it can help operators in the sports shoe industry understand warning messages more clearly.

3.2. Decision Making Using the TOPSIS Method

Step 2.1: Establishing an IAMS evaluation decision matrix

The decision matrix for evaluating the IAMSs was established as described by Equation (13),
using the data in Table 3.

Step 2.2: Data Normalization

As with the CEGRA, large coefficients for MS, IPE, PR, TE, ES, SC, IS, ITC, QM, and ESP, represent
good performance, while smaller coefficients represent good performance for DP, FBP, RD, HIP, PM,
MR and LN. The former 10 metrics were categorized as benefit criteria in the TOPSIS framework, while
the latter 7 were categorized as cost criteria. Hence, data were normalized using Equation (14) or (15),
as appropriate, with results as shown in Table 5.
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Table 5. Normalization of evaluation IAMSs decision matrix.

Company MS IPE PRS TE ES SC IS ITC DP FBP QM RD HIP PM ESP MR LN

Company A 0.5913 0.5403 0.6556 0.4592 0.4646 0.4410 0.3344 0.4139 0.7720 0.8181 0.3769 0.9810 0.9597 0.0000 0.4134 0.9630 0.7873
Company B 0.4345 0.4626 0.4071 0.5231 0.5225 0.5268 0.6590 0.4673 0.4092 0.5176 0.5229 0.0000 0.2584 0.8506 0.4750 0.0000 0.5225
Company C 0.4663 0.4566 0.3992 0.5291 0.5364 0.5168 0.5074 0.6060 0.0000 0.2505 0.6018 0.0613 0.1107 0.1031 0.5187 0.0142 0.3274
Company D 0.4941 0.5344 0.4951 0.4852 0.4726 0.5108 0.4432 0.4931 0.4864 0.0000 0.4716 0.1839 0.0000 0.5155 0.5783 0.2691 0.0000

Step 2.3: Establishing a weighted normalization matrix

The weighted normalized decision matrix depicted in Table 6 was calculated as described by
Equation (16). In this research, it was assumed that all evaluation criteria had the same weight.

Table 6. Weighted normalization IAMS matrix.

Company MS IPE PRS TE ES SC IS ITC DP FBP QM RD HIP PM ESP MR LN

Company A 0.0348 0.0318 0.0386 0.0270 0.0273 0.0259 0.0197 0.0243 0.0454 0.0481 0.0222 0.0577 0.0565 0.0000 0.0243 0.0566 0.0463
Company B 0.0256 0.0272 0.0239 0.0308 0.0307 0.0310 0.0388 0.0275 0.0241 0.0304 0.0308 0.0000 0.0152 0.0500 0.0279 0.0000 0.0307
Company C 0.0274 0.0269 0.0235 0.0311 0.0316 0.0304 0.0298 0.0356 0.0000 0.0147 0.0354 0.0036 0.0065 0.0061 0.0305 0.0008 0.0193
Company D 0.0291 0.0314 0.0291 0.0285 0.0278 0.0300 0.0261 0.0290 0.0286 0.0000 0.0277 0.0108 0.0000 0.0303 0.0340 0.0158 0.0000

Step 2.4: Calculating the separation measures

The separation of the benefit criteria and cost criteria of the four companies from the ideal solution
were calculated using Equations (17) and (18). Results are as shown in Tables 7 and 8.

Table 7. The distance between the ideal solution.

Company MS IPE PRS TE ES SC IS ITC DP FBP QM RD HIP PM ESP MR LN

Company A 0.0000 0.0000 0.0000 0.0041 0.0042 0.0050 0.0191 0.0113 0.0000 0.0000 0.0132 0.0000 0.0000 0.0500 0.0097 0.0000 0.0000
Company B 0.0092 0.0046 0.0146 0.0004 0.0008 0.0000 0.0000 0.0082 0.0213 0.0177 0.0046 0.0577 0.0413 0.0000 0.0061 0.0566 0.0156
Company C 0.0074 0.0049 0.0151 0.0000 0.0000 0.0006 0.0089 0.0000 0.0454 0.0334 0.0000 0.0541 0.0499 0.0440 0.0035 0.0558 0.0270
Company D 0.0057 0.0004 0.0094 0.0026 0.0038 0.0009 0.0127 0.0066 0.0168 0.0481 0.0077 0.0469 0.0565 0.0197 0.0000 0.0408 0.0463

Table 8. The distance between the negative solution.

Company MS IPE PRS TE ES SC IS ITC DP FBP QM RD HIP PM ESP MR LN

Company A 0.0092 0.0049 0.0151 0.0000 0.0000 0.0000 0.0000 0.0000 0.0454 0.0481 0.0000 0.0577 0.0565 0.0000 0.0000 0.0566 0.0463
Company B 0.0000 0.0004 0.0005 0.0038 0.0034 0.0050 0.0191 0.0031 0.0241 0.0304 0.0086 0.0000 0.0152 0.0500 0.0036 0.0000 0.0307
Company C 0.0019 0.0000 0.0000 0.0041 0.0042 0.0045 0.0102 0.0113 0.0000 0.0147 0.0132 0.0036 0.0065 0.0061 0.0062 0.0008 0.0193
Company D 0.0035 0.0046 0.0056 0.0015 0.0005 0.0041 0.0064 0.0047 0.0286 0.0000 0.0056 0.0108 0.0000 0.0303 0.0097 0.0158 0.0000

Step 2.5: Calculating the relative closeness coefficient and rank the center preference order

Using the separation measures summarized above, the relative closeness coefficient, a∗i , for the
four companies, was calculated based on Equation (21), as shown in the TOPSIS performance values
column of Table 9. Each company was subsequently ranked in order of preference based on this metric.

Table 9. Outcome of the TOPSIS.

TOPSIS Ideal
Solution d+

TOPSIS Negative
Ideal Solution d−

TOPSIS Performance
Values Rank

Company A 0.0577 0.1060 0.6476 1
Company B 0.0790 0.0690 0.4659 2
Company C 0.1045 0.0285 0.2142 4
Company D 0.0937 0.0461 0.3299 3

Step 3: Comparing the CEGRA Method and the TOPSIS Method

The results of evaluation using the CEGRA and TOPSIS algorithms are given in the right-most
column of Tables 4 and 9, respectively. A comparison of these columns shows that the first-
and second-ranked results were the same for both methods. However, the CEGRA method is
simpler to implement than TOPSIS, highlighting its potential for use by decision makers with limited
technical ability.
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4. Conclusions

The traditional footwear industry is labor-intensive, and companies’ profits are constantly
compressed as a result of rising wages. Hence, for sustainable operation, the Datong Shoes and
Materials Company introduced IAMS and big data analysis systems to become an intelligent factory,
greatly reducing their demand for manpower. In this study, we developed a CEGRA model for
evaluation of intelligent system suppliers being considered for future collaboration, for further
improvement of the company’s operational efficiency. In constructing this model, criteria for evaluation
of these systems were identified using the focus group discussion method. The CEGRA model for
evaluating collaborative technology can be divided into five steps, with different aspects of the IAMS
evaluated for quality control. Thus, the model can be used to identify the criteria that most affects the
quality of an IAMS, thereby reducing system faults that prevent collaborative technology software
products from meeting end users’ requirements. As a result, the model enables traditional companies
to evaluate the solutions provided by intelligent system suppliers when they may otherwise lack the
expertise to do so. Using this model, the most suitable alternative software solution was identified
from a list of four candidates.

In addition, a comparison of the findings obtained using the CEGRA model with those obtained
from the traditional TOPSIS method, showed that both techniques identified the same options as the
top two ranking systems. However, the CEGRA algorithm proposed can manage the uncertainty of
decision problems, multiple decision evaluation attributes, and discrete data effectively, providing a
simple and convenient method for decision making. Although the model introduced in this study
was limited to the introduction of IAMS to upgrade a traditional shoe company to a technology shoe
company, the results demonstrate that in future research, CEGRA evaluation models can help decision
makers in different traditional industries find suitable solutions for upgrading to technology industries.
The evaluation criteria and decision-making processes can provide system integrators with the ability
to meet the needs of upgrade vendors, providing better system integration services when developing
smart factories.
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