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Abstract: Urban particulate matter forecasting is regarded as an essential issue for early warning and
control management of air pollution, especially fine particulate matter (PM2.5). However, existing
methods for PM2.5 concentration prediction neglect the effects of featured states at different times
in the past on future PM2.5 concentration, and most fail to effectively simulate the temporal and
spatial dependencies of PM2.5 concentration at the same time. With this consideration, we propose
a deep learning-based method, AC-LSTM, which comprises a one-dimensional convolutional neural
network (CNN), long short-term memory (LSTM) network, and attention-based network, for urban
PM2.5 concentration prediction. Instead of only using air pollutant concentrations, we also add
meteorological data and the PM2.5 concentrations of adjacent air quality monitoring stations as the
input to our AC-LSTM. Hence, the spatiotemporal correlation and interdependence of multivariate air
quality-related time-series data are learned by the CNN–LSTM network in AC-LSTM. The attention
mechanism is applied to capture the importance degrees of the effects of featured states at different
times in the past on future PM2.5 concentration. The attention-based layer can automatically weigh the
past feature states to improve prediction accuracy. In addition, we predict the PM2.5 concentrations
over the next 24 h by using air quality data in Taiyuan city, China, and compare it with six baseline
methods. To compare the overall performance of each method, the mean absolute error (MAE),
root-mean-square error (RMSE), and coefficient of determination (R2) are applied to the experiments
in this paper. The experimental results indicate that our method is capable of dealing with PM2.5

concentration prediction with the highest performance.

Keywords: PM2.5 concentration prediction; deep learning; AC-LSTM network; attention mechanism

1. Introduction

Air pollution is a serious environmental problem that is attracting increasing attention
worldwide [1]. With the rapid development of the Chinese economy and the acceleration of
industrialization, urban air pollution is getting worse. As one of the main pollutants in the air,
fine particulate matter (PM2.5) contains a large amount of toxic and harmful substances due to its small
particle size. It not only stays in the atmosphere for a long time, but also has a long transport distance,
resulting in a decrease in air visibility, seriously affecting our living environment and physical health.
In response to it, the Chinese government established air quality monitoring stations in most cities,
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to detect PM2.5 and other air pollutant concentrations in real time [2]. However, it is inevitable for the
government to bear a significant financial burden because of expensive equipment [3,4]. In addition to
monitoring, there is a rising demand for the prediction of future air quality. Obviously, the prediction
of real-time and future PM2.5 concentration is essential for air pollution control and the prevention of
health issues caused by air pollution.

With the development of machine learning in recent years, artificial neural network (ANN),
support vector regression (SVR), and other methods were successfully applied to the prediction of
air pollutant concentration. Zheng et al. [5] used the spatial features of roads, factories, and parks in
the prediction area to predict the concentration of PM10 and NO2. Li et al. [6] used SVR to predict
the PM2.5 concentration of a target station using observation data from the surrounding monitoring
stations. Although all these aforementioned methods made use of the spatial features that affect the
concentrations of pollutants, the temporal correlation of air pollutants and the time-delay characteristics
of PM2.5 were not considered.

Due to the dynamic nature of relevant atmospheric environments, the recurrent neural network
(RNN) is especially suitable to simulate the temporal evolution of air pollutant distributions because
RNNs can handle arbitrary sequences of inputs, thereby guaranteeing the capacity to learn temporal
sequences [7]. Ong et al. [8] used meteorological data to predict PM2.5 concentration using an RNN.
Feng et al. [9] combined random forest (RF) and an RNN to analyze and forecast the next 24-h PM2.5

concentration of air pollutants in Hangzhou, China. When there is a long time lag in the traditional
RNN, however, it may suffer from problems such as gradient disappearance and gradient explosion [10].
These RNN-based methods do not take full advantage of spatial features either. Additionally, the states
of the feature formation at different times will also have different effects on future PM concentrations.
The existing studies did not consider the effects of feature states of the past different times on air
pollutants, but only extracted the temporal correlation features of historical data.

To tackle the aforementioned problems, we propose an attention-based convolutional neural
network (CNN)–long short-term memory (LSTM) model, AC-LSTM, for predicting the PM2.5

concentrations over the next 24 h. The proposed AC-LSTM model comprises a one-dimensional
convolutional neural network (CNN), long short-term memory (LSTM) network [10], and attention-based
network. As a representative network of RNN, the LSTM network overcomes the defect of gradient
disappearance and gradient explosion of the traditional RNN due to its special cell structure [10]. It can
capture the spatiotemporal correlation and interdependence of air quality-related time-series data
at the same time. The joint one-dimensional CNN aims to extract spatiotemporal features from air
quality data and local spatial correlation features of PM2.5 concentrations among air monitoring stations.
The attention mechanism is an effective mechanism to obtain superior results, as demonstrated in image
recognition [11], machine translation [12] and sentence summarization [13]. Therefore, the attention
mechanism [12] was applied in the AC-LSTM model, used to capture the importance degrees of effects
of past feature states at different times on PM2.5 concentration in this paper.

The major contributions of this paper are as follows: (1) by analyzing the spatiotemporal
correlation of air quality data, we propose a novel deep learning method that can capture the
spatiotemporal dependency of air pollutant concentration, to predict PM2.5 concentrations in the next
24 h; (2) according to the importance degrees of effects of past feature states on PM2.5 concentration,
the attention-based layer weighs the past featured states in our predictive model to improve prediction
accuracy; (3) comparing the performances of six popular machine learning methods in the air pollution
prediction problem, we validate the practicality and feasibility of the proposed model in PM2.5

concentration prediction.

2. Overview of the AC-LSTM Framework

As shown in Figure 1, the framework of our approach consists of three major parts: model
input, feature extraction, and aggregation and prediction. Since PM2.5 concentration is extremely
affected by spatiotemporal features, recent air pollutant concentration, meteorological data, and
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the PM2.5 concentrations of all adjacent stations are stacked to construct an input tensor for the
one-dimensional CNN layer. In this way, the spatiotemporal features are extracted by the CNN layer.
Then, the spatiotemporal correlation is learned by the LSTM layer. Because of the different effects
of past states of different times on the PM2.5 concentration, the attention-based layer can weigh the
feature states at past different hours. Finally, the aggregation and prediction of the proposed model
is achieved.
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Figure 1. Framework of the proposed approach.

How the model predicts the PM2.5 concentrations of the next 24 h is described in Figure 2.
As shown in Figure 2, Xt represents the input data of the model at time t (e.g., air quality data,
meteorological data in Figure 1), Yt+1 represents the predicted value of the PM2.5 concentration at
time t + 1, and k represents the time lag. We group the air quality data within a particular time lag to
formulate different inputs (shown in the broken rectangle) for multiscale predictors, which are used
to train separate models corresponding to different time intervals. The time lag of the model input
indicates how many hours the input data are in the past. Each blue arrow shown in Figure 2 represents
a different predictor. Afterward, a separate model is trained for each hour over the next 3 h. With
respect to the next 7–24 h, it is divided into three time intervals, i.e., 4–6, 7–12, and 13–24 h, where
separate models are trained to predict the mean PM2.5 concentration during each time interval.
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3. Data and Method

3.1. Data Description

The spatiotemporal variation of atmospheric particulate matter is affected by various factors
such as pollution emission sources and meteorological conditions [14,15]. The PM2.5 concentration
is not only related to the atmospheric state and PM2.5 concentration at the previous time, but also
the PM2.5 concentration in the adjacent areas [16,17]. The air quality data used for the AC-LSTM
model input consists of readings of pollutant concentrations from air quality monitoring stations and
meteorological data.
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In this paper, the air quality data from nine air quality monitoring stations in Taiyuan City,
China, were obtained from the National Environmental Protection Bureau and the Shanxi Provincial
Environmental Protection Department. The location map of Taiyuan is shown in Figure 3a, and the
yellow coordinate represents Taiyuan. The experimental data were collected from 1 January 2014 to
25 December2016 at an hourly rate, and the spatial locations of the air quality monitoring stations
are illustrated in Figure 3b. The experimental data contain the concentrations of PM10, PM2.5, SO2,
NO2, O3, and CO. The detailed characteristics of Taiyuan air quality monitoring stations are shown in
Table 1. The meteorological data include indicators such as air pressure, temperature, wind speed,
humidity, and visibility.
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Figure 3. (a) The location map of Taiyuan City; (b) distribution of air quality monitoring stations in
Taiyuan City.

Table 1. Characteristics of Taiyuan air quality monitoring stations. N—north; E—east.

Stations Code Monitoring Environment Coordinates

JianCaoPing S1 Urban: residential area N 37.887, E 112.522

JianHe S2 Urban: residential area N 37.910, E 112.573

ShangLan S3 Rural area N 38.010, E 112.434

JinYuan S4 Suburban: residential area N 37.712, E 112.469

XiaoDian S5 Urban: residential area N 37.739, E 112.558

TaoYuan S6 Urban: residential area N 37.869, E 112.536

WuCheng S7 Urban: commercial area N 37.819, E 112.570

NanZhai S8 Suburban: industrial park N 37.985, E 112.549

JinSheng S9 Suburban: industrial area N 37.780, E 112.488

3.2. Data Preprocessing

The collected data were preprocessed so as to improve the data quality and carry out data mining.
Air quality monitoring equipment and meteorological monitoring equipment will cause leakage in
data collection due to machine failure, regular inspection and maintenance, unstable transmission,
bad weather, and other uncontrollable factors. The existence of such missing values will have some
impact on data mining. The missing values are normally required to be removed or filled to ensure
the performance of modeling [18]. On the one hand, when there are several missing values in a data
record, we directly remove them; on the other hand, a linear interpolation [19] is implemented to fill
empty values when there is only one missing value in a data record. After that, features in the data that
are described by text, such as weather (sunny, cloudy, foggy, snowy, rainy, etc.) and wind direction
(north, west, east, south, northwest, northeast, etc.), are quantified.
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Furthermore, to accelerate the convergence of the model and reduce the impact of outliers,
the features in the data records are normalized as follows:

f ∗ =
f − fmin

fmax − fmin
, (1)

where fmin represents the minimum value, and fmax represents the maximum value.

3.3. Correlation between Meteorological Features and PM2.5

PM2.5 concentrations are correlated with meteorological features, as shown in the Figure 4.
In Figure 4, the black dots in the box represent the average PM2.5 concentration, and the horizontal line
in the middle of the box represents the median. When the air temperature near the ground is high,
the atmospheric convection is strengthened, and the concentration of pollutants can be reduced. When
the air temperature near the ground is low, the atmosphere tends to form an inversion layer, which
is not conducive to the diffusion of pollutants. It can be seen from Figure 4a that the concentration
of PM2.5 decreases with the increase in temperature, indicating that the increase in temperature is
conducive to the diffusion and dilution of PM2.5.
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temperature; (b) humidity; (c) visibility.

A higher relative humidity results in a weaker diffusion ability of PM2.5. Such an environment
will cause an increase in the hygroscopicity of pollutants and accelerate the chemical transformation
of pollutants, thus aggravating the degree of air pollution. As can be seen from Figure 4b, there is
a correlation between PM2.5 and relative humidity, that is, with the increase in relative humidity, PM2.5

concentration will also increase.
The main reason for the loss of visibility is air pollution, with particulate matter having the greatest

impact on visibility. Low visibility means heavy air pollution, while high visibility means light air
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pollution. Figure 4c shows that a higher visibility denotes a lower concentration of PM2.5. There is
a significant correlation between PM2.5 concentration and visibility.

Weather is an important factor affecting air quality. Rain and snow wash particulate matter and
other pollutants from the air, effectively purifying the air. However, fog, sandstorms, and haze will
increase the pollution level and reduce air quality. In addition, air pressure affects the flow of air, which
affects the migration of PM2.5.

Wind direction determines the direction of migration and horizontal diffusion of atmospheric
pollutants. The relationship between wind direction, wind speed, and PM2.5 is shown in Figure 5.
Taiyuan is located in north-central China, with northerly and northwesterly winds prevailing. In the
north and west of Taiyuan, there are a large number of factories, such as steel mills and power plants.
When northerly wind prevails in Taiyuan, a large number of pollutants are transported from north to
south, aggravating the urban pollution. According to Figure 5, when the wind direction is westerly
or northerly, PM2.5 concentration is relatively high. A higher wind level facilitates PM2.5 migration,
which leads to more pollution downwind.
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3.4. Spatiotemporal Correlation Analysis

Because of meteorological conditions, especially wind speed and wind direction, air pollutants are
affected by the environment in the surrounding area. Similarly, particulate matter stays in the air for
a long time and is more susceptible to the surrounding area. To analyze the spatial correlation of PM2.5

concentrations, the Pearson correlation coefficient [20] is calculated among all monitoring stations, and
the results are shown in Table 2. From the table, the correlation coefficients among most stations were
greater than 0.7, except for the correlation coefficient at S3. This indicates that PM2.5 concentrations are
highly correlated among most stations. The reason for the small correlation coefficient between S3 and
other stations is that it is far away from other stations and it is located in a rural area. Thus, the spatial
correlation of PM2.5 concentrations can be used to optimize the input of the model for improving the
prediction performance. As shown in Figure 1, PM2.5 concentrations of the adjacent stations are added
to the model input. In the experiment, we used PM2.5 concentrations of all stations as input because
the number of air quality monitoring stations is too small in Taiyuan city.

The PM2.5 concentration is highly correlated in the temporal domain, which is similarly affected
by other features in the past. The autocorrelation functions [21] below were used to measure the
temporal correlations among the PM2.5 concentration time series at each station. The detailed formula
of the autocorrelation function is as follows:

ρk =
Cov(y(t), y(t + k))
σy(t)σy(t+k)

, (2)



Appl. Sci. 2020, 10, 1953 7 of 17

where ρk represents the autocorrelation coefficient when the time lag is k, y(t) represents the PM2.5

concentration vector, y(t + k) represents the PM2.5 concentration vector after k hours, Cov(y(t), y(t + k))
is the covariance of y(t) and y(t + k), and σy(t) and σy(t+k) represent the standard deviations of y(t)
and y(t + k), respectively.

Table 2. Correlation coefficients of PM2.5 among all monitoring stations.

Station S1 S2 S3 S4 S5 S6 S7 S8 S9

S1 1 0.95 0.2 0.69 0.8 0.95 0.86 0.95 0.72

S2 0.95 1 0.24 0.76 0.86 0.82 0.82 0.95 0.77

S3 0.2 0.24 1 0.29 0.57 0.08 0.53 0.37 0.4

S4 0.69 0.76 0.29 1 0.87 0.51 0.76 0.8 0.96

S5 0.8 0.86 0.57 0.87 1 0.62 0.93 0.93 0.9

S6 0.95 0.82 0.08 0.51 0.62 1 0.78 0.84 0.57

S7 0.86 0.82 0.53 0.76 0.93 0.78 1 0.94 0.85

S8 0.95 0.95 0.37 0.8 0.93 0.84 0.94 1 0.83

S9 0.72 0.77 0.4 0.96 0.9 0.57 0.85 0.83 1

The autocorrelation coefficients of all stations when the value of the time lag k is different are shown
in Figure 6. As seen, in general, the autocorrelation coefficients of all stations declined. When the time
lag was smaller, the autocorrelation coefficient was larger. This indicates that a PM2.5 concentration
closer to the current time has a stronger correlation with the PM2.5 concentration at the current time.
The PM2.5 concentrations within a lag of 15 h are strongly correlated to each other in a period of one
day. It is worth noting that, when the time lag was 24, 48, and 72 h, the autocorrelation coefficients
of each station in Figure 6 showed a temporary rise. This is very likely due to the periodic living
pattern across different days in the same geographical environment and season. As PM2.5 tends to
stay in the air for a long time, its concentrations in the past few hours will affect observed data in the
future. In addition to PM2.5 concentration, the past weather conditions, such as wind and rain/snow,
also affect PM2.5 concentration. According to the above analysis, the current state of observed PM2.5

concentration is closely related to that in the past states. These findings can help us choose a suitable
time lag for multiscale predictors.Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 18 
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In general, PM2.5 concentration is strongly influenced by the spatiotemporal correlations among
monitoring stations and the past states of the prediction area. The AC-LSTM model proposed in this
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paper can capture the spatiotemporal relations of the variation in PM2.5 concentrations. The attention
mechanism is introduced in the proposed method to weigh the past states, which helps to measure the
importance of past states at different times, as modeled using the LSTM, for PM2.5 concentrations.

3.5. Method

3.5.1. Convolutional Neural Network

The CNN has excellent performance in image processing [22], and it can be effectively applied to
time series analysis [2]. CNN’s local perception and weight sharing features can reduce the number
of parameters for processing multivariate time series, thereby improving the learning efficiency [2].
Spatiotemporal features can be easily extracted by the one-dimensional (1D) CNN (1D-CNN) from
the model input. Let the given model input be X = [x1, x2, · · · , xt], consisting of meteorological data,
pollutant concentrations, and PM2.5 concentrations at adjacent stations in the past. Firstly, the model
input X is input to the 1D-CNN layer; hence, we have

lt = tanh(xt ∗ kt + bl), (3)

where xt represents the input vector, kt is the convolution kernel, bl represents bias vector, and lt is
the output vector of the 1D-CNN layer. The output of the 1D-CNN layer is a spatiotemporal feature
matrix L = [l1, l2, · · · , lt].

3.5.2. LSTM Network

As a special kind of RNN, the LSTM network [10] is capable of learning long-term dependencies.
It has the advantage of connecting previous information to the present task [23,24]. Because of its special
memory cell architecture, the LSTM network overcomes the defects of the traditional RNN, especially
the problems of gradient disappearance and gradient explosion. The architecture of an LSTM memory
cell is shown in Figure 7, where each cell has three “gate” structures, namely, the input gate, the forget
gate, and the output gate. A chain of repeating cells forms the LSTM layer. The calculation process of
the spatiotemporal feature matrix L = [l1, l2, · · · , lt] in the LSTM layer is given in Equations (4)–(9).

ft = σ
(
W f · [ht−1, lt] + b f

)
, (4)

it = σ(Wi · [ht−1, lt] + bi), (5)

c̃t = tanh(Wc · [ht−1, lt] + bc), (6)

ct = ft ◦ ct−1 + it ◦ c̃t, (7)

ot = σ(Wo · [ht−1, lt] + bo), (8)

ht = ot ◦ tanh(ct), (9)

where W f , Wi, and Wc denote the weight vector of the input gate, output gate, and forget gate,
respectively, whereas b f , bi, bc, and bo are the bias vectors for the three gates, and σ denotes the sigmoid
activation function.

Actually, Equation (4) represents the forget gate and it decides what information should be thrown
away from the cell state, where ft denotes the output of the forget gate. Equations (5) and (6) represent
the input gate, which decides what new information should be stored in the cell state, where it and c̃t

denote the output of the input gate, and ct denotes the activation vector of the current cell. Equations
(8) and (9) represent the output gate, where ot denotes the output of the output gate. ht−1 is the hidden
state of the last cell, and ht is the state of the current cell. The feature state matrix H = [h1, h2, · · · , ht] is
the output of the LSTM layer.
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3.5.3. Attention Layer

The attention mechanism [12] allows the model to capture the most important parts of the PM2.5

concentration when different features of past states are considered. In order to take advantage of the
information of the past states, an attention-based layer is added to the LSTM layer in the proposed
AC-LSTM model. It ranks the importance degrees of different feature states in the past as follows,
where H = [h1, h2, · · · , ht] is the feature state matrix in the attention layer:

ut = tanh(Whht + bh), (10)

αt =
exp

(
ut

Tv
)∑

t
exp(utTv)

, (11)

s =
∑

t

αtht, (12)

where ut and v denote the projection vectors, αt is the normalized attention weight of ht, and s is the
weighted output vector of the attention layer.

According to the importance of each vector in the feature state matrix H, Equations (10) and
(11) can calculate the normalized weight of each vector. Equation (12) gives the weighted vector s.
This achieves the importance of measuring feature states at different times Eventually, the weighted
vector s passes through a layer of a fully connected network to obtain the PM2.5 concentration of the
prediction task.

4. Results and Discussion

The collected dataset is divided into two parts: the data of the first 28 months are used to train the
model, and the data of the last 8 months are used to test the performance of the developed models
when benchmarking with others. The mean absolute error (MAE), root-mean-square error (RMSE),
and coefficient of determination (R2) are used as evaluation metrics to evaluate the performance of the
different models in this paper.

4.1. Experimental Set-Up

This section describes the hardware and software environment of the experiment and the
configuration of hyperparameters [2]. The code for all the prediction methods in this paper was written
in Python. Our model and other deep learning comparison models were implemented through Keras,
an open source deep learning library based on Tensorflow. All experiments were conducted on a Server
with two NVIDIA GTX 1080Ti graphics processing units (GPUs) and an Intel Xeon central processing
unit (CPU) E5.
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There are several hyperparameters in the AC-LSTM prediction model, including the time lag,
the number of LSTM layers, the number of nodes in each LSTM layer, and the learning rate. They need
to be preset before the model structure is built. Under the condition that all other parameters remain
unchanged, we determined the optimal hyperparameter for that selected through our experiments.
In the end, we built our model structure using four LSTM layers, and the number of nodes in each
LSTM layer was set to 800. The learning rate was 0.0001 in all experiments. The above setting seemed
to outperform all others in our experiments.

The time lag is one of the most important hyperparameters. It determines the number of past hours
used in the model input and is necessary for multiscale prediction tasks. To this end, we evaluated the
performance of the model with different time lags in order to find the optimal time lag in the model.
At different time lags, we predicted the PM2.5 concentrations of all stations in the training set in the next
hour. The calculated MAE and RMSE are compared in Table 3. When the time lag was 10, the RMSE
of the model was the lowest. While the time lag was 14, the MAE was the lowest. According to the
analysis in Section 3.4 and the previous studies on RNN [10], if the time lag is too small, the temporal
correlation between time-series data cannot be fully learned and the prediction accuracy will decrease.
However, a large time lag may lead to a longer time for training and unnecessary noise. As a result,
the time lag in our model was set to 12 for the one-hour prediction task. Of course, for prediction tasks
of different time scales, we can also find the optimal lag through experiments in a similar way.

Table 3. Effect of different time lags. MAE—mean absolute error; RMSE—root-mean-square error.

Time Lag 2 4 6 8 10 12 14 16

MAE 8.21 7.89 7.9 7.82 7.75 7.68 7.61 8.04
RMSE 13.81 13.2 13.22 13.08 13.01 13.06 13.09 13.42

4.2. Effects of Different Features

The input of our model was composed of three types of features: pollutant concentration (Fp),
meteorological data (Fm), and PM2.5 concentrations of adjacent monitoring stations (Fa). To evaluate
the effectiveness of different features in the proposed AC-LSTM model, we conducted experiments
with different combinations of features and computed the errors on the multiscale prediction tasks.
Because the number of monitoring stations in Taiyuan is too small, we used PM2.5 concentrations from
all stations rather than from adjacent stations. The effects of various features in AC-LSTM are shown
in Tables 4 and 5. As can be seen, by gradually adding features, the prediction accuracy of the model
could be generally improved. Except for the lowest MAE in the next 1 h and 13–24 h prediction tasks,
the model with three types of features as input had the best overall performance. This shows that the
past feature states and the PM2.5 concentrations of adjacent monitoring stations can help predict the
PM2.5 concentration.

Table 4. The mean absolute error (MAE) of various features in AC-LSTM.

Features 1 h 2 h 3 h 4 h–6 h 7 h–12 h 13 h–24 h

Fp 7.61 8.12 8.21 8.53 8.57 9.04
Fp + Fm 7.98 7.99 7.99 8.51 8.6 8.89

Fp + Fm + Fa 7.68 7.97 7.98 8.38 8.51 8.98

Table 5. The root-mean-square error (RMSE) of various features in AC-LSTM.

Features 1 h 2 h 3 h 4 h–6 h 7 h–12 h 13 h–24 h

Fp 13.11 13.74 13.89 14.58 14.59 15.12
Fp + Fm 13.09 13.62 13.73 14.56 14.54 15.01

Fp + Fm + Fa 13.06 13.23 13.64 14.41 14.45 14.83
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4.3. Model Convergence

After setting appropriate model parameters, it was necessary to verify whether AC-LSTM
converges during training. Therefore, the training loss of AC-LSTM model in the one-hour PM2.5

prediction task was calculated, as shown in Figure 8, and the results were compared with three other
deep learning methods (simple RNN, LSTM, and CNN–LSTM). The parameters of all models in
Figure 8 were the same, and the mean square error (MSE) after data normalization was used as the loss
function for training. It can be seen from Figure 8 that all models converged at epoch = 20. In Figure 8a,
after 20 epochs in the one-hour prediction task, the MSE losses of the three models were close, but the
MSE loss of the AC-LSTM model was slightly smaller than those of the other two models, LSTM and
CNN–LSTM. At epoch = 1, the MSE loss of the simple RNN model in Figure 8b was nearly 100 times
greater than that of the three models in Figure 8a. In addition, at epoch = 80, the loss value of the
simple RNN model was 0.00154, while none of the other three models in Figure 8a had values greater
than 0.0015. Obviously, the three models of LSTM, CNN–LSTM, and AC-LSTM in Figure 8a had better
convergence results because of the special memory cell architecture.
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4.4. Model Comparison

To verify the feasibility and efficacy of the proposed model in this paper, we compared our
proposed AC-LSTM model with six state-of-the-art models, including support vector regression
(SVR) [6], random forest regression (RFR) [9], multilayer perceptron (MLP) [25], simple RNN [9,26],
LSTM [27], and CNN–LSTM [28]. After training all the models with the same training and testing
datasets, the PM2.5 concentrations of all stations at different time scales were predicted for performance
evaluation. We selected appropriate time lag and hyperparameters for different scale prediction tasks
in our AC-LSTM model in the same way. Furthermore, each experiment was repeated five times, and
the averaged results were used for comparison, as shown in Tables 6 and 7.

The prediction results from our approach and six others in terms of MAE and RMSE are compared
in Tables 6 and 7, where several interesting observations can be highlighted. Firstly, the performance of
all models gradually deteriorated as the time to predict became longer. For this purpose, the detailed
comparison results of each model for different scale prediction tasks are shown in Figures A1–A4 in
Appendix A. From Figures A1–A4, it is more obvious that the prediction accuracy of the three models
(SVR, RFR, and MLP) worsened as the time to predict became longer. The lack of sufficient and directly
relevant input data makes it difficult to predict PM2.5 concentrations for longer future periods.
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Table 6. The performances of the different models in terms of mean absolute error (MAE). SVR—support
vector regression; RFR—random forest regression; MLP—multilayer perceptron.

Models 1 h 2 h 3 h 4 h–6 h 7 h–12 h 13 h–24 h

SVR 7.72 12.37 15.6 22.4 26.79 30.2

RFR 7.9 12.59 16.02 21.74 25.77 28.86

MLP 7.82 12.27 15.71 23.02 27.2 30.43

Simple RNN 8.91 8.9 8.88 9.39 9.75 9.94

LSTM 8.37 8.38 8.7 8.49 8.98 9.03

CNN–LSTM 7.79 7.97 8.05 8.38 8.79 8.92

AC-LSTM 7.68 7.97 7.98 8.38 8.51 8.98

Table 7. The performances of the different models in terms of root-mean-square error (RMSE).

Models 1 h 2 h 3 h 4 h–6 h 7 h–12 h 13 h–24 h

SVR 13.46 20.92 26.14 35.48 41.59 49.09

RFR 13.57 20.99 26.25 33.06 38.47 43.46

MLP 13.7 20.73 26.15 36.01 42.68 48.07

Simple RNN 14.1 14.24 14.62 15.19 15.38 15.15

LSTM 13.91 13.97 14.32 14.58 14.99 15.11

CNN–LSTM 13.25 13.73 13.84 14.43 14.53 15.02

AC-LSTM 13.06 13.23 13.64 14.41 14.45 14.83

Secondly, the performance of the four deep learning methods, i.e., simple RNN, LSTM, CNN–LSTM,
and AC-LSTM, was much better than that of the three traditional shallow learning methods, SVR, RFR,
and MLP, particularly in predicting over an hour. As can be seen from Tables 4 and 5, the MAE and
RMSE of the four deep learning methods were relatively low. The predicted values of the four models
on the multiscale prediction task were closer to the observed values in Figures A1–A4.

Thirdly, as can be seen from Figure A1 and the tables, the prediction accuracy of the three non-deep
learning models on the one-hour prediction task was comparable to that of the four deep learning
models. However, according to the goodness-of-fit plots for all models in Figure A5 the predicted
value distributions of the three models were relatively dispersed, and their R2 values were lower than
those of the four deep learning models. The predicted value distributions of the four deep learning
models were close to a 45-degree line (y = x). This, on one hand, shows the limitation of conventional
approaches; on the other hand, it fully demonstrates the superior performance of the deep learning
models in modeling long-term dependency for effective prediction of the PM2.5 concentration in the
future. The reason for this is that these three traditional shallow models cannot process time-series
data and fail to learn the temporal correlation of air pollutants. By contrast, simple RNN is able
to predict PM2.5 concentrations over the next 24 h. Compared to simple RNN, the three models of
LSTM, CNN–LSTM, and AC-LSTM bring further improved result from overcoming the defects of the
conventional RNN.

Furthermore, according to the tables, the MAE and RMSE of AC-LSTM models were the lowest
compared to other benchmarking models, except for the MAE for the 13–24 h prediction task.
The predicted values of AC-LSTM models on the multiscale prediction task were closer to the observed
values in Figures A1–A4. Moreover, the R2 of the AC-LSTM model in the one-hour PM2.5 prediction
task in Figure A5 was highest. After adding the attention mechanism, AC-LSTM could outperform the
LSTM and CNN–LSTM in multiscale prediction tasks. The results show that the proposed AC-LSTM
model can effectively learn the spatiotemporal correlation of air pollutants, and it is suitable for
predicting urban PM2.5 concentration in the future.
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However, our study has several limitations. Emissions have a significant impact on air quality.
Since emission data are difficult to obtain, the data collected in this paper do not include emissions
from factories and vehicles in the area. This does affect the prediction accuracy of our model. Moreover,
when a sudden pollution accident occurs, the PM2.5 concentration changes suddenly. Whether the
proposed model can predict it well still needs to be demonstrated.

5. Conclusions and Future Work

In this paper, we propose an attention-based CNN–LSTM model to predict urban PM2.5

concentrations over the next 24 h. By taking the pollutant concentration in air quality data,
meteorological data, and PM2.5 concentrations in adjacent monitoring stations as the input, the model
can learn the spatiotemporal correlation and long-term dependence of PM2.5 concentrations. At the
same time, the attention mechanism can capture the importance degrees of different feature states
based on past time and further improve the prediction accuracy of the model. The experimental results
show that the AC-LSTM model improved performance in the multiscale prediction tasks. Several main
conclusions of this paper can be highlighted as follows:

1. Through the analysis of air quality data, PM2.5 concentration has a strong spatiotemporal
correlation. Due to the air flow, PM2.5 concentration in the predicted area can be easily affected by
the PM2.5 concentrations of the adjacent monitoring stations. As PM2.5 stays in the air for a long
time, the past feature states also affect future PM2.5 concentration. This motivated the design of
a spatiotemporal model for effective prediction of PM2.5 concentrations;

2. The experimental results indicate that, in addition to using only the pollutant concentrations of
the air monitoring stations, adding the meteorological data and the PM2.5 concentrations of the
adjacent monitoring stations can improve the prediction accuracy of the model, especially for
prediction tasks on time scales over one hour;

3. The proposed AC-LSTM model can be applied to multiscale predictors at different time gaps.
When compared with the traditional machine learning methods, such as SVR, MLP, and
RFR, its prediction accuracy was improved significantly, especially in predicting the PM2.5

concentrations over the gap of one hour. In comparison with deep learning methods, such as
simple RNN, LSTM, and CNN–LSTM, AC-LSTM produced improved prediction with lower
MAE and RMSE measures due to the introduced attention mechanism in the LSTM model.

Although the proposed model can support the multiscale prediction of PM2.5 concentrations in
the temporal domain, in the future, we will also explore its expansion for multiscale prediction in the
spatial domain. In addition, the model will also be extended for predicting other pollutants. Last
but not least, sensing data, especially satellite data, will also be utilized for large-scale prediction of
the PM2.5 concentrations and other pollutants for early warning of air pollution and the protection of
people’s health.
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