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Abstract: In video object co-segmentation, methods based on patch-level matching are widely
leveraged to extract the similarity between video frames. However, these methods can easily lead to
pixel misclassification because they reduce the precision of pixel localization; thus, the accuracies
of the segmentation results of these methods are deducted. To address this problem, we propose
a framework based on deep neural networks and equipped with a new attention module, which is
designed for pixel-level matching to segment the object across video frames in this paper. In this
attention module, the pixel-level matching step is able to compare the feature value of each pixel
from one input frame with that of each pixel from another input frame for computing the similarity
between two frames. Then a features fusion step is applied to efficiently fuse the feature maps of each
frame with the similarity information for generating dense attention features. Finally, an up-sampling
step refines the feature maps for obtaining high quality segmentation results by using these dense
attention features. The ObMiC and DAVIS 2016 datasets were utilized to train and test our framework.
Experimental results show that our framework achieves higher accuracy than those of other video
segmentation methods that perform well in common information extraction.

Keywords: video co-segmentation; pixel-level matching; attention

1. Introduction

Video object co-segmentation refers to the process of jointly segmenting the common objects from
two or more video frames. After the segmentation, a label is assigned to each pixel in these video frames
to indicate whether a pixel belongs to the common foreground object or the background. Since video
object co-segmentation methods need to extract common features between two frames, the step for
similarity matching between frames plays a vital role in these methods. Although some models based
on patch-level matching, such as [1], have been exploited to obtain the similarity between frames,
they may reduce the precision of pixel localization, leading to the pixel misclassification problem.
Therefore, a pixel-level similarity matching method should be adapted for obtaining the common
information between frames during the video object co-segmentation process. Inspired by the ideas
in [2,3], we consider that the attention mechanism is remarkable in refining the feature maps of
video frames with their common information. The reshape and inflation operations are useful when
computing the similarity between two frames since these operations are able to keep two feature
maps respectively belonging to the two frames in the same size. Therefore, we apply these strategies
to capture the common information between two frames’ feature maps in pixel-level. In addition,
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an attention mechanism that is capable of refining the video frames’ feature maps with their common
information is important. Thus, we design a new attention module with pixel-level matching for
obtaining high quality similarity features between two video frames as well as generating accurate
segmentation results.

There are some methods [4–11] proposed to separate the common objects from the background
information among video frames for video co-segmentation; however, most of these methods are not
good at feature representation. On the other hand, deep learning models [12] have the high learning
capability in feature representation that is needed for feature extraction in video co-segmentation.
The approach in [13] shows that deep models are able to extract reliable features for video
co-segmentation, but it is weak in common information extraction. Inspired by the ideas in [2,3],
we consider that the attention mechanism is good at refining the feature maps of the video frames with
their common information. Therefore, we design a new attention module with pixel-level matching for
obtaining high quality similarity features between two video frames. Our attention module includes
three stages: pixel-level matching step, features fusion step, and up-sampling step. In the pixel-level
matching step, the distance between any two feature values from two feature maps, respectively,
belonging to two video frames is computed. For achieving this purpose, using the works in [2,3],
we exploit the reshape and inflation operations to keep two feature maps, respectively, belonging
to the two frames in the same size so that the similarity between two frames can be captured in
pixel-level. In addition, the feature fusion step efficiently transforms the spatial attention maps
containing the common information from the softmax layers to the dense attention maps by fusing
the spatial attention maps with two video frames’ feature maps. At last, the up-sampling step utilizes
the dense attention maps to further refine the feature maps from the ResNet (baseline) [14] before our
attention module in our network in order to obtain high quality segmentation results.

In this paper, we present a framework containing a new attention module with pixel-level
matching for improving the accuracy of the segmentation results in a video co-segmentation problem.
The contributions of this letter are twofold as follows. (1) We develop a new attention module with
pixel-level matching so that the similarity information between video frames can be effectively utilized
for increasing the accuracy in video co-segmentation; (2) we also build a deep learning framework
that integrates the new attention module for extracting accurate features and generating reliable
segmentation results.

The rest of this paper is organized as follows. We review the related work in Section 2. Our framework
and attention module are described in Section 3. In Section 4, we discuss the experimental results of the ablation
study as well as the comparisons with state-of-the-art methods. Conclusions are given in Section 5.

2. Related Work

Video co-segmentation. Some proposal-based methods, such as the models in [6,9,15], extract
the common information among the proposals from video frames, but proposal-based methods easily
lead to a pixel misclassification problem. Therefore, we need to extract the common information
between frames in pixel-level. On the other hand, the algorithm in [4] extracts the color, texture,
and relative motion features from video frames and then applies the co-feature Gaussian mixture
models to capture the common feature between video frames. A generative multi-video model [5]
and a trainable apparent model [7] were presented for video co-segmentation. In addition, Wang
et al. [8] proposed a framework containing clustering and Markov random field model to separate
the common objects across videos; the weakly supervised VODC approach in [10] was developed for
video object discovery and co-segmentation; a co-saliency strategy was applied to obtain the common
objects from videos in [11]. However, all these methods cannot generate reliable features, because these
methods do not have high ability in feature learning, they may not accurately capture the features
belonging to the foreground object when the object’s properties (i.e., size, pose and viewpoint) change
in the video. Although the model in [13] applies FCN [16] to extract features from video frames,
the common information is not refined by the deep model after being captured by a spatial-temporal
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graphical model and the clustering algorithm; thus, the common information cannot be obtained
accurately and utilized efficiently. Therefore, different from these methods, our network is built
for extracting the common information in pixel-level within the deep learning architecture so that
the objects’ features can be refined with their common information by the convolutional layers in
the deep model to enhance the accuracy of segmentation.

Attention modules. Because attention modules do well in information matching, they are
widely used in image co-segmentation [17], video segmentation [3], and scene segmentation [2].
Specifically, the model in [17] adopts the attention mechanism to refine the feature maps; the DANet
in [2] leverages the attention modules in two branches architecture, including a position attention
module and channel attention module to segment each object in the street scene; the COSNet in [3]
also presents a co-attention model within a deep model for video segmentation, but this architecture is
too complex to implement since it needs a lot of memory space. Therefore, we try to develop a new
deep learning architecture that includes an attention module for common information extraction.

3. Our Framework

In this section, we present the pipeline of our framework first and then show the details of our
new attention module.

3.1. The Pipeline of Our Framework

Our framework is depicted in Figure 1, Fa denotes the input frame from one video, and Fb the input
frame from anther video; fa is the feature map of Fa and fb is the feature map of Fb; Sa and Sb stand
for segmentation results corresponding to Fa and Fb, respectively. As is shown in Figure 1: two
frames {Fa, Fb} from different videos are concatenated in the concat layer at first; then the concatenated
data are received by the ResNet [14] as the baseline in our network. We selected the ResNet as the
baseline because the networks of which baselines are ResNets, such as PSPNet [18], have achieved high
accuracy in image segmentation; we selected the ResNet with 101 convolutional layers (ResNet-101)
as the baseline in our network as it does not require large memory space. In the ResNet, the last
convolutional layer generates a concatenated binary mask. In this binary mask, the feature map in
one channel contains the features of the foreground objects, and the one in another channel contains
the features of the background information. Because of the limitation of memory, we only selected
the feature map with the foreground objects’ features to our attention module for common information
extraction; then, this feature map is split by a slice layer to generate two feature maps { fa, fb} before
being received by our attention module. However, the feature map with the features of the background
information is sent to the silence layer so that it is not utilized by our framework anymore. At last,
the slice layer, which follows our attention module, splits the concatenated segmentation result from
our attention module into two segmentation results {Sa, Sb}.
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Attention Module 
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Figure 1. The pipeline of our framework with a new attention module for video co-segmentation.
Two video frames {Fa, Fb} are concatenated together in a concat layer before processing by
the convolutional neural network; the concatenated data are then fed into the ResNet as the baseline
for feature extraction. Then, two one-channel feature maps { fa, fb} from the baseline are fed into
our attention module for common information extraction. Finally, two segmentation results {Sa, Sb}
belonging to the two input frames {Fa, Fb}, respectively, are outputted.
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3.2. Our Attention Module

The pipeline of our attention module is shown in Figure 2. va,1 and vb,1, respectively, denote
the feature maps that are reshaped and inflated from fa and fb; va,2 and vb,2, respectively, denote
the feature maps that are only inflated in channel-level from fa and fb. D is the spatial attention map
that is concatenated after the softmax layers, V is the feature maps that is generated by concatenating
va,2 and vb,2 and V′ is the dense attention feature which is obtained by fusing D and V. Our module
receives two feature maps ( fa and fb) belonging to two input frames and outputs the segmentation
results of these two frames. Feature maps fa and fb contain the foreground objects’ features.
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Figure 2. The pipeline of our attention module for pixel-level similarity computation. The module
receives a pair of feature maps { fa, fb} containing the foregrounds’ features to generate feature maps
va,1, va,2, vb,1, and vb,2 through the reshape and inflation operations. Next, a pixel-level matching step
is leveraged to capture the common information from va,1, va,2, vb,1, and vb,2 and generate the feature
map D, which is used to fuse with the concatenated feature map V and calculate the high quality dense
feature V′ in the features fusion step. Then, V′ is fed into the up-sampling step to refine the feature
maps from the baseline. Finally, the segmentation result is outputted.

Pixel-level matching and features fusion. In order to compute the difference between the feature
values in fa with the feature values in fb, we apply the reshape layers and tile layers. These two layers
transform the size of the feature maps from 1× n× n to n2 × n× n. Considering the case of fa in
Figure 2 as an example, its size is 1× n× n, and it is first reshaped into a new map with n2 channels by
a reshape layer; in this new map, each channel only contains one feature value from fa. Then, the new
map is inflated along the width and height into the new feature map va,1 with size n2 × n× n by two
tile layers. In va,1, all elements’ values in the matrix in the same channel are the same. Similarly, feature
map vb,1 is also generated from fb in the same way. In addition, fa and fb are inflated in channel-level
to generate va,2 and vb,2, respectively. Therefore, va,2 and vb,2 have the size as that of va,1 and vb,1.
With va,1, vb,1, va,2, and vb,2, the following equation is utilized to compute the difference between two
feature maps in pixel-level: {

da = |va,2 − vb,1|
db = |vb,2 − va,1|

(1)
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da denotes the feature maps representing the pixel-level difference between va,2 and vb,1; db stands
for the feature maps representing the pixel-level difference between vb,2 and va,1. In Figure 2, we can
observe that the Eltwise layers are set after va,1 and vb,1 to complete the subtraction operation for
computing the difference. Followed by the Eltwise layers, the AbsVal layers are used to obtain
the absolute values of the results from the Eltwise layers to keep the values of these results positive.
da and db are outputted from the two AbsVal layers, respectively. In da and db, the feature values
representing the common feature between two objects are smaller than the ones representing
the dissimilar feature since the result from the subtraction operation between two similar features
is smaller than that between two dissimilar features. However, the convolutional kernel usually
considers the high feature values as the features belonging to the foreground objects. To ensure that
the values belonging to the common feature are higher than the ones belonging to the dissimilar
feature, we generate feature maps d′a by subtracting da from va,2 and d′b by subtracting db from vb,2.
d′a and d′b are two feature maps that satisfy the requirement of the convolutional computation.

In order to obtain a spatial attention map, d′a and d′b are fed into two softmax layers, respectively,
and the results from these two softmax layers are concatenated in a concat layer with a rectified
linear unit (ReLU) layer [19] to generate the concatenated spatial attention map D; va,2 and vb,2 are
also concatenated in a concat layer to obtain the concatenated feature map V. First, D and V have
an additional operation using Equation (2) and the result is then concatenated with V for further
refining to generate the dense attention feature V′. This dense attention feature V′ is outputted as
the result of feature fusion.

V′ = Concat(V, V + D) (2)

Up-sampling for refining features. After receiving the dense attention feature V′, following
the idea in [20], we set a batch normalization (BN) layer [21] with a ReLU layer to normalize the feature
values in V′ for reducing internal covariate shift so that the loss function can converge easily during
the training step. The result from the BN layer is fed into a convolutional layer and a convolutional
block, and the high quality feature maps containing the common information outputted from
the convolutional block are used to refine the feature maps from our baseline (ResNet-101). The feature
maps in which the channel-size is m1 before processing by the last convolutional layer in our
baseline are exported to concatenate with the feature maps in which the channel-size is m2 from
the convolutional block in the concat layer. Through the channel-level concatenating operation, which
is the same operation of concatenating V and the result of D+V in Figure 2, this concat layer provides
the feature maps in which the channel-size is m1 + m2 to the convolutional block that follows this
concat layer for refining features. Followed by the convolutional block for feature refining, an Interp
layer up-samples the size of the feature maps to N/8 (N is the original size of the input frame),
and another convolutional block with dropout layer also receives the results from the Interp layer for
generating the feature maps, which are then fed into the last convolutional layer of our framework to
obtain segmentation results. At last, the Interp layer that follows the last convolutional layer recovers
the segmentation results into their original sizes. Two Interp layers in this step up-sample the feature
maps via bilinear interpolation.

Tile layer for inflation. The tile layer is a type of layer in the Caffe framework [22] for inflating
the size of feature maps. In our attention module in Figure 2, we can observe that the n2× 1× 1 feature
map reshaped from fa is inflated by two tile layers to form va,1. Taking this process as an example,
we show the details in Figure 3 and explain how the tile layer works. In the n2 × 1× 1 feature map,
each channel only contains one element with one value (we assume that this value is x). Thus, an array
(n× 1) in which the elements’ values are x is generated when the tile layer inflates each channel’s
element along the height (the step of inflating in height-level in Figure 3); then a matrix (n× n) whose
elements’ values are x is generated when the tile layer inflates each channel’s array along the width
(the step of inflating in width-level in Figure 3). Moreover, when the tile layer inflates fa (1× n× n)
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to form va,2 (n2 × n× n) in channel level, it directly replicates the matrix in only one channel in fa to
all channels in va,2 (the step of inflating in channel-level in Figure 3).
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 : one feature value  

Figure 3. The process of transforming fa to va,1 and va,2 in the tile layers.

4. Experiments

In our evaluation experiments, we evaluated our framework on two video co-segmentation
datasets: ObMiC dataset [15] for ablation study and DAVIS 2016 dataset [23] for state-of-the-art
methods comparison. We implemented our network in the Caffe framework [22]. In the training
step, we set the learning rate to 0.001. The momentum and the weight decay are set to 0.9 and 0.0005.
And the batch size is set to three during the training step. We also used the weight pre-trained by
ImageNet [24] as the initial weight of our baseline during the training step in all experiments in
this paper. In the testing step, two frames in an input frame-pair should come from different video
sequences, but the length of each video sequence in a video-pair is different. Thus, we randomly
selected several frames from a shorter video in the video and each selected frame forms frame-pairs
with two or three frames obtained from the longer video. In this way, we can make sure that two input
frames are from different videos. Each selected frame in the short video has several binary masks as
the results, and the results of the same selected frame took an average operation to generate the final
result of this selected frame.

Evaluation metric. In this paper, we employ two kinds of metrics to evaluate the segmentation
performance of our network. One metrics is the pixel-wise accuracy (Pixel Acc.), the other is
the intersection-over-union (IoU) accuracy [5]. On the one hand, the pixel-wise accuracy is computed
in the accuracy layer in the Caffe framework, and it is defined as

Pixel Acc. =
nPredict

NAll
(3)

where nPredict denotes the number of pixels, which are assigned by the correct labels in the segmentation
result, and NAll denotes the number of all pixels in this segmentation result. On the other hand, the IoU
accuracy is a metric that is widely employed to evaluate the performance of segmentation approaches,
and it is defined as

IoU =
Seg

⋂
GT

Seg
⋃

GT
(4)
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where Seg denotes the segmentation result, and GT denotes ground truth segmentation. mIoU denotes
the average IoU scores.

4.1. Ablation Study

We conducted an ablation study on the ObMiC dataset [15] to evaluate the performance of our
framework with or without the attention module. This dataset contains eight videos with 206 frames,
so these eight videos are utilized for training, validation and testing.

In this study, we selected one object in each video sequence in the ObMiC dataset as our framework
mainly deals with the single-object segmentation. Due to the fact that the length of the videos in
the dataset is short, we selected the first frame in each video to generate the proposals containing
the target as the training data and the second frame in each video to generate the proposals containing
the target as the validation data; the rest of the frames in each video are considered as the testing data.

In Table 1, “first frame w/o attention“ and “second frame w/o attention“ indicate that the ResNet
was applied as the baseline to receive two input frames and generate the segmentation results without
our attention module. On the other hand, “first frame with attention" and “second frame with attention“
indicate that the segmentation results belonging to the two input frames were obtained from our whole
framework containing the attention module. After each training epoch, our framework performed
the validation for computing the pixel-wise accuracy. The pixel-wise accuracy in each validation is
computed by averaging the pixel-wise accuracies of all validation data, and we got the pixel-wise
accuracy (Pixel Acc.) in Table 1 by averaging the pixel-wise accuracies obtained in the validations,
which were performed after the training loss was converged. When the training step was finished,
the testing data in ObMiC dataset were input into our framework for getting the segmentation results,
we compared each testing frame’s segmentation result with the GroundTruth to gain its own IoU score,
and the mIoU accuracy was computed by averaging all testing frames’ IoU scores. Both pixel-wise
accuracy and mIoU accuracy in Table 1 show that the performance of our framework with the attention
module is better than that of our baseline without the attention module. In other words, our attention
module is able to increase the accuracy of segmentation results from the deep learning model.

Table 1. Comparison of the accuracies from our framework without (w/o) and with the attention
module on the ObMiC validation dataset in pixel-wise accuracy (Pixel Acc.) and on the ObMiC testing
dataset in mIoU accuracy (mIoU). Numbers in bold are the best performance.

Method Pixel Acc. (%) mIoU (%)

First frame w/o attention 95.99 61.20Second frame w/o attention 97.11

First frame with attention 97.09 70.99Second frame with attention 97.92

4.2. Comparisons with the State-of-the-Art Methods

We also compared the performance of our framework with those of the state-of-the-art methods
on the DAVIS 2016 dataset [23] to prove that our framework can achieve higher accuracy in
video co-segmentation.

Since the objects in an input video-pair should belong to the same category or at least have similar
features so that the common information between two objects can be captured, we selected 32 videos
including 2238 frames from the training data and testing data in the DAVIS 2016 dataset to form
16 video-pairs that satisfy the requirements in our evaluation experiment. Because the lengths of
the videos in the DAVIS 2016 dataset are so long and the properties such as sizes and viewpoints of
the objects usually change, we randomly chose six frames, which include the same object in different
sizes and viewpoints in each video sequence to generate proposals containing the target as the training
data. In the training step, we still used the weight pre-trained by ImageNet as the initial weight for
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our baseline. In the testing step, we input the whole video sequence into our framework and the
state-of-the-art methods to generate results.

In Table 2, we compare the results of our framework with those from unsupervised learning
methods and supervised learning methods. The unsupervised learning methods we used for
comparison include VOS [25], FOS [26], BVS [27], and DVCS [28], they can efficiently utilize
the common information in the video segmentation problem; the supervised learning methods include
the ResNet (the baseline in our framework), and it was also trained by the same training data that were
used to train our framework. In Table 2, we can observe that the accuracies of our framework are higher
than those of the unsupervised learning methods except for the testing on the videos of Blackswan,
Dance-Jump, Horsejump-High, Kite-Surf, Kite-Walk, Libby, Paragliding-Launch, and Stroller. As it is shown
in Figure 4, some background information in the segmentation results of the frames in the videos
of Blackswan, Dance-Jump, Horsejump-High, and Stroller was recognized as the foreground object
since our network is still weak in extracting the semantic information to distinguish the foreground
and background. Moreover, our network is still not remarkable in capturing features of the small parts,
for example, the lines in the videos of Kite-Surf and Kite-Walk, the lines and the head of the human
in the video of Paragliding-Launch, and the legs of the dog in the video of Libby are not segmented
in the segmentation results in Figure 4. On the contrary, compared with the ResNet (the baseline),
the accuracies of our framework are better than those of the ResNet in all videos. The examples of
comparing the segmentation results from our baseline (ResNet) with those from our network are shown
in Figure 5, we can observe that the edges in our network’s results are smoother and more details,
such as the leg of the camel in the video frame, can be segmented by our network with the attention
module. Overall, the mIoU score (Avg.) of our framework is higher than those of the other methods,
proving that our framework can improve the accuracy of video co-segmentation.

Frame 

Ours 

GT 

Blackswan Dance-Jump Horsejump-High Kite-Surf Kite-Walk Libby Paragliding-Launch Stroller 

Figure 4. The cases of failure from our network.

Frame 

Baseline 

Ours 

GT 

Camel Car-Shadow Mallard-Water Rhino Drift-Straight 

Figure 5. The examples of the segmentation results from our baseline and network.
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Table 2. The average intersection-over-union (IoU) scores of our framework, baseline (ResNet), and four
video object segmentation methods on the DAVIS dataset. Four video object segmentation methods are
unsupervised learning methods; the baseline and our framework are supervised learning methods.
Numbers in bold are the best performance of each row.

Unsupervised Methods Supervised Methods

Video VOS FOS BVS DVCS Baseline Ours
Blackswan 84.2 73.2 94.3 91.5 87.8 92.9
Bmx-Bumps 30.9 24.1 43.4 45.2 41.6 47.4
Bmx-Trees 19.3 18.0 38.2 41.1 45.1 50.9
Breakdance 54.9 46.7 50.0 52.9 81.0 84.4
Breakdance-Flare 55.9 61.6 72.7 60.2 84.0 87.9
Camel 57.9 56.2 66.9 82.7 85.8 91.9
Car-Roundabout 64.0 80.8 85.1 75.2 88.7 91.6
Car-Shadow 58.9 69.8 57.8 75.9 92.4 93.6
Cows 33.7 79.1 89.5 88.7 88.1 92.2
Dance-Jump 74.8 59.8 74.5 64.2 66.6 69.9
Dance-Twirl 38.0 45.3 49.2 60.6 77.3 81.6
Dog 69.2 70.8 72.3 86.4 91.3 93.6
Drift-Chiance 18.8 66.7 3.3 71.5 79.9 81.6
Drift-Straight 19.4 68.3 40.2 66.6 89.4 91.7
Goat 70.5 55.4 66.1 79.4 85.6 87.7
Horsejump-High 37.0 57.8 80.1 80.9 71.2 79.0
Horsejump-Low 63.0 52.6 60.1 75.8 77.1 82.2
Kite-Surf 58.5 27.2 42.5 68.7 54.5 63.5
Kite-Walk 19.7 64.9 87.0 71.6 71.3 75.5
Libby 61.1 50.7 77.6 79.9 64.9 72.2
Mallard-Water 78.5 8.7 90.7 74.6 89.6 92.3
Motocross-Bumps 68.9 61.7 40.1 83.3 83.5 88.1
Motocross-Jump 28.8 60.2 34.1 68.6 86.0 89.3
Paragliding 86.1 72.5 87.5 90.2 87.4 91.6
Paragliding-Launch 55.9 50.6 64.0 60.0 57.0 59.7
Parkour 41.0 45.8 75.6 77.9 81.0 84.7
Rhino 67.5 77.6 78.2 83.8 92.6 94.7
Rollerblade 51.0 31.8 58.8 77.0 81.0 85.0
Scooter-Black 50.2 52.2 33.7 44.5 85.6 87.2
Scooter-Gray 36.3 32.5 50.8 66.1 80.7 84.3
Soapbox 75.7 41.0 78.9 79.4 81.2 85.6
Stroller 75.9 58.0 76.7 87.8 78.5 84.9

Avg. 53.3 53.8 63.1 72.3 78.4 82.5

5. Conclusions

In this paper, we present a framework containing a new attention module for video
co-segmentation. The attention module is designed to obtain the similarity information in pixel-level
from two input frames for refining the feature maps of each frame through an attention mechanism
in order to generate accurate segmentation results. We conducted an ablation study on the ObMiC
dataset and compared the results of our framework with those of other video segmentation methods
that perform well in common information extraction on the DAVIS 2016 dataset. Experimental results
show that our framework achieves higher accuracies.
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