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Abstract: For localization in daily life, low-cost indoor positioning systems should provide real-time
locations with a reasonable accuracy. Considering the flexibility of deployment and low price of
iBeacon technique, we develop a real-time fusion workflow to improve localization accuracy of
smartphone. First, we propose an iBeacon-based method by integrating a trilateration algorithm with
a specific fingerprinting method to resist RSS fluctuations, and obtain accurate locations as the baseline
result. Second, as turns are pivotal for positioning, we segment pedestrian trajectories according
to turns. Then, we apply a Kalman filter (KF) to heading measurements in each segment, which
improves the locations derived by pedestrian dead reckoning (PDR). Finally, we devise another KF to
fuse the iBeacon-based approach with the PDR to overcome orientation noises. We implemented this
fusion workflow in an Android smartphone and conducted real-time experiments in a building floor.
Two different routes with sharp turns were selected. The positioning accuracy of the iBeacon-based
method is RMSE 2.75 m. When the smartphone is held steadily, the fusion positioning tests result in
RMSE of 2.39 and 2.22 m for the two routes. In addition, the other tests with orientation noises can
still result in RMSE of 3.48 and 3.66 m. These results demonstrate our fusion workflow can improve
the accuracy of iBeacon positioning and alleviate the influence of PDR drifting.

Keywords: indoor positioning; iBeacon-based positioning; PDR (pedestrian dead reckoning);
data fusion; smartphone sensors

1. Introduction

Indoor positioning is important for indoor awareness, and it can support queries on the locations
of users. Regarding pedestrian indoor positioning, many approaches rely on distinct sensors such as
WiFi, Bluetooth, magnetic sensor [1], inertial measurement unit (IMU), etc. There is no generic solution
for all kinds of indoor scenarios. In general, these reported studies can reach the accuracy of 2–5 m in
calibrated indoor environments [2].

Indoor positioning methods can be categorized into centroid positioning [3], multilateration
(hyperbolic positioning) [4], trilateration, fingerprinting positioning, pedestrian dead reckoning (PDR),
vision-based positioning, etc. According to observation data, different positioning techniques include
received signal strength indication (RSSI), time of arrival (TOA), time difference of arrival (TDOA),
angle of arrival (AOA), image, etc. PDR is the simplest approach which calculates the next location by
determining heading directions and the displacement from the start. PDR is an auxiliary approach
and it relies on inertial sensors only. However, its drifting error would accumulate during walking,
and thus PDR cannot independently generate accurate locations in the long term [5].

Other indoor positioning methods require sensor network in buildings to compute the absolute location
of signal sources. Algorithms based on intersection, such as TOA, TDOA, and AOA, are sensitive to the
measurement of time and angle. These methods are not suitable for smartphone since its low-cost sensors
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may not meet the requirement of high accuracy. In contrast, current fusion solutions for smartphone include
the combinations of WiFi and PDR [6], geomagnetism/WiFi/PDR [7,8], or WiFi/Bluetooth [9]. Their typical
positioning methods include fingerprinting and trilateration based on RSSI of WiFi and/or Bluetooth device.
These means are often employed to provide PDR with initial location.

Compared to WiFi APs, a Bluetooth Low Energy (BLE) technology named iBeacon has merits
in low price, low energy consumption, and no requirement of Internet [10,11]. It is ideal to support
smartphone applications. However, previous research shows positioning based on iBeacon has a
relatively lower accuracy than WiFi APs [12], due to the attenuation property of iBeacon signals.

Although a group of studies [13,14] has been reported on the fusion of iBeacon and PDR,
the critical problem of signal fluctuation still needs to be addressed for accuracy improvement.
Filtering is employed to mitigate the fluctuations of iBeacon signals, but it is only for static reference
points [10,11]. Regarding the key parameters of PDR, some researchers [13] fuse ranging data of iBeacon
in an extended Kalman filter to calibrate PDR results, yet without discussion of non-line-of-sight
(NLOS) conditions.

In this paper, we focus on the accuracy improvement of iBeacon positioning, and also look for another
fusion way of iBeacon and PDR to resist data noise. Our objective is to pursue a real-time solution of
indoor positioning with a stable accuracy (e.g., 1–3 m). PDR lacks the estimate of initial location, and thus
we propose an iBeacon positioning method to provide accurate coordinates (i.e., the baseline result) first.
As we seek for a lightweight implementation on smartphone, trilateration is a preferable option due to its
simplicity. However, its ranging accuracy often suffers from RSSI fluctuations caused by NLOS conditions.
Therefore, we develop a fusion method of fingerprinting and trilateration which can mitigate ranging
errors and improve the positioning accuracy of iBeacon RSSI. Another novel issue for the PDR approach
is heading estimation. We develop a heading estimation method based on trajectory segmentation and
a Kalman Filter (KF) fusing the measurements of heading and angular rate. According to the baseline
result, PDR data are fused to correct the pedestrian’s trajectory locally, especially on trajectory continuity.

More specifically, we propose a fusion workflow to improve localization accuracy of smartphone.
It involves received signal strength (RSS) of iBeacon and the data of accelerator and gyroscope for PDR.
According to log-distance path loss model, ranging data can be transformed from the RSS between
beacons and the measured location. Based on the iterative algorithm of trilateration [15], we add
a weight matrix to emphasize the importance of near beacons. Real-time locations are derived by
enhancing the trilateration with a specific fingerprinting result, i.e., the BLE-based method. During a
tracking process, turns are pivotal for positioning since the walking state changes at them. To better
estimate locations around turns, we segment pedestrian trajectories into linear motions in terms of
turn locations. As the moving direction is relative stable in each segment, we can apply and update a
KF for the segment to correct the headings. Finally, we devise another KF to derive locations in each
segmented path by fusing the BLE-based positioning and the PDR. As a result, the BLE-based method
lays the foundation for the fusion workflow and overcomes the drifting of the PDR.

We implemented this approach in an Android smartphone, and conducted real-time tests on
a floor with an area of 44 m × 17 m. As we attach importance to turns, different routes with sharp
turns (180◦ and 90◦) were selected. The experiments regrading our fusion approach were conducted
with starting location errors and heading orientation noises. The results demonstrate the proposed
BLE-based method indeed improves the positioning accuracy of iBeacon. Moreover, the whole fusion
approach can effectively alleviate the positioning error caused by inaccurate initial positions and
orientation noises.

The remainder of this paper is organized as follows. Section 2 briefly introduces the related work
on iBeacon/BLE techniques and PDR. Section 3 elaborates on our research method including BLE-based
method, PDR, and the fusion workflow for indoor positioning. Section 4 presents our experimental
results and Section 5 discusses them with positioning accuracy. Finally, Section 6 concludes this paper
with some future work.
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2. Related Work

2.1. RSS-Based Method

In this section, we shortly review the current solutions for indoor positioning regarding iBeacons
and PDR. RSS-based methods can be roughly categorized into fingerprinting and ranging-based
methods (e.g., trilateration [3,16]). In general, fingerprints or the radio map contains NLOS information
of the environment, although its update costs some efforts [17]. The accuracy of fingerprinting depends
on the number of BLE beacons for computation [18]. Specifically, multiple channels used by BLE
beacons result in RSSI variation in a wider range than WiFi APs [19]. Researchers propose a method of
batch filtering to mitigate the multipath effect of RSS. In another related study [11], the researchers set
a window for batch filtering, and get the best performance (around 2.6 m for 90% of the time) with
dense configuration of beacons. Sparse configuration of beacons result in the error of less than 4.8 m.
In the same testbed, WiFi-based positioning involves an error of less than 8.5 m for 95% of the time.

Another group of methods focuses on the automation of fingerprint generation [20]
or crowdsourcing [8,21]. These methods aim to automate the collection and update of fingerprints
(i.e., radio map) [22,23]. Users can provide feedback to boost the matching accuracy of WiFi
fingerprinting. However, these methods always have low stability.

In contrast, ranging-based methods estimate the coordinates of the receiver with transformed
distances from RSSI, and they are prone to incorrect estimates due to the low ranging accuracy [16].
The accuracy of RSSI is influenced by many factors such as obstruction of walls, NLOS, multipath
effect, etc. As low ranging accuracy is the bottleneck, we add a weight matrix to the iterative algorithm
of trilateration [15] to stress the importance of near iBeacons for ranging. In this paper, we leverage
the NLOS information in iBeacon fingerprints to correct the trilateration results. Our tests show the
positioning accuracy is competitive with other RSS-based methods of WiFi or iBeacon.

2.2. PDR-Related Method

PDR methods can provide continuous trajectory yet they are prone to be influenced by
accumulative errors [24]. Related research aims to improve the estimation of step detection, stride
length, and heading orientation [24,25]. Commonly, PDR methods need a starting location (initial state),
and its errors in orientation would accumulate along with walking. Accurate headings are quite
important for PDR. To compensate direction errors, PDR is incorporated with other positioning
techniques. Li et al. presented tests about the combination of PDR, WiFi fingerprinting, and magnetic
matching (MM) [7]. The RMS of position error can be reduced to 3.8 m with the group of PDR/WiFi,
and the RMS regarding PDR/WiFi/MM can be reduced to 3.2 m.

Map matching methods are applied with PDR to better estimate locations [26,27]. Zhou et al.
(2017) alleviated the accumulated error of PDR by correcting locations with a navigation network [26].
With the help of particle filter on the network, the positioning accuracy of PDR can be raised up to
1.23 m. In addition, PDR, human activity recognition (HAR), and indoor landmarks are included to
better estimate user trajectories [28]. Although these rigid constraints can improve the PDR trajectory,
they may not be suitable for real-time positioning without a priori knowledge. To compensate the
headings of smartphone, we design a method to subdivide pedestrian trajectories into linear motions
in terms of turns, and update Kalman filtering for each trajectory segment.

2.3. Data Fusion

Data fusion can produce more consistent and accurate results than any single positioning
technique. Hafner et al. (2013) compared the fusion results of KF and particle filter (PF) in WiFi
positioning tests [29]. By applying fingerprinting with all available WiFi APs, they concluded there
is no clear difference between KF and PF trajectories. However, in the case of fewer APs (three),
the performance of PF is better than KF.
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Leppäkoski et al. (2013) proposed a complementary extended Kalman filter (CEKF) to fuse WiFi
RSS and foot-mounted PDR data and designed a PF to fuse PDR data with map information [6].
Although the PF generates user trajectories with the higher accuracy, the PF algorithm is quite
time-consuming. The CEKF only needs 0.2 s for computation, while the PF needs more than 100 s in
10 m × 10 m area. Thus, PF may not be the first choice for smartphone applications.

KF has high computational efficiency and it is suitable for real-time application. Recently, Jenny et al.
(2017) developed an application in tablet to provide a test in a small region on the fusion of iBeacon and
PDR with KF. The result of fusion positioning is accurate (around 1 m) [14]. However, the robustness of this
positioning approach is not clear since the test route is simple. Another study fuses iBeacon ranging data
with PDR computation [13]. Based on the start location derived by iBeacon and WiFi, the ranging result of
iBeacon RSS is fused in an extended Kalman filter to calibrate PDR results.

In this paper, we focus on the fusion of iBeacon and PDR data on the basis of the accuracy
improvement of iBeacon positioning. In our designed KF, the accurate coordinates (i.e., ‘baseline’)
of RSS-based positioning are fused with the heading and stride length of PDR. The accuracy of fusion
is comparable to other WiFi/iBeacon localization, while the computation load is limited.

3. Research Method

3.1. Overview

As mentioned above, we aim to improve the accuracy of iBeacon positioning method in
smartphone, and fuse it with PDR in a designed Kalman filter (KF) for real-time applications. A novel
aspect of the proposed BLE-based method is that we introduce a specific fingerprinting method to
fuse with trilateration. This fusion can resist the ranging error caused by RSS fluctuations of iBeacon.
This BLE-based method lays a solid foundation for the later fusion with PDR result. Similar to the
method in [15], we adopt the single point positioning algorithm in GNSS for trilateration, and we
set up a weight matrix to differentiate the contribution of beacons in various distances. For the
fingerprinting method, we adopt cosine similarity to reveal the consistent trend between two RSSI
vectors. This trend can help us to exclude outliers and deal with the RSS differences between different
smartphones. The proposed iBeacon-based approach achieves an accuracy close to that of WiFi-based
approaches. The easy implementation of this approach in smartphone is also a valuable improvement
of iBeacon-based positioning.

In addition, we develop a new implementation of PDR to resist heading errors via trajectory
segmentation. We detect turns first with gyroscope data and subdivide user trajectory into segments
according to these turns. We design a KF with heading measurement and the current angular rate,
apply it to each segment, and update the filter for the next segment. This implementation can alleviate
the error of headings in smartphone. Finally, we design a fusion method based on KF to combine
the BLE-based method and the PDR implementation. It ensures both the accuracy and continuity of
real-time trajectories.

The whole fusion workflow for indoor positioning is summarized in Figure 1. The related
smartphone sensors include bluetooth module, gyroscope, accelerometer, and magnetic sensor.
After merging the two RSS-based positioning methods (trilateration and fingerprinting), we can
add the absolute coordinates into PDR computation. From the initial location, we can confirm each
step with its length and check the altitude (including heading orientation). Meanwhile, we provide
orientation filtering to correct the altitude measurement. The orientation filter is updated at each turn.
After the whole PDR procedure, the location estimate and the current heading orientation are ready.
BLE-derived location and PDR location are input to the designed KF (see Section 3.4), when the PDR
location is out of the current room or the filtering interval has reached (e.g., 10 s). Finally, the fused
location estimate can effectively resist drifting and jumping in a trajectory. The following subsections
explain the details.
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Figure 1. The data fusion workflow of Bluetooth Low Energy (BLE) positioning and pedestrian dead
reckoning (PDR) locations.

3.2. BLE-Based Method

By combining ranging of RSSI and the radio map, RSSI data of iBeacons can be used for
accurate positioning. Trilateration can provide location estimates according to real-time RSSI,
while fingerprinting can support it with the NLOS features in the radio map.

Trilateration. Inspired by the notion of pseudo ranges in GNSS positioning, we use RSSI ranging
for the trilateration method.We also infer the related formula similar to the single point positioning
with pseudo ranges. As indoor positioning is conducted in a small range, the propagation time
from a beacon to the receiver is quite short. In this sense, clock error is negligible. Equation (1)
presents this simple ranging model, where ρi is the pseudo range and v represents stochastic noise.
Because Equation (1) is a nonlinear function of the location coordinates (x, y, z), we expand it according
to Taylor series and keep linear terms only. The derived linear form is given in Equation (2).

di = ρi + v =
√
(xi − x)2 + (yi − y)2 + (zi − z)2 + v (1)

di − ρi
0 =

x0 − xi

ρi
0

∆x +
y0 − yi

ρi
0

∆y +
z0 − zi

ρi
0

∆z (2)

According to the model of ’log distance path loss’ of radio signals [30], RSSI is a function of
distance (see Equation (3)). P(d0) indicates the RSSI of a reference location with distance of d0 to a
known transmitter, and d indicates the distance from the current location to the transmitter. Parameter n
reflects attenuation of signal. Equation (4) shows the simplified case where the distance d0 is a unit
distance (i.e., 1 m) and A represents the RSSI of the unit distance.

RSSI = P(d0)− 10nlg(
d
d0

) (3)

RSSI = A− 10nlg(d), d0 = 1, A = P(d0) (4)

Conversely, RSSI value can be used to infer the distance (see Equation (5)) between a BLE beacon
(the transmitter) and the current location of smartphone (the receiver). Thus, the distance between the
received location and the emitted location of a beacon is given as follows:
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d = 10
A−RSSI

10n (5)

To implement Equation (5), two parameters have to be determined for this transformation from
RSSI to length, i.e., A and n. The two parameters reflect the characteristics of specific environments.
For the testbed in this paper, we pre-computed the two parameters at reference points via surveying
adjustment. With more than four known distances between the selected points and BLE beacons,
Equation (6) presents the error equation of the two parameters, which is derived from Equation (4).
For k (k > 4) distances, we can obtain the adjustment values of A and n by inputting these distances
(dk), RSSI measurements (RSSIdk

), and the related RSSI estimate (RSSI0
dk

, the initial value).


v1

v2

· · ·
vk

 =


1 −10lg(d1)

1 −10lg(d2)

· · ·
1 −10lg(dk)


[

A
n

]
−


RSSId1 − RSSI0

d1

RSSId2 − RSSI0
d2

· · ·
RSSIdk

− RSSI0
dk

 (6)

After obtaining the environmental parameters of Equation (5), we can generate real-time locations
by applying the trilateration algorithm in an iterative way (see Equation (7)). The error equation of
location coordinates is derived from Equation (2):

V = BX− l, l =


d1 − ρ1

0
d2 − ρ2

0
· · ·

dn − ρn
0

 , X =

∆x
∆y
∆z

 , B =


x0−x1

ρ1
0

, y0−y1

ρ1
0

, z0−z1

ρ1
0

x0−x2

ρ2
0

, y0−y2

ρ2
0

, z0−z2

ρ2
0

· · ·
x0−xn

ρn
0

, y0−yn

ρn
0

, z0−zn

ρn
0

 , X0 =

x0

y0

z0

 (7)

In Equation (7), (xn, yn, zn) refers to the coordinates of beacon n, dn represents the measured
distance between beacon n and the current location, and ρn

0 stands for the initial guess of this distance.
Accordingly, the solution of residuals is presented in Equation (8). The n× n matrix P is the weight
matrix, which reflects the importance of each distance adopted. These distances are all derived from
the related RSSI values (always negative), and we consider that a RSSI with a high value contains high
reliability. Thus, we input the initial P as a diagonal matrix whose diagonal elements are set to 1

RSSI2 .

X̂ = (BT PB)−1BT Pl (8)

After getting the residuals of the coordinates, we can readily derive the coordinates of the current
location by adding up the residuals to the initial values (Equation (9)). The vector [x, y, z]T indicates
the final estimate of the current location. x

y
z

 = X0 + X̂ (9)

It should be noted that the calculation process in Equation (8) is iterative. Considering the
non-convergence issue of iteration, we set thresholds for the iterated [x, y, z]T as the termination
condition. For instance, the iteration would stop when two adjacent calculation results x′ and x′′

contain a large difference over than the threshold (e.g., 2 m). In this way, we ensure this iteration can
stop and the derived coordinates are not exaggerated.

Fingerprinting. Fingerprinting is another RSS-based localization technique adopted in this
paper. This method is introduced in Section 2. Here, we aim to use the NLOS information in the
database (radio map) to correct trilateration results. We select a deterministic matching method for
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positioning, that is, the comparison of measured RSSI vector and reference RSSI vector to rank the
correlation degree.

The implementation of fingerprinting consists of several steps. First, in offline phase, we set up
predefined reference points to collect the database (i.e., the RSSI vector of iBeacons on each point).
Second, in online phase, we compare the current RSSI vector with the database and calculate the
location coordinates by weighted K Nearest Neighbor (WKNN) method. As the RSS values of an
iBeacon always fluctuate, we do not select the minimum Euclidean distance between RSSI vectors
as the primary criterion of location matching. The criterion of minimum Euclidean distance is more
prone to wrong estimate due to data noises and sensor differences of smartphones.

cos(θ) =
Vi •Vj

‖Vi‖‖Vj‖
(10)

More specifically, we use cosine similarity to determine the minimum closeness of RSSI vectors
regarding locations (Equation (10)). When two RSSI vectors share the same size, their cosine similarity
is calculated by their dot product and modules (‖Vi‖ and ‖Vj‖). In this way, we can check whether the
trend of these RSSI vectors is consistent, and include these similar RSSI vectors to reckon the location.
Compared to the minimum Euclidean distance, cosine similarity is less sensitive to RSS variations.
It can provide more candidates around the genuine location and thus avoid the outliers even with the
minimum Euclidean distance. In addition, distinct smartphone sensors often receive different RSS
values of the same iBeacon. In this case, we can perceive the overall difference via the cosine similarity
between the RSSI vector of a phone and that of the database.

As the values of cosine similarity have been normalized, the largest value relates to the maximum
weight. We calculate the final coordinates with k candidate points for the current location by WKNN
(see Equation (11)). In this way, we can obtain the positioning result from the fingerprinting method.

x =
k

∑
i=1

wixi

y =
k

∑
i=1

wiyi

wi =
csi

∑k
j=1 csj

(11)

Fusion of the both methods. The results derived from trilateration and fingerprinting represent
real-time and pre-collected information, respectively. We fuse them to obtain better location estimate
to compensate ranging errors of iBeacon RSS. Here, we consider the constraint of a pedestrian’s
motion scope, which supports us to generate reasonable location estimate. Considering a continuous
movement, the last location correlates to the following one. Here, we limit the motion in a reasonable
scope in terms of computational frequency of trilateration positioning. For example, 1 m is the scope
for the next step for a pedestrian when the frequency of trilateration is 1 Hz. In other words, as the
rate of the BLE-derived locations is 1 Hz, we set the threshold of stride as 1 m/s. In this way, after the
location estimates of the two methods are generated, we can compute their distances to the last location.
Assuming the resulting distance of trilateration is d1 and that of fingerprinting is d2, we list their
weights for fusion in Equation (12). A long distance relates to a small weight when the both distances
are equal to or larger than 1 m. In contrast, a long distance gains a large weight when d1 and d2 are both
shorter than 1 m. Based on the coordinates derived by the both methods, we employ these weights in
Equation (12) to obtain the weighted coordinates of the current location. The fused location estimate
would be more continuous and involves fewer ‘jumps’.
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w1 =
d2

d1 + d2
, w2 =

d1

d1 + d2
, d1 ≥ 1, d2 ≥ 1

w1 =
d1

d1 + d2
, w2 =

d2

d1 + d2
, d1 < 1, d2 < 1

(12)

3.3. PDR on Smartphone

PDR is a lightweight independent positioning method which can provide continuous location
estimates. It requires no specific indoor positioning infrastructure (e.g., BLE beacons or WiFi AP), but it
needs an absolute location as initial state. Figure 2 shows the process of coordinate calculation of each
step. The coordinates of location Pk is computed by a simple principle shown in Equation (13).
Basically, three problems need to be solved for PDR: (1) count steps; (2) estimate stride length;
and (3) detect orientation. We use a smartphone of Android operating system (Android phone in
short) where sensor information are easily accessed. Three sensors are adopted for PDR computation,
including gyroscope, accelerator, and magnetic sensor. As shown in Figure 3, these sensors refer to
three rotations, i.e., X-Axis (Roll), Y-Axis (Pitch), and Z-Axis (Yaw).

Figure 2. Coordinate calculation of each step in PDR.

Android phone has provided a default approach to present orientation reading regarding the
data of accelerometer and magnetic sensor. We employ this Android orientation in PDR computation.
However, orientation error would accumulate fast due to the low accuracy of Android phone’s sensors.
Especially, heading orientation would vary sharply after turns. In this case, we adopt gyroscope to
detect turning locations and separate a pedestrian’s trajectory according to the turns.

Figure 3. Axes of Android phone.

Given a starting point, PDR can be conducted by measuring the heading orientation and stride
length at each step. Figure 2 and Equation (13) present this simple computation process. At the
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step k, its coordinates (xk, yk) are the cumulative result of the previous k-1 steps. In the following part,
we introduce the means for step detection and orientation correction.

xk = x0 +
k

∑
n=1

dnsinθn

yk = y0 +
k

∑
n=1

dncosθn

(13)

Here, we leverage accelerometer in Android phone to count steps [25]. First, we compute the
vector module of the readings in three directions of accelerometer (i.e., X, Y, and Z). All these module
values form a waveform along with time (Figure 4). A step is detected by checking two peaks which
meet the condition of time difference (e.g., longer than 0.2 s). Meanwhile, the difference between peak
and valley should be greater than tolerance. To filter noises in the waveform, a peak is confirmed when
the continuous raise is detected more than or equal to two times.

Figure 4. The vector module of accelerator readings for walking.

Moreover, we adopt a simple but effective linear model to determine stride length [24].
The computational cost of this method is low and it is suitable for real-time positioning. In this
model, we only need to fix the appropriate variables of a and b, and then stride length L can be decided
(Equation (14)). Here, the parameter f stands for the current step frequency.

L = a ∗ f + b (14)

The most important part for PDR is to obtain the correct orientation. According to Equation (13),
correct direction ensures accurate coordinates. As mentioned above, the accuracy of orientation
measurement is bound to smartphone sensors. Figure 5 gives an example of orientation deviation
after a turn. Although the real-time orientation reading could vary sharply, in most cases, a pedestrian
would walk in a relatively stable direction and pace before making turns. Thus, the user’s current
movement before the next turn is considered a linear motion.

To distinguish the accumulative error of orientation, we divide a pedestrian’s trajectory into linear
motions according to turn locations. First, we detect turns by checking peaks and valleys in gyroscope
data (Figure 6). We compute the modulus of each gyroscope reading vector (gx, gy, and gz), and locate
the exceptional peaks representing the turns (see Figure 6). A tolerance is set for gyroscope data to
detect accurate turn locations since there are always large angular rates at turn locations. For the other
cases, the related data of gyroscope fluctuate in a small range (around zero). In this way, we separate a
pedestrian’s movement into segments by these detected turns.
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Figure 5. Heading orientation deviation after a turn.

Figure 6. Detection of turns in gyroscope data.

As the motion in each segment is linear, we use a KF to alleviate the accumulative error of
orientation. To improve the orientation regarding each segment, we set up the prediction equations of
KF that includes heading orientation (θ) and angular rate (ϕ) (see Equation (15)). X̂k is the state vector
at time k, Pk represents the covariance matrix at time k, and Q represents stochastic error. ∆t indicates
the time of the change of angular rate. As this filter is applied to linear motion, the change of angular
rate at the last moment can be regarded as the same to the current one. The predicted value of θ is set
to the last θ plus the changed angle calculated by ∆t and ϕk−1. The state vector X̂

′
k can be computed by

applying the update equations of this KF. Then, the filtered heading orientation θ
′
k of time k is obtained.

As the motions of two segments are in different orientations, the covariance matrix Pk would be reset
to an identity matrix after each turn, which avoids the influence of the last segment on the next one.

X̂k =

[
θk
ϕk

]
= FkX̂k−1 =

[
1 ∆t
0 1

] [
θk−1
ϕk−1

]
Pk = FkPk−1FT

k + Q

(15)

3.4. Fusion Method

Both the BLE-derived locations and PDR results have pros and cons. A pedestrian’s trajectory
derived by the BLE-based approach may still contain inconsistency. In contrast, locations generated by
PDR are more continuous. However, PDR needs absolute coordinates as the starting location, and PDR
cannot yield accurate locations in a long term due to the drift of orientation. Thus, we combine the
two types of approach for indoor real-time positioning. A KF is employed to fuse the two approaches
and yield more accurate trajectories.

The real-time BLE-derived locations provide the initial state for the PDR method, which can correct
the drift of PDR result when the trajectory is accidentally out of the current room. Considering the
linear motion in each segment of user trajectory, theoretically, the last stride length is equal to the
current one. We built up the prediction equations of the Kalman filter in Equations (16) and (17).
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The matrix Q in Equation (17) stands for the covariance matrix of process noise, and Pk is the covariance
matrix predicted at time k.

X̂k =

xk
yk
dk

 = FkX̂k−1 =

1 0 cosθk−1
0 1 sinθk−1
0 0 1


xk−1

yk−1
dk−1

 (16)

Pk = FkPk−1FT
k + Q (17)

According to Kalman filtering, the update equations of this KF are presented in Equations (18)–(20).
The matrix Hk in Equation (18) is an identity matrix, and Zk refers to the BLE-derived locations at time
slot k. The matrix R represents the covariance matrix of measurement noise (Equation (20)). After the
Kalman gain K

′
is calculated by Equation (20), the state vector X̂

′
k and the covariance matrix P

′
k can be

updated. X̂
′
k contains the fused coordinates (xk, yk) and the stride length dk.

X̂
′
k = X̂k + K

′
(Zk − HkX̂k) (18)

P
′
k = Pk − K

′
HkPk (19)

K
′
=

Pk HT
k

HkPk HT
k + R

(20)

The BLE-based approach may involve a lower output frequency than PDR due to the RSSI data
scanning, and thus locations generated by this fusion algorithm is periodically used to correct the
drifting error of PDR (e.g., every 10 s). In addition, we introduce a simple geometric restriction to
correct location estimates, i.e., the boundary of space/room. This correction would be triggered if the
location estimate is unreasonably outside of the room. To ensure the proposed algorithm can be applied
to general navigation scenarios, we do not use any map matching means in this fusion algorithm.

4. Experiment

Experiments were conducted on the fifth floor of the College of Surveying and Geo-informatics,
Tongji university (Figure 7). The floor area is around 44 m × 17 m, and the minimum width of the
corridor is 1.7 m. We adopted Galaxy S6 smartphone and its sensors for positioning. During our
experiments, we held the smartphone horizontally in both steady and swaying states. In this study,
the sampling rate of gyroscope and accelerator are both 5.5 Hz, and the computational rate for
BLE-based positioning was set to 1 Hz. We developed an smartphone application (app) to collect
sensor data, implemented our fusion positioning algorithm, and visualized positioning results in the
floor plan.

Figure 7. The test floor.

The main purpose of these experiments was to investigate the positioning accuracy of the
proposed fusion workflow, especially for the cases with sharp turns. In addition, we considered
the influence on accuracy of two different errors. The first one is about inaccurate initial positions,
and the second one involves frequently disturbed heading orientations (yaw) during walking.
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Therefore, we designed two paths (see Figure 8) including multiple U-turns (180 degrees)
and 90-degree-turn(s). The first route has two U-turns and one left turn, and the second case includes
three U-turns of a round-trip route in the corridor.

(a) (b)

Figure 8. Two routes in the testbed. The red dot indicates the starting location and the black lines
represent the ground truth: (a) Route 1 contains two U-turns and one left turn; and (b) Route 2 includes
three U-turns.

First, we implemented the BLE-based positioning method fusing trilateration and fingerprinting of
iBeacon. Only 10 BLE beacons were deployed, and they were set in an effective range (no more than 10 m)
but not too close. As these beacons were set at similar heights (around 1.3 m above the floor), we fixed the
z value in Equation (7). To implement the fingerprinting method, we set up reference points in regular
distance to collect the radio map (Figure 9a). We sampled RSSI data for each point, and the sampling rate
was 1 Hz. As mentioned above, we used cosine similarity for localization (Equation (10)).

(a)

(b)

Figure 9. Reference points for fingerprinting: (a) points for fingerprinting in offline phase; and (b) four points
for the adjustment of ranging parameters.

To obtain the ranging parameters of RSSI for trilateration (see Equation (5)), we selected four points
and collected RSSI data (Figure 9b). The links between the four stations and iBeacons included NLOS
cases. The two parameters A and n were computed with least squares adjustment (see Equation (6)).
The calculated values are −61.94 and 1.36 for A and n, respectively.

Figure 10 shows the BLE-derived locations of the two routes. Positioning accuracy is presented
in Table 1. As ground truth is known, we computed root-mean-square error (RMSE) for the two
routes. We ran the BLE-based localization three times for each route, and averaged the results of the
six trials to calculate the total RMSE. The RMSE of Routes 1 and 2 are 2.71 and 2.77 m, respectively.
The column ‘RMSE X’ shows the major error (2.57 and 2.69 m) is in the X axis (i.e., the heading
direction). The positioning error is mainly from the ranging errors introduced by RSS fluctuations.
In this corridor, because the distances between iBeacons and the smartphone are relatively shorter in Y
direction, the ranging errors in X direction are much larger. As a result, positioning errors are mainly
found in the X direction. We finally obtained the RMSE of 2.75 m regarding the BLE-based method,
which is a relatively high accuracy to independent BLE positioning results.
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(a) (b)

Figure 10. The BLE-derived locations. The black lines indicate the ground truth: (a) Route 1; and (b) Route 2.

Table 1. Accuracy of the positioning method fusing trilateration and fingerprinting of iBeacon.

RMSE XY (m) RMSE X (m) RMSE Y (m) Mean Error X (m) Mean Error Y (m)

Route 1 2.71 2.57 0.85 1.90 0.60
Route 2 2.77 2.69 0.66 2.06 0.50

All 2.75 2.65 0.74 2.00 0.53

Table 2 presents the separate RMSE of trilateration and fingerprinting for localization.
Comparing to Table 1, one can find the accuracy improvement of the proposed BLE-based method.

Table 2. Positioning accuracy of trilateration and fingerprinting.

Trilateration RMSE (m) Fingerprinting RMSE (m)

All 3.42 3.22

The next test was for the proposed fusion workflow of positioning. As mentioned above,
we considered two errors for real-time tracking: inaccurate initial position and disturbed orientation.
Figure 11 presents the positioning result of Route 1 with an inaccurate initial position. This position
has an error of 2.30 m. Figure 11a,b presents the raw PDR locations and those with filtered orientations,
respectively. There is certain accuracy improvement around turn locations. However, the orientation
filtering still cannot eliminate the systematic drifting caused by the initial position and directional
measurements. In contrast, the final trajectory overcomes the both types of error (Figure 11c).

(a) (b)

(c)

Figure 11. Trajectory of Route 1 with an inaccurate initial position, where red lines represent the trail
of user and black lines indicate the ground truth: (a) PDR locations; (b) PDR locations after orientation
filtering; and (c) the path derived from the fusion workflow.
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Figure 12 presents the real-time trajectories when the smartphone was randomly swayed between
left and right directions. Figure 12a shows the noises in orientation severely influences the positioning
accuracy. The angle at all these turn locations are incorrect. The orientations and the related location
estimates are improved in Figure 12b, although the error is still considerable. The location accuracy is
largely improved by the proposed fusion workflow. Figure 12c shows that this orientation noise can
be alleviated by the result of the BLE-based method.

(a) (b)

(c)

Figure 12. Trajectory of Route 1 when the heading was randomly swayed: (a) PDR locations;
(b) PDR locations after orientation filtering; and (c) the path derived from the fusion workflow.

Figure 13 presents the tracking result of Route 2 with an inaccurate initial position. The error of the
position is 2.03 m. Figure 13a presents an obvious systematic error on absolute coordinates. Similarly,
orientation filtering provides local corrections (e.g., more overlapping segments), although the systematic
error still exists (Figure 13b). The systematic drifting is removed in the trajectory of Figure 13c at the
beginning phase. The four segments of the trajectory divided by the three U-turns highly overlap with
the ground truth, which proves the proposed fusion workflow can deal with changes at turns as planned.

(a) (b)

(c)

Figure 13. Trajectory of Route 2 with an inaccurate initial position: (a) PDR locations; (b) PDR locations
after orientation filtering; and (c) the path derived from the fusion workflow.

When the smartphone is swayed, the PDR computation becomes error-prone because of the noise
of orientation measurement.The first segment of the trajectory in Figure 14a gets over the turn point,
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which deteriorates the precision of the following location estimates. The proposed fusion method
corrects most locations of PDR back to the corridor area (Figure 14c). The improvement of accuracy
also validates the use of the BLE-based method on severe deviation of PDR.

(a) (b)

(c)

Figure 14. Trajectory of Route 2 when the heading was randomly swayed: (a) PDR locations; (b) PDR locations
after orientation filtering; and (c) the path derived from the fusion workflow.

The above results demonstrate the BLE-based method can compensate the drifting error of PDR,
and their fusion can improve positioning accuracy. For instance, the accuracy regarding inaccurate initial
position is a little higher than the independent BLE positioning. With disturbed orientations, the proposed
fusion method can resist the noisy measurements and still obtain a stable accuracy. Table 3 lists the RMSE of
the four cases. We ran the proposed fusion workflow for each route four times and calculated the RMSE by
averaging the test results. The accuracy is between 2 and 4 m. Similar to the results in Table 1, the main
error occurs in the heading direction (the column ‘RMSE X(m)’).

Table 3. Positioning accuracy of the four cases of Routes 1 and 2.

Case RMSE XY (m) RMSE X (m) RMSE Y (m) Mean
Error X (m)

Mean
Error Y (m)

Route 1 – inaccurate start 2.39 2.27 0.77 1.82 0.64
Route 1 – disturbed orientation 3.48 3.34 0.98 2.58 0.80
Route 2 – inaccurate start 2.22 2.13 0.60 1.71 0.48
Route 2 – disturbed orientation 3.66 3.54 0.92 2.74 0.70

A conclusion of the experimental results is that the orientation filter cannot independently
improve location accuracy of the PDR. Although it can partially improve the direction and location
estimates, it cannot reduce systematic errors. Instead, the proposed fusion positioning workflow can
curb systematic errors.

5. Discussions

In this paper, we focus on the accuracy of real-time positioning, especially for the cases with sharp
turns. The accuracy of location estimate of our trilateration method is bound to fluctuating RSS values.
Figure 15 presents the RSSI distribution of two BLE beacons at the same location. The most-frequent
RSSI of the two beacons are −71 dBm, but the absolute difference between RSS values can exceed
10 dBm (e.g., −84 dBm). Supposing the most-frequent RSSI relates to the distance d̃, and the error can



Appl. Sci. 2020, 10, 2003 16 of 20

exceed 20 m when d̃ reaches 10 m (see Equation (5)), this ranging error has to be alleviated for indoor
positioning.

Our solution is to fuse the trilateration result with RSSI fingerprints to compensate this error,
which leads us to compute BLE-based locations in a relatively high accuracy. To prevent location
estimates ‘jump’ dramatically, we average the RSSI values in each interval (e.g., 1 s) and run the
trilateration algorithm iteratively (Equations (7) and (8)) to get reasonable estimates. The fusion of
trilateration and fingerprinting effectively curbs the divergence of location error (see Equation (12)).

(a) (b)

Figure 15. RSSI Histogram of two BLE beacons: (a) Beacon ’AC:23:3F:20:8D:67’; and (b) Beacon
’AC:23:3F:20:8D:69’.

The BLE-based method provides the baseline accuracy for the whole fusion positioning approach.
According to a related study [12] comparing the positioning accuracy of iBeacons and WiFi APs, WiFi APs
outperform iBeacons on fingerprinting positioning accuracy. This study has pointed out the accuracy of
WiFi positioning is 5 m 90% of the time but that of iBeacon is 5 m less than 70% of the time (Figure 16a).

We generated the cumulative distribution function (CDF) of our BLE-based positioning method
(Figure 16b). It shows that the positioning accuracy can reach 4.50 m 90% of the time. This result
indicates our BLE-based method boosts the positioning accuracy of iBeacon. This accuracy can be
compared with that of WiFi positioning.

(a) (b)

Figure 16. Comparison of CDF between a previous study and this paper: (a) CDF of positioning
accuracy of iBeacons and WiFi APs [12]; and (b) CDF of our BLE-based method.

We also provide CDF graphs for the four cases (Figure 4). The CDF values of 90% are listed in
Table 4. In 90% of the time, the CDF of inaccurate initial position are 3.78 and 3.54 m, respectively.
They are better than the BLE-based method (4.50 m) when the smartphone is held steadily. The error
brought by an initial position can be promptly corrected, and the entire trajectory’s accuracy is stable
(see Figures 11c, 13c, and 17). The influence of the turns are limited as well. The accuracy of real-time
tracking is competitive with the fingerprinting methods of iBeacon or WiFi APs in literature [11].

For the case of disturbed orientations, swaying the phone certainly enlarges the positioning error
of PDR. Such errors have also been alleviated, and the RMSE of the both routes are 5.84 and 5.88 m,
respectively (see Figure 17). The real-time tracking results are still not far away from the actual motions
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(see Figures 12c and 14c). In practice, we do not expect the gyroscope sensor in smartphone can always
be calibrated. The experiments with noisy headings confirm our fusion positioning approach can be
applied to noisy situations.

Table 4. CDF of the four cases.

BLE Route 1
Inaccurate Start

Route 1
Disturbed Orientation

Route 2
Inaccurate Start

Route 2
Disturbed Orientation

CDF 90% (m) 4.50 3.78 5.84 3.54 5.88

(a) (b)

Figure 17. CDF of the both routes. Orange color indicates the case of inaccurate initial positions,
while blue represents the case of disturbed orientations: (a) Route 1; and (b) Route 2.

The performance of orientation filtering was also investigated. To check the varied angle at
each turn, we computed the differences between the headings around turn locations. The angle
differences at the three U-turns of Route 2 are listed in Table 5. In the case of inaccurate initial position,
the angle difference at the first U-turn (column ‘1st turn raw value’) contains obvious error (−208.206◦),
while the values after orientation filtering are close to the true value (columns ’xx turn filtered value’).
With disturbed orientations, the values after orientation filtering are not accurate. This comparison
reflects our orientation filtering method may not be valid when the smartphone is swayed.

Table 5. Angle differences of heading in Route 2.

1st Turn
Raw

Value

1st Turn
Filtered
Value

1st Turn
Truth

2nd Turn
Raw

Value

2nd Turn
Filtered
Value

2nd Turn
Truth

3rd Turn
Raw

Value

3rd Turn
Filtered
Value

3rd Turn
Truth

inaccurate start (◦) −208.206 −199.900 −180 172.384 176.029 180 −179.480 −178.770 −180

disturbed orientation (◦) −178.126 −185.673 −180 176.291 135.914 180 −152.557 −149.704 −180

From the test results in Figures 11b–14b, we find the orientation filter can only locally correct
locations of each route segment. This orientation error is reduced when the PDR is conducted in a
short range and frequently corrected by the BLE-based localization. The PDR enriches the route details
during the tracking. Accordingly, ‘jumping’ cases are reduced as well (see Figure 11c).

Regarding the PDR algorithm, we also compared the accuracy of step counting between our
method and the Android built-in step counter. Table 6 presents the average of four tests for each route.
In this case, the step counts of our PDR algorithm is more accurate than the built-in counter. There are
only slight differences between our counts and the actual steps, and these counts are sufficient for us
to generate PDR results at a high accuracy.

Table 6. Step counts of our PDR algorithm and Android API.

Our Method Android Ground Truth

Route 1 104 89 102
Route 2 179 174 184
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6. Conclusions

This paper proposes a low-cost and real-time approach of indoor positioning based on iBeacon
and PDR. It consists of several parts: (1) the BLE-based method of iBeacon, which fuses trilateration
and fingerprinting; (2) a PDR method that considers filtering on heading orientation; and (3) the fusion
approach of iBeacon and PDR to correct ‘jumping’ positions and PDR drifting error.

This approach was implemented in an Android smartphone, and we conducted real-time
positioning experiments in a building. Real-time tracking tests were conducted on routes with sharp
turns, and we considered the errors in initial positions and heading orientations. The experiments show
the positioning accuracy of our BLE-based method is the RMSE of 2.75 m. The tests with inaccurate
initial positions in two routes result in the RMSE of 2.39 and 2.22 m, respectively; while the other
tests with disturbed orientations result in the RMSE of 3.48 and 3.66 m for the two routes. The results
demonstrate our fusion method can improve the accuracy of real-time trajectories and alleviate the
influence of inaccurate initial positions, systematic drifting, and orientation noises. The BLE-based
positioning method provides the baseline accuracy, and the PDR method smooths real-time trajectories
and enhances their continuity.

In the future, we plan to investigate RSSI fluctuation of iBeacon and improve its ranging
accuracy. In addition, we will conduct more experiments in larger indoor spaces with sparse iBeacon
configuration, and investigate the compensation to ranging error in longer distances. As smartphone
can be held in different positions (horizontally or vertically in hand or in pocket), and these positions
may lead to wrong altitude measurements for PDR, we will further develop the PDR algorithm to
ensure accurate headings with different smartphone positions.

Thus far, we have adopted little restriction for indoor positioning since we intend to present the
improvement from raw measurements of iBeacons and smartphone sensors. Thus, specific human
motion model could be introduced to predict the movement of pedestrians, and the transfer probability
of different locations would be considered with map constraints. Other fusion approaches for indoor
positioning will be investigated for real-time applications as well (e.g., grid-based filters). Finally,
different data sources can be introduced for fusion such as geomagnetic data.
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