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Abstract: In this paper, we propose a deep learning method with convolutional neural networks
(CNNs) using skip connections with layer groups for super-resolution image reconstruction. In the
proposed method, entire CNN layers for residual data processing are divided into several layer
groups, and skip connections with different multiplication factors are applied from input data to
these layer groups. With the proposed method, the processed data in hidden layer units tend to be
distributed in a wider range. Consequently, the feature information from input data is transmitted
to the output more robustly. Experimental results show that the proposed method yields a higher
peak signal-to-noise ratio and better subjective quality than existing methods for super-resolution
image reconstruction.

Keywords: convolutional neural networks; deep learning; super-resolution; image reconstruction;
skip connection; layer group

1. Introduction

Single image super-resolution (SISR) is a method to reconstruct a super-resolution image from
a single low-resolution image [1,2]. The reconstruction of a super-resolution image is generally difficult
because of various issues, such as blur and noise. Image processing methods such as interpolation
were developed for this purpose before the advent of deep learning. Many applications are based on
deep learning in the image processing and computer vision field [1–4].

The first solution for super-resolution reconstruction from a low-resolution image using deep
learning with convolutional neural networks (CNNs) was the super-resolution convolutional neural
network (SRCNN) method [1]. However, in the SRCNN method, learning was not performed well
in deep layers. The very deep super-resolution (VDSR) method [2] is more efficient for learning
in deep layers and achieves better performance than SRCNN for super-resolution reconstruction.
Although VDSR has layers much deeper than those in SRCNN, it is efficient because it focuses on
generating only residual (high-frequency) information by connecting the input data to the output
of the last layer with a skip connection. However, in the VDSR method, the gradient information
vanishes, owing to repeated rectified linear unit (ReLU) operations. It was observed that the number of
hidden data units with vanishing gradients increases as the training proceeds with many iterations [5].
To resolve the problem of gradient vanishing, batch normalization [6] can be applied, but it may cause
data distortion and other negative effects for reconstructing super-resolution images.

The super-resolution image reconstruction performance of the VDSR method [2] is significantly
better than that of SRCNN because it uses deep layers and a skip connection. The skip connection is
applied only once between the input data and the output of the last layer in the existing VDSR method [2].
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In the existing VDSR method, it is difficult to maintain the characteristics of the input data entering the
neural network. In each layer, a ReLU operation is performed after a convolution operation.

The ReLU operation is defined as

ReLU(z) = max(0, z) (1)

where negative values are clipped to zero.
In VDSR, the data entering network layers would be residual-type with high-frequency

components. Approximately half of the output values of the convolution operation are negative
in each layer. Because negative values are clipped to zero, approximately half of the output values
of ReLU are zero. The remaining positive values after ReLU operation are redistributed into positive
and negative values through the convolution operation in the next layer. As the epoch with many
iterations proceeds, the percentage of zero and small (close to zero) values increases in the output
data of ReLU in each layer, which causes serious extinction of the information used in the learning for
reconstruction. This would be the reason for the problem of gradient vanishing after repeated ReLU
operations for residual-type data.

Figure 1 shows the network structure of VDSR. In the figure, G denotes the whole layer group,
which is composed of l layers (l = 20 in Figure 1). The layer group G performs whole operations
on residual data. Each layer block Li (i = 1, · · · , l) performs a convolution operation and a ReLU
activation function operation. In VDSR, the multiplication factor (MF) λ for the skip connection is
fixed as 1.0.

Figure 1. VDSR network consisting of one layer group with one skip connection (l = 20, λ = 1.0).

Let F (·) represent the function of the layer group G. When a low-resolution image is the input
data x for the neural network, the operation result of the layer group G in VDSR can be expressed as
F (x). The output data y, which is the super-resolution image, can be expressed as follows:

y = F (x) + λx. (2)

Skip connections have been used in other residual-type networks [7,8]. He et al. used a skip
connection within a building block of residual network (ResNet) [7]. The MF for the skip connection
is fixed as 1 for identity connection. One building block is composed of two convolution layers
and two ReLU operations. These building blocks are concatenated serially for the whole ResNet.
Hence, the data processed by a building block are transferred to the next building block, but the
original input data are not transferred to most building blocks. ResNet was developed for image
recognition [7].

In [8], skip connections are applied for residual function blocks. There is a fixed scaling
(multiplication) factor for each residual function block. The output of residual function is multiplied
by this scaling factor, whereas the input is not multiplied by this scaling factor. The data processed
by the residual function are added to the input data, and the added data are transferred to the next
residual function block. Hence, the original input data are not connected directly to the output of most
residual function blocks. The structure in [8] was developed for selective pruning of the unimportant
parts of CNNs rather than image reconstruction .
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In this paper, we propose a deep learning method with CNNs for reconstructing super-resolution
images. The proposed method divides entire layers into several layer groups with skip connections.
The proposed method is designed to resolve the problem of gradient vanishing by reducing the
extinction of data in hidden layer units through skip connections from the input data to layer groups.
Experimental results show that the proposed method yields better results than previous methods for
super-resolution image reconstruction.

2. Proposed Method

In this section, we propose a deep learning method with CNNs for super-resolution image
reconstruction. In the proposed method, the output of each layer group is connected to input data
with a skip connection. Each skip connection has a multiplication factor (MF) with input data, which
is a parameter that is also to be learned during the training process. Hence, the proposed method
connects input data to layer groups through multiple skip connections at regular intervals, whereas
the existing VDSR method utilizes only one skip connection.

If the input image data are repetitively skipped and connected to a predetermined number of
layer groups, the problem of data extinction due to ReLU operation at the output of each layer would
be significantly alleviated. The first advantage of skip connections with regular intervals is that the
data processed in each layer group would retain the characteristics of the input data to be learned
without loss of input data information by data extinction and gradient vanishing. This phenomenon
has a positive effect on learning for super-resolution reconstruction because the number of contributing
units for learning in the proposed method would be greater than that in the structure without
repetitive skip connections. The second advantage is that repetitive skip connections to all layer groups
would maintain the features of the input image to be learned more robustly. The neural network
for super-resolution reconstruction aims to improve the image quality by generating the optimum
high-frequency information from the input low-resolution image. The repetitive skip connections
would be advantageous to preserving the features of the input image to be learned for super-resolution
reconstruction.

In the proposed method, because the number of skip connections with input data is relatively
large, the neural network may be overfitted as the epochs roll over during training. To transmit the
information of the input data to be learned while preserving their characteristics, each skip connection
is associated with an MF, which represents the weight for input data. The MF of the proposed method
is a parameter that is also to be learned during the training process. The value of this parameter
is to be learned like other parameters, such as filter kernels. We experimentally observed that the
super-resolution image reconstruction performance is improved when the MFs are learned and set
through the training process.

Figure 2 shows the proposed network structure with a different skip connection for each layer
group. Let k represent the number of layers in a layer group and n represent the number of layer
groups. The total number of layers l is given by l = kn. In Figure 2, Gi (i = 1, · · · , n) represents layer
groups, each of which is composed of k layers.

Figure 2. Proposed network structure with skip connections for each layer group (l = 20, k = 5, n = 4).
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Each λi represents the MF for layer group Gi, and the last MF λn is fixed to 1.0 as in the existing
VDSR method. The MF values of λ1 through λn−1 are to be learned and updated as the optimization
of parameters in the training process with initialization to some values.

Note that the structure of each Li in the proposed method (Figure 2) is the same as that of each Li
in VDSR (Figure 1). Each Li in the proposed method is composed of one convolution layer and one
ReLU layer as each Li in VDSR. There are 64 convolutions with 3× 3 filter kernels in one convolution
layer. The parameters relating convolution operations in the proposed method are the same as the
parameters relating convolution operations in VDSR. The operation of ReLU units in the proposed
method is performed as (1), which is exactly the same as the VDSR.

The only different parameters are the λ1, · · · , λn−1 MFs in the proposed method (Figure 2),
which do not exist in the VDSR (Figure 1) . The other differences are the skip connections for layer
groups and the associated multiplications (represented as ⊗) and additions (represented as ⊕), as
shown in Figure 2.

Let Fi(·) represent the function of layer group Gi. The output of layer group Gi is Fi(·), and the
input to the next layer group Gi+1 is Fi(·) + λix. For the case of l = 20, k = 5, and n = 4, as shown in
Figure 2, the relation among the input data x, output data y, and function Fi(·) of each layer group
can be expressed as follows:

y = F4(F3(F2(F1(x) + λ1x) + λ2x) + λ3x) + λ4x. (3)

3. Results and Discussion

Experiments on the proposed method were performed using TensorFlow code on a computer
with a 3.40 GHz Intel (R) Core (TM) i7-6700 CPU, 16 GB of memory, and an NVIDIA GeForce RTX
2080 graphics card. (The code and dataset are available at https://github.com/hg-a/MFVDSR.)

The training dataset includes 215,316 sub-images created by data argument with 291 images
that combine images from image data reported by Yang et al. [9] and the Berkeley Segmentation
Dataset [10]. Four datasets, namely, Set5, Set14, B100, and Urban100, were used as the test dataset for
performance evaluation. The simulation results were compared with other super-resolution image
reconstruction methods, such as A+ [11], SRCNN [1], and VDSR [2], by measuring the average peak
signal-to-noise ratio (PSNR) for each test dataset. For the optimization of parameters in training,
the Adam optimizer [12] was used for VDSR and the proposed method. In the proposed method, the
k value was set to 2, 5, or 10, and different MFs λi were tested for various cases.

Table 1 presents a comparison of PSNR among the proposed method, A+ [11], SRCNN [1],
and VDSR [2]. The A+ method performs super-resolution reconstruction using sparse dictionaries [11].
Table 1 shows that the PSNR performance of the proposed method, having repetitive skip connections
with MFs for layer groups, is better than those of A+, SRCNN, and VDSR. Among A+, SRCNN,
and VDSR, the VDSR method shows the best PSNR performance for all datasets. Experiments were
conducted with different combinations of k, n, and λi values to find the optimal combination that
yields the best performance.

The experimental results show that the proposed method shows the best PSNR performance
when k = 5 and n = 4. Each MF λi (i = 1, · · · , n− 1) value is initialized as 2.5 and optimized during
the training process, while λn is fixed as 1.0. For the optimization of MF λi (i = 1, · · · , n− 1) values in
training, Adam optimizer [12] is used and the learning rate (step size) is set as 0.0001.

For these datasets, the proposed method shows PSNR improvements of 0.03 ∼ 0.16 dB over the
VDSR method. For scales ×2, ×3, and ×4, the proposed method shows average PSNR improvements
of 0.11, 0.08, and 0.06 dB, respectively, over the VDSR method.

Table 2 compares the PSNRs of the proposed method using different combinations of k, n, and
λi. Fixed λi values are used in Case 1, Case 3, and Case 6. Meanwhile, in Case 2, Case 4, Case 5, and
Case 7, some initial values are set for λi, and these values are learned and updated during the training
process. The results in Table 2 indicate that the cases where λi is set to an initial value and updated

https://github.com/hg-a/MFVDSR
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during the training process show better results than the cases where λi is fixed. Hence, we argue
that treating the MFs, λi, as parameters that are updated during the training process would result
in improved performance with the proposed method. If we compare the results in terms of k and n,
Case 3, Case 4, and Case 5 with k = 5 and n = 4 show better PSNR performances than the other cases.

Table 1. Comparison of peak signal-to-noise ratio (PSNR) among the proposed method, A+ [11],
SRCNN [1], and VDSR [2]. (The results of A+ and SRCNN are taken from [2].) For the proposed
method, k = 5, n = 4, and λi = 2.5 (initial).

Dataset/Scale A+ SRCNN VDSR Proposed

×2 36.54 36.66 37.16 37.30
×3 32.58 32.75 33.26 33.34Set5
×4 30.28 30.48 30.92 31.03

×2 32.28 32.42 32.69 32.85
×3 29.13 29.28 29.52 29.62Set14
×4 27.32 27.49 27.79 27.82

×2 31.21 31.36 31.69 31.75
×3 28.29 28.41 28.64 28.68B100
×4 26.82 26.90 27.12 27.15

×2 29.20 29.50 30.29 30.36
×3 26.03 26.24 26.68 26.78Urban100
×4 24.32 24.52 24.84 24.91

×2 32.31 32.49 32.96 33.07
×3 29.01 29.17 29.53 29.61Average
×4 27.19 27.35 27.67 27.73

Table 2. Comparison of PSNRs of the proposed method with different combinations of k, n, and λi.
Case 1: k = 2, n = 10, λi = 1.0 (fixed); Case 2: k = 2, n = 10, λi = 0.5 (initial); Case 3: k = 5, n = 4,
λi = 1.0 (fixed); Case 4: k = 5, n = 4, λi = 1.5 (initial); Case 5: k = 5, n = 4, λi = 2.5 (initial); Case 6:
k = 10, n = 2, λi = 1.0 (fixed); Case 7: k = 10, n = 2, λi = 1.0 (initial).

Dataset/Scale Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

×2 37.24 37.26 37.19 37.23 37.30 37.17 37.21
×3 33.27 33.32 33.30 33.27 33.34 33.20 33.20Set5
×4 30.99 30.95 30.87 30.97 31.03 30.67 30.91

×2 32.83 32.76 32.80 32.82 32.85 32.68 32.76
×3 29.58 29.59 29.63 29.62 29.62 29.48 29.59Set14
×4 27.77 27.80 27.79 27.80 27.82 27.65 27.77

×2 31.73 31.73 31.75 31.75 31.75 31.69 31.71
×3 28.68 28.69 28.70 28.70 28.68 28.63 28.68B100
×4 27.14 27.15 27.14 27.16 27.15 27.07 27.12

×2 30.31 30.33 30.35 30.38 30.36 30.25 30.25
×3 26.73 26.78 26.76 26.82 26.78 26.63 26.73Urban100
×4 24.84 24.88 24.83 24.92 24.91 24.72 24.84

×2 33.03 33.02 33.02 33.04 33.07 32.95 32.98
×3 29.56 29.60 29.60 29.60 29.61 29.49 29.55Average
×4 27.69 27.70 27.66 27.71 27.73 27.53 27.66

In the case of k = 5 and n = 4, as shown in Figure 2, there are four skip connections from input
data to the output of four layer groups. Figures 3 and 4 show the data distributions as histograms
for data generated at the 60th epoch of the training process in layers L6, L11, and L16, which are the
first layers of layer groups G2, G3, and G4, respectively. In the captions of Figures 3 and 4, µ and σ

denote the mean and standard deviation, respectively. Figure 3 shows a comparison of distributions
for data generated before (as the input of) ReLU in VDSR and the proposed method, while Figure 4
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shows a comparison of distributions for data generated after (as the output of) ReLU in VDSR and the
proposed method. The comparison of Figures 3 and 4 shows that negative values are clipped to zero,
and the standard deviation σ significantly decreases after the ReLU operation for each case.

(a) (b) (c)

(d) (e) (f)

Figure 3. Comparison of the distribution as a histogram for data generated before ReLU in L6, L11 and
L16 layers. (a) VDSR (L6), µ = −0.09, σ = 0.17. (b) VDSR (L11), µ = −0.12, σ = 0.25. (c) VDSR (L16),
µ = −0.19, σ = 0.23. (d) Proposed method (L6), µ = −0.61, σ = 2.85. (e) Proposed method (L11),
µ = −0.97, σ = 6.01. (f) Proposed method (L16), µ = −0.28, σ = 0.89.

(a) (b) (c)

(d) (e) (f)

Figure 4. Comparison of the distribution as a histogram for data generated after ReLU in L6, L11 and
L16 layers. (a) VDSR (L6), µ = 0.09, σ = 0.04. (b) VDSR (L11), µ = 0.08, σ = 0.05. (c) VDSR (L16),
µ = 0.05, σ = 0.02. (d) Proposed method (L6), µ = 0.27, σ = 0.26. (e) Proposed method (L11), µ = 0.35,
σ = 0.46. (f) Proposed method (L16), µ = 0.12, σ = 0.04.

In Figure 4a–c, the repeated ReLU operations in VDSR force the data distribution to be
concentrated in a very narrow range, and the σ values are small. Meanwhile, in Figure 4d–f,
the repetitive skip connections from the input data to the layer groups in the proposed method
result in data distributions in wider ranges, and the σ values are much larger than in the VDSR method.
This effect increases the number of contributing data units for learning and maintains the features of
the input image for super-resolution reconstruction more robustly. Therefore, the proposed method
shows better super-resolution reconstruction performance than the VDSR method, even though it has
the same number of layers.
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Table 3 presents the comparison of training and test running time (sec) for SRCNN, VDSR, and the
proposed method. The running time for training is very similar for VDSR and the proposed method.
Since the network structure of SRCNN is relatively simple, the running times (per epoch and per
60 epochs) for training in SRCNN look smaller than VDSR and the proposed method. The running
times for testing per image are very close for SRCNN, VDSR, and the proposed method.

Table 3. Comparison of training and testing running times (sec) for SRCNN [1], VDSR [2], and the
proposed method.

Running Case SRCNN VDSR Proposed

Training (per epoch) 220 432 441
Training (per 60 epoch) 13,769 25,153 25,487

Test (per image) 0.103 0.101 0.105

Note that the loss value for training (or test PSNR value) converges at around 60 epochs for VDSR
and the proposed method, whereas it does not converge at 60 epochs for SRCNN. For the training of
SRCNN, 24,800 sub-images are used [1]. In experimental results in [1], the number of backpropagations
should be at least 5× 108 (more than 20,000 epochs) for convergence in training for SRCNN. In our
experiments for VDSR and the proposed method, 215,316 sub-images are used. To achieve more
than 5× 108 backpropagations with 215,316 sub-images in training, it requires at least 2300 epochs in
training. This means that it would require at least 5× 105 s for the convergence of training in SRCNN.
Hence, SRCNN would require much more time for training than VDSR and the proposed method. If
we compare the convergence time (per 60 epochs) for training, the proposed method takes slightly
more time (by 1.3%) than VDSR. It is due to the extra time for the optimization of MF values and the
associated multiplication and addition operations.

Figures 5–7 show the results of super-resolution image reconstruction using VDSR and the
proposed method from bicubic interpolated images with the scale factor ×4. The bars on the right of
Figure 5 are low-brightness straight objects arranged side by side at regular intervals. In the image
reconstructed using VDSR, linear objects do not maintain their shape, while the proposed method
maintains the linear shape well. In Figure 6, the proposed method shows better performance than
VDSR in maintaining the pattern of the grid with the correct shape of the ceiling, where grids with
high contrast are arranged regularly. Because the linear objects in the building in Figure 7 are very
tightly spaced, the VDSR result is blurry and the straight lines are not well preserved, while the
proposed method maintains the straight lines relatively well. These results of super-resolution
image reconstruction demonstrate that the proposed method yields better subjective quality than the
VDSR method.

(a) (b) (c)

Figure 5. Super-resolution image reconstruction results. (a) Ground truth image. (b) The result of the
VDSR method (PSNR = 18.94 dB). (c) The result of the proposed method (PSNR = 19.18 dB).
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(a) (b) (c)

Figure 6. Super-resolution image reconstruction results. (a) Ground truth image. (b) The result of the
VDSR method (PSNR = 29.34 dB). (c) The result of the proposed method (PSNR = 30.31 dB).

(a) (b) (c)

Figure 7. Super-resolution image reconstruction results. (a) Ground truth image. (b) The result of the
VDSR method (PSNR = 23.93 dB). (c) The result of the proposed method (PSNR = 24.20 dB).

4. Conclusions

In this paper, a deep learning method with CNNs using skip connections from input data is
proposed to alleviate the problems of gradual extinction of the input data information and very narrow
distribution of the data in hidden layer units when the ReLU operation is repeatedly applied to
residual-type data. The proposed method divides whole layers into several layer groups and uses skip
connections with different MFs to the outputs of layer groups.

The operation of ReLU units in the proposed method is exactly the same as the VDSR.
Compared to the VDSR method, the data processed in intermediate hidden layers in the proposed
method are distributed in a wider range with greater similarity to a normalized distribution. This
effect is obtained by the repetitive skip connections with MFs from input data to the layer groups in
the proposed method.
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The proposed method shows greater PSNR performance and better subjective quality in
super-resolution image reconstruction with a similar amount of computation. In future work,
the proposed method can be applied to other residual-type deep learning networks for other
applications to improve performance with relatively low computational complexity.
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The following abbreviations are used in this manuscript:

SISR single image super-resolution
SRCNN super-resolution convolutional neural network
VDSR very deep super-resolution
CNN convolutional neural network
ReLU rectified linear unit
ResNet residual network
MF multiplication factor
PSNR peak signal-to-noise ratio
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