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Abstract: Vibratory conveyors are widely used to feed raw materials and small parts to processing 
equipment. Up to now, most of the research has focused on materials and parts that can be modeled 
as point masses or small blocks. This paper focuses on the conveying of cylindrical parts. In this 
case, the rolling motion is an essential feature of conveyor dynamics. First, the dynamic equations 
governing the rolling motion are stated, and the effects of friction and rolling resistance coefficients 
on the behavior of the system are analyzed. Then, a non-linear numerical model is developed in 
MATLAB. It takes into account the transition between pure rolling and rolling with sliding and the 
impacts of the cylindrical part on the edges of the conveyor. Numerical results showing the effect 
of the operative parameters of the conveyor and of friction properties on the traveled distance are 
presented and discussed. Finally, a comparison between numerical and experimental results is 
presented. 
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1. Introduction 

The automation of industrial processes very often requires the handling of small [1–3] and micro 
items [4], which include mechanical and electrical components used in the assembly processes, finite 
products that have to be packaged, and row materials that have to be processed. In many industrial 
scenarios, these small items have to be transported, oriented, and sorted. Nowadays, vibratory 
systems are very common, because they allow handling small items in a versatile and efficient way. 
They have a simple and sturdy construction and are suited to handle dusty and hot materials as well. 
For these reasons, some researchers have studied the kinematics and dynamics of vibratory 
conveying, orienting, and sorting. In 1963, Taniguchi et al. [5] carried out a pioneering study that 
highlighted the role of friction and clearly stated the differences between the gliding and hopping 
motions of a machine part on a vibrating conveyor, in which the machine part was considered a point 
mass. The influence of directional friction characteristics was analyzed in [6], assuming a point mass 
model of the vibrating part. In [7], the mechanical part was modeled as a rigid body with six degrees-
of-freedom (DOFs) and the contact mechanics were deeply analyzed; however, the rolling motion 
was neglected, since a block-shaped component was studied. The dynamics of a block moving along 
the spiral track of a vibratory bowl feeder were studied in [8], and the block was modeled as a point 
mass. Some recent studies dealt with the design of the conveyor [9–11]; also in these studies, the part 
was modeled as a point mass, and no rolling motion was considered. 
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Cylindrical parts, similar to pins and plugs, are very common in electrical and mechanical 
industry; also, a screw is better represented by a cylinder than by a block. Other manufacturing 
processes require the handling of cylindrical and quasi-cylindrical parts, e.g., the pharmaceutical 
industry has to convey cylindrical pills and phials. Cylindrical parts are processed by classical 
conveyors, if their axes of rotation form a small angle with the direction of conveying [12]. When this 
condition is not satisfied, they begin to roll down the track. Most of the scientific literature dealing 
with conveyors neglects this rolling motion [1], because sometimes, this phenomenon does not have 
a significant effect on the process. For example, in orientation processes, often a cylindrical part that 
can roll also has a wrong orientation and it has to be rejected both if it slides and if it rolls. 
Nevertheless, in some applications, the cylindrical part has to travel a larger distance, and the rolling 
motion strongly influences the process. 

Thus, this paper focuses on the dynamics of cylindrical parts in a vibrating conveyor, with the 
aim of explaining the basic differences between the vibration conveying of a block and of a rolling 
cylinder. The scientific literature in this field is rather scarce. Some papers [13,14] analyzed the 
probabilities of natural resting aspects of cylinders and parts with curved surfaces in vibratory bowl 
feeders. In [15], a preliminary numerical analysis of the motion of a cylindrical part on a conveyor 
was carried out, and the possibility of rolling, sliding, and hopping motions was highlighted. This 
paper is an extension of the previous research [15] that includes analytical studies, a more detailed 
mathematical model that considers impacts, and a wide parametric analysis. 

The paper is organized as follows. First, the dynamic equations governing the rolling motion of 
a cylindrical part are analytically derived, the differences between vibratory conveying of rolling and 
non-rolling parts are highlighted, and the parameters with the largest influence on the rolling motion 
are found. Then, a two-dimensional (2D) non-linear numerical model is developed that takes into 
account the transition between pure rolling and rolling with sliding and the impacts of the cylindrical 
parts with the edge of the conveyor. Series of numerical simulations are carried out, which show the 
effects of variations in the system’s parameters on the motion of the cylindrical part. Finally, testing 
equipment composed of a vibrating conveyor and a vision system that monitors the motion of a 
cylinder is presented. Numerical results are compared with experimental results, and the benefits 
and limits of 2D simulations are discussed. 

2. Theoretical Basis 

There are very important differences between the vibration conveying of parts that can roll on 
the conveyor track and parts that cannot roll. A 2D model with the plane of motion perpendicular to 
the axis of the cylinder is enough to point out these differences. 

Vibration conveying of non-rolling parts is a dynamic phenomenon dominated by dry friction. 
Figure 1a shows a small block on the track of the conveyor, which is tilted by angle 𝜃 with respect 
to the horizontal direction. A fixed reference frame with axis 𝑥  parallel to the track and axis 𝑦 
perpendicular to track is introduced. 𝑅  and 𝑅  are the components of the reaction force exerted by 
the track surface on the block (the positive direction is represented); they are related by the static 
Coulomb friction coefficient 𝜇  and by the kinetic Coulomb friction coefficient 𝜇 . Acceleration (�⃑�) 
of the conveyor is tilted by angle 𝜓 with respect to the conveyor track. If the motion of the conveyor 
is harmonic with amplitude 𝑥  and angular frequency 𝜔, the components of the acceleration are: 𝐴 = 𝑎𝑐𝑜𝑠 𝜓 = −𝑥 𝜔 𝑠𝑖𝑛 𝜔𝑡 𝑐𝑜𝑠 𝜓  (1)𝐴 = 𝑎𝑠𝑖𝑛 𝜓 = −𝑥 𝜔 𝑠𝑖𝑛 𝜔𝑡 𝑠𝑖𝑛 𝜓 . (2)

Angle 𝜓 is essential for the vibration conveying of non-rolling parts. When acceleration has the 
direction shown in Figure 1a, the inertia force adds to the weight of the block, the reaction force 𝑅  
is large, the modulus of the demanded tangential reaction force |𝑅 | is smaller than the maximum 
static friction force (𝜇  𝑅 ), and the block cannot slide backwards. Conversely, when acceleration �⃑� 
changes its direction, the inertia force tends to cancel the weight force, 𝑅  decreases, and the 
modulus of the demanded tangential reaction force |𝑅 | may become larger than the maximum 
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static friction force; hence, the block moves, and forwards sliding begins. This condition repeats at 
every period of the harmonic motion and eventually the block moves forwards with respect to the 
track. 

The scenario drastically changes when the part has a cylindrical shape, as depicted in Figure 1b. 
A stop-plate is introduced, and 𝑅  is the reaction force exerted by the stop plate on the cylinder (the 
positive direction is represented), 𝑀  is the rolling resistance torque (the positive direction is 
represented), 𝑚  is the cylinder mass, and 𝑚𝑔  is the gravity force (the actual direction is 
represented). 

First, the cylindrical part is assumed to be steady on the vibrating conveyor, and the dynamic 
conditions that make possible the beginning of the relative motion are analyzed. The equations of 
motion in the 𝑥 and 𝑦 directions are: 𝑚𝑎 = −𝑚𝑔𝑠𝑖𝑛 𝜃) +  𝑅 + 𝑅  (3)𝑚𝑎 = −𝑚𝑔𝑐𝑜𝑠 𝜃) +  𝑅 . (4)

In Equations (3) and (4), 𝑎  and 𝑎  are the two components of the acceleration of the center of 
mass of the cylindrical part. 

 
Figure 1. Block (a) and cylindrical part; (b) on the vibrating conveyor. 

When there is no relative motion, 𝑎  and 𝑎  coincide with the components of acceleration of 
the conveyor (𝐴  and 𝐴 ); therefore, the equations of motion become: 𝑚𝑎𝑐𝑜𝑠 𝜓) = −𝑚𝑔𝑠𝑖𝑛 𝜃) + 𝑅 + 𝑅  (5)𝑚𝑎 𝑠𝑖𝑛 𝜓) = −𝑚𝑔𝑐𝑜𝑠 𝜃) +  𝑅 . (6)

The perpendicular reaction force con be calculated from Equation (6). 𝑅 =  𝑚𝑎 𝑠𝑖𝑛 𝜓) + 𝑚𝑔𝑐𝑜𝑠 𝜃)  (7)

The contact between the cylinder and the track is unilateral; hence, 𝑅 ≥ 0. When 𝑅  tends to 
zero, the cylinder separates from the track, and the hopping motion begins. The hopping motion can 
be avoided decreasing the vibration acceleration, and this solution leads to a noise reduction [9]. 
Thus, this kind of motion is not considered in the framework of this research. 

The angular momentum equation about the center of mass of the cylindrical part is: 𝐼 𝜑 = 𝑟 𝑅 − 𝑢 𝑅 𝑠𝑔𝑛 𝜑). (8)

Reaction force 𝑅  does not appear in Equation (8), because it passes through the center of mass 
of the cylinder. 𝐼  is the moment of inertia about the center of mass, 𝑟 is the cylinder radius, 𝑢  is 
the coefficient of rolling resistance in static condition, 𝜑 is the angular acceleration, 𝜑 is the angular 
velocity, and 𝑠𝑔𝑛 is the signum function. Since the beginning of the rolling motion is considered, 𝜑 = 0 and 𝑠𝑔𝑛 𝜑) = −1, because after the beginning of relative motion, a negative rolling velocity 
will take place: 𝜑 = −𝑣 𝑅⁄ . Tangential reaction force 𝑅  can be calculated from the angular 
momentum equation: 
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𝑅 =  − 𝑅 . (9)

The term  is the non-dimensional rolling friction coefficient in static condition, which is 
named 𝑓 . 

The reaction force that the stop plate exerts on the cylinder (𝑅 ) can be calculated from Equations 
(5) and (9). The contact between the cylinder and the stop plate is unilateral 𝑅 > 0). Hence, the 
condition 𝑅 ≤ 0 in conjunction with the adoption of the maximum rolling friction coefficient in 
Equation (9) defines the beginning of the relative motion between the cylinder and the conveyor 
track: 𝑅 =  𝑚𝑎𝑐𝑜𝑠 𝜓) + 𝑚𝑔𝑠𝑖𝑛 𝜃) +  𝑓 𝑅 ≤ 0, (10)

If Equation (6) is introduced into Equation (10), the following condition for the beginning of 
rolling motion is obtained: ≤ − )  )) ) . (11)

Figure 2 depicts the values of the static rolling friction coefficient (𝑓 ) that prevents the rolling 
motion against non-dimensional acceleration (𝑎 𝑔⁄ ) for parametric values of 𝜓. Only negative values 
of acceleration are considered, since a negative acceleration is required to begin the rolling motion; 
the maximum value of non-dimensional acceleration is 𝑎 𝑔⁄ = −𝑠𝑖𝑛 𝜃) 𝑐𝑜𝑠 𝜓),⁄  since for larger 
values, the resultant of the gravity and inertia forces pushes the cylinder against the stop plate. 

 
Figure 2. Static rolling friction coefficient that prevents the rolling motion, 𝜃 = 3° and parametric 
values of 𝜓. 

Figure 2 shows that very large and unrealistic values [16] of static rolling friction coefficient (𝑓 ) 
are needed to prevent the beginning of the rolling motion. When 𝑎 𝑔⁄  is lower than −0.35, the 
increase in angle 𝜓 increases the value of 𝑓 . 

Hypothetically, the cylindrical part excited by conveyor vibrations could begin a sliding motion 
as well. The following condition for the beginning of the sliding motion can be derived: ≤ − )  )) ) . (12)

It is worth noticing that this condition is the same that holds true for non-cylindrical parts [1]. 
Equation (12) is similar to Equation (11), but 𝑓  is substituted by 𝜇 , which is the static Coulomb 
friction coefficient. For most of the materials used in industrial applications [16], the static Coulomb 
friction coefficient is much larger than the non-dimensional rolling friction coefficient in static 
condition. Therefore, the negative acceleration needed to begin the sliding motion is much larger (in 
modulus) than the one needed to begin the rolling motion. 

The evolution of the rolling motion is now analyzed. The equations of motion are: 𝑚𝑎 = −𝑚𝑔𝑠𝑖𝑛 𝜃) + 𝑅  (13)𝑚𝐴 = −𝑚𝑔𝑐𝑜𝑠 𝜃) + 𝑅  (14)
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𝐼 𝜑 = 𝑟 𝑅 − 𝑓 𝑅𝑅 𝑠𝑔𝑛 𝜑). (15)

Moreover, during pure rolling, the following kinematic condition has to be fulfilled: 𝜑 = − ). (16)𝑅  can be calculated from Equation (14); then, Equations (13), (15), and (16) can be solved to 
calculate 𝑅 , 𝑎 , and 𝜑. Taking into account that for a cylinder 𝐼 = 0.5𝑚𝑅 , the following results 
are obtained: 𝑅 = 13  𝑚 𝑎𝑐𝑜𝑠 𝜓) + 𝑔𝑠𝑖𝑛 𝜃) + 23𝑓 𝑅 𝑠𝑔𝑛 𝜑) (17) 

𝑎 = 13  𝑎𝑐𝑜𝑠 𝜓) − 23𝑔𝑠𝑖𝑛 𝜃) + 23𝑓 𝑅𝑚 𝑠𝑔𝑛 𝜑) (18) 𝜑 = − −𝑎𝑐𝑜𝑠 𝜓) − 𝑔𝑠𝑖𝑛 𝜃) + 𝑓 𝑠𝑔𝑛 𝜑) . (19) 

It is worth noticing that when the cylinder rolls forwards (𝜑 < 0), the rolling friction term in 
Equation (19) adds to the gravity term. The motion of the cylinder on the conveyor track can be 
studied integrating Equations (18) and (19); the input is 𝑎𝑐𝑜𝑠 𝜓). Generally speaking, a numerical 
integration is needed (see Section 3) owing to the 𝑠𝑔𝑛 function. Nevertheless, 𝑓 < 0.01 in most 
industrial processes, and an approximation of the integrals of Equations (18) and (19) can be obtained 
assuming 𝑓 = 0. 

According to Equation (11), the forward motion begins when 𝑎 𝑔⁄ ≤ −𝑠𝑖𝑛 𝜃) 𝑐𝑜𝑠 𝜓)⁄ . Since in 
normal conveying applications angle 𝜃 is rather small, another simplification can be made assuming 
that the forward rolling motion begins when 𝑎𝑐𝑜𝑠 𝜓) = −𝑥 𝜔 𝑠𝑖𝑛 𝜔𝑡)𝑐𝑜𝑠 𝜓) becomes negative. 
This assumption simplifies the initial conditions, because in the harmonic motion vibration, the 
acceleration changes its sign when the displacement is zero and the velocity has the maximum 
positive value (𝑥 𝜔). 

The integration of Equation (18) with the above-mentioned simplifications and initial conditions 
leads to the following equations for the absolute velocity (𝑣 ) and displacement (𝑥) of the center of 
mass of the cylinder: 𝑣 = 13  𝜔𝑥 cos 𝜔𝑡)𝑐𝑜𝑠 𝜓) + 23  𝜔𝑥 𝑐𝑜𝑠 𝜓) − 23𝑔𝑠𝑖𝑛 𝜃)𝑡 (20) 𝑥 =  𝑥 sin 𝜔𝑡)𝑐𝑜𝑠 𝜓) +  𝜔𝑥 𝑐𝑜𝑠 𝜓)𝑡 − 𝑔𝑠𝑖𝑛 𝜃)𝑡 . (21) 

From the point of view of conveying, the most important parameter is the relative velocity 𝑣  
between the part and the track of the conveyor: 𝑣 = 𝑣 −  𝜔𝑥 cos 𝜔𝑡)𝑐𝑜𝑠 𝜓) (22) 𝑣 =  𝜔𝑥 𝑐𝑜𝑠 𝜓) −  𝜔𝑥 cos 𝜔𝑡)𝑐𝑜𝑠 𝜓) − 𝑔𝑠𝑖𝑛 𝜃)𝑡. (23) 

The relative velocity includes a positive and constant term due to initial velocity (𝑥 𝜔 ); a 
harmonic term due to the vibration of the conveyor plate, whose integral over a period (𝑇 = 2𝜋 𝜔⁄ ) 
is zero; and a negative term due to gravity that increases (in modulus) with time. 

If 𝜃 = 0 (horizontal conveying), the average conveying velocity in the period (𝑣 ) is constant 
and equal to  𝜔𝑥 𝑐𝑜𝑠 𝜓). If 𝜃 > 0 the average conveying velocity decreases, and at the nth period 
it assumes the value: 𝑣 =  𝜔𝑥 𝑐𝑜𝑠 𝜓) − 𝑔𝑠𝑖𝑛 𝜃) (2𝑛 − 1)    𝑛 = 1,2, …𝑁. (24) 

When 𝑣  becomes negative, the cylindrical part rolls backwards and eventually impacts the 
stop plate. Figure 3 depicts the ratio between 𝑣  and the maximum vibration speed (𝑥 𝜔) versus 
period number (𝑛) for 𝜃 = 3°. In Figure 3a, the ratio between the vibration acceleration and gravity 
acceleration (𝑎 𝑔⁄ ) is 1 and the parametric values of angle 𝜓 are considered; the increase in 𝜓 has a 
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negative effect on the conveying speed. In Figure 3b, 𝜓 is set to zero, and the parametric values of 
the ratio 𝑎 𝑔⁄  are considered; the increase in vibration acceleration has a positive effect on vibration 
conveying. 

Equation (24) holds true with the assumption 𝑓 = 0 . If rolling resistance is present, it 
contributes to decreasing the average conveying speed in the period. 

  

Figure 3. Average non-dimensional conveying velocity (𝑣 𝑥 𝜔⁄ ) versus period number, 𝜃 = 3° , 𝑎 𝑔⁄ = 1 and parametric values of 𝜓 (a); 𝜓 = 0 and parametric values of 𝑎 𝑔⁄  (b). 

During pure rolling motion, the reaction force 𝑅  given by Equation (17) is needed to guarantee 
equilibrium. |𝑅 | has to be smaller than the maximum static friction force (𝜇 𝑅 ). Hence, the ratio |𝑅 | 𝑅⁄  has the meaning of static friction coefficient needed to guarantee equilibrium during pure 
rolling. Figure 4 shows the ratio |𝑅 | 𝑅⁄  against non-dimensional acceleration (𝑎 𝑔⁄ ) for 𝜃 = 3°, 𝑓 =0 and parametric values of 𝜓. 

With 𝜓 = 0, the friction coefficient needed to guarantee the pure rolling motion is only slightly 
influenced by the versus of acceleration. 

With 𝜓 > 0, the friction coefficient needed to guarantee the pure rolling motion is significantly 
smaller when the conveyor acceleration is positive than when acceleration is negative. This 
phenomenon happens because when acceleration changes sign, the decrease in reaction force 𝑅  
(Equation (7)) is not compensated by the decrease in 𝑅  (Equation (17)), and this effect becomes even 
more important when 𝜓 is large. Since in most industrial material 𝜇  is in the range of 0.6 ÷ 1 [1], 
the transition from a pure rolling motion to a rolling with sliding can take place only in the presence 
of large negative accelerations of the vibration conveyor. 

When the cylindrical part rolls backwards, it may impact the stop plate; in this case, the equation 
of motion in the x direction becomes: 𝑚𝑎 = −𝑚𝑔𝑠𝑖𝑛(𝜃) +  𝑅 + 𝐹  (25) 

in which 𝐹  is the impact force, which has the same direction of 𝑅  in Figure 1. 𝐹  strongly 
increases 𝑅 ; hence, the ratio |𝑅 | 𝑅⁄  may reach very large values, and the sliding motion can begin. 

 
Figure 4. Friction coefficient needed to guarantee the pure rolling motion, 𝜃 = 3° , 𝑓 = 0 , and 
parametric values of 𝜓. 
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3. Numerical Model 

The simulation of the motion of a cylindrical part on a vibrating plane is not a simple task due 
to the non-linear phenomena that take place, e.g., the frequent transition between states of motion 
and the impacts with the stop plate. In order to address the problem, a combination of a MATLAB 
(R2019b, MathWorks Inc., Natick MA, USA, 2020) script and its simulation environment Simulink 
was adopted. The simulations are started from a main MATLAB script which initializes the variables 
at the initial conditions: the cylinder is touching the track and in contact with the stop plate, as 
depicted in Figure 1b. The cylinder is supposed to start with a pure rolling motion; therefore, the 
main script launches a Simulink simulation, which implements this case. When a proper dynamic 
condition is met, the simulation is stopped and the simulation of rolling with sliding motion is started 
by the main script. Such simulation is stopped when particular kinematic and dynamic conditions 
are met. The process is iterated until the desired simulation duration is reached. 

The block diagram of the simulation is represented in Figure 5. The two transition conditions 
require special attention, because they rule the simulation. The transition from pure rolling to rolling 
with sliding is ruled by a dynamic condition. When the tangential reaction force 𝑅  needed to 
guarantee the equilibrium of the pure rolling motion (Equation (17)) is larger than the maximum 
static friction force, the MATLAB main script stops the Simulink rolling model and starts the 
Simulink sliding model. 

 
Figure 5. Logical flow of the simulation. 

The MATLAB main script stops the Simulink sliding model when a dynamic and a kinematic 
condition are satisfied at the same time. The kinematic condition is the pure rolling condition, which 
is given by Equation (26). 𝑣 − 𝑉 = −𝜑 ∙ 𝑅 (26) 

This equation shows when there is a possible switching from rolling with sliding to pure rolling, 
but a dynamic condition is to be satisfied as well. This condition states that the tangential reaction 
force has to be smaller than the maximum static friction force. 

One of the novelties of this numerical model with respect to previous papers [15] is the 
introduction of the impacts with the stop plate, which makes the integration of the equations more 
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complex. Impact forces are calculated representing contact stiffness by means of a lumped spring, 
which is compressed only if the distance between the cylinder and the stop plate is smaller than a 
fixed threshold. For this reason, the simulation environment Simulink was chosen, which proved to 
be very intuitive for the integration of single sets of equations. Then, the problem was moved to the 
transition between the two cases. The development of a model entirely programmed in Simulink 
showed problems of flickering between different states and was not very effective. Therefore, it was 
decided to exploit the versatility of a simulation managed by a MATLAB script at the highest level 
with the power of the Simulink simulation environment at a lower level. The results lived up to 
expectations, although troubleshooting and a fine tuning of the parameters of the Simulink solver 
was needed. 

4. Numerical Results 

Numerical simulations aimed at exploring the dynamics of vibration conveying of cylindrical 
parts beyond the limits of the analytical model of Section 2. In particular, numerical simulations made 
it possible to analyze the effect of the impacts of the cylindrical part on the stop plate. 

A realistic reference case was defined, which is characterized by the following parameters of the 
vibratory conveyor: 𝑥 = 0.0002 m, 𝜔 = 314 rad/s (frequency 50 Hz), 𝜃 = 3°, 𝜓 = 0°. The maximum 
modulus of conveyor acceleration is 19.72 m/s2 (𝑎 𝑔⁄ = 2). 

The rolling part has a radius 𝑟 = 0.007 m and mass 𝑚 = 0.096 kg. The friction parameters are 𝑓 = 0.005, 𝜇 = 0.3, and 𝜇 = 0.6. The value of the rolling resistance is more than twice that of the 
typical rolling elements of bearings [16] and takes into account that the cylindrical part may be rough 
or dirty. The kinetic Coulomb friction coefficient value is inside the typical range of values found in 
vibratory conveyors [1,6,9]. The static Coulomb friction coefficient was set to be twice the kinetic 
coefficient [17]. Finally, the impact stiffness was set to 𝑘 = 1,000,000 N/m; this value made it possible 
to obtain values of contact forces similar to the measured ones (about 60 ÷ 80 N). 

The first parametric simulations aimed at analyzing the effect of angle 𝜓 ; Figure 6 shows 
numerical results in terms of the absolute displacement of the cylinder center of the mass. In the same 
figure, for comparison, the displacement of the conveyor is represented (along the direction tilted by 𝜓 
with respect to the 𝑥 axis). 

 
Figure 6. Numerical results, displacement of the cylindrical part along the track, 𝜃 = 3°, 𝑓 = 0.005, 𝜇 = 0.3, 𝜇 = 0.6, and parametric values of 𝜓. 

In the plots of Figure 6, two different phases can be identified. The first phase (phase 1), which 
ends at about 0.25 s and includes 10 ÷ 12 vibration periods, is the initial motion of the cylindrical 
part without impacts. As foreseen by theoretical analysis, the cylindrical parts begins its motion at 𝑡 = 0 owing to the initial velocity given by the conveyor, reaches the maximum displacement, and 
eventually impacts the stop plate. The maximum displacement is rather small (about 0.003 m), and 
this value is in agreement with the theoretical predictions (Equation (21)). 

x 
[m

]
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In this phase, the increase in the angle 𝜓 up to 20° leads to an increase in the traveled distance, 
a further increase leads to a reduction in the traveled distance. This particular behavior is due by the 
presence of two opposite effects. 

The first effect can be understood looking at the sliding velocity (𝑣 ) of the cylindrical part: 𝑣 = 𝑣 − 𝑉 + 𝑅𝜑 (27) 

which is plotted in Figure 7 with conveyor acceleration. If 𝜓 = 0, the cylindrical part slides both when 
the conveyor acceleration is negative and positive (forwards and backwards sliding, respectively). 
Backwards sliding causes a reduction in the traveled distance. This phenomenon is in agreement with 
the analytical results of Figure 4, which show that for 𝜓 = 0, the static friction coefficient needed to 
guarantee the pure rolling motion is larger than 𝜇 = 0.6 both for negative (−2) and for positive (+2) 
values of non-dimensional acceleration. 

Conversely, Figure 7 shows that if 𝜓 increases, there is only forwards sliding, since the static 
friction coefficient is able to prevent backwards sliding when the conveyor acceleration becomes 
positive, and the cylindrical part behaves similar to a block. It is worth noticing that this behavior is 
in agreement with the analytical results of Figure 4. 

The second effect is the decrease in the initial velocity of the cylindrical part when 𝜓 increases; 
see Equation (20). In summary, for small values of 𝜓, the first effect is dominant, and the traveled 
distance increases, whereas for large values of 𝜓, the second effect reduces the traveled distance. 

 
Figure 7. Numerical results, sliding velocity of the cylindrical part along the track, 𝑡 < 0.1 s, 𝜃 = 3°, 𝑓 = 0.005, 𝜇 = 0.3, 𝜇 = 0.6, and parametric values of 𝜓. 

The second phase of the motion (phase 2, 𝑡 > 0.25 s) is dominated by the impacts of the 
cylindrical part on the stop plate. 

The cylindrical part reaches the maximum displacement in this phase, and this value chiefly 
depends on impact mechanics. If the relative velocity (Equation (22)) is large, because the cylindrical 
part and the conveyor move in opposition, the conveyor transfers a lot of energy to the cylindrical 
part, which has a large rebound after the impact. This phenomenon occurs at 𝑡 = 2.04 for 𝜓 = 0°. 
Figure 8, which is a zoom of Figure 6 of about 𝑡 = 2.04 𝑠, shows that the impact occurs when the 
conveyor has the maximum positive velocity, whereas the velocity of the cylindrical part is negative. 
Conversely, if the relative velocity is small, because the cylindrical part and the conveyor move in 
phase, the conveyor transfers less energy to the cylindrical part, and a smaller rebound occurs. This 
phenomenon takes place at 𝑡 = 0.49 𝑠 for 𝜓 = 0°, since Figure 9 shows that the cylindrical part 
impacts the conveyor when it has a negative velocity. 
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Figure 8. Numerical results, displacement of the cylindrical part along the track, impact with large 
relative velocity at 𝑡 = 2.04, 𝜓 = 0°, 𝜃 = 3°, 𝑓 = 0.005, 𝜇 = 0.3, 𝜇 = 0.6. 

 
Figure 9. Numerical results, displacement of the cylindrical part along the track, impact with small 
relative velocity at 𝑡 = 0.49, 𝜓 = 0°, 𝜃 = 3°, 𝑓 = 0.005, 𝜇 = 0.3,𝜇 = 0.6. 

The angle of conveyor acceleration (𝜓) has a negligible effect on the second phase (impact 
dominated) of the motion of the cylindrical part on the conveyor, since the relative velocity at the 
impact depends much more on the previous motion than on conveyor maximum velocity, which 
slightly decreases if 𝜓 increases. Actually, after some impacts, the relative velocity at the impact 
changes randomly. Thus, the motion of the cylindrical part on the conveyor is similar to the motion 
of a bouncing ball that impacts a vibrating table, which may exhibit a chaotic behavior [18,19]. 

Figure 10 shows for the same cases of Figure 6 the sliding velocity of the cylindrical part and 
highlights that, owing to the large value of non-dimensional acceleration (𝑎 𝑔⁄ = 2), very often the 
cylinder slides on the conveyor track. The largest sliding velocities take place just after the impacts. 

The second parametric simulation aimed at analyzing the effect of conveyor vibration frequency. 
Conveyor acceleration was kept equal to the previous value (𝑎 𝑔⁄ =2); therefore, an increase in 
frequency led to a decrease in velocity according to this equation: 𝑣 = . (28) 

Figure 11 clearly shows that the increase in the frequency has a negative effect on the motion of 
the cylindrical part both before and after the first impact. The first effect takes place because the initial 
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velocity is smaller, while the second effect takes place because the relative velocity at the impact is 
smaller. If the vibration frequency decreases to 25 Hz, the traveled distance increases up to 0.043 m. 
It is worth noticing that even if the dynamics of conveying of block-shaped parts and cylindrical parts 
are very different, the decrease in vibration frequency has a positive effect in both cases [1]. 

 
Figure 10. Numerical results, sliding velocity of the cylindrical part along the track, 𝜃 = 3°, 𝑓 =0.005, 𝜇 = 0.3, 𝜇 = 0.6, and parametric values of 𝜓. 

Then, the effect of rolling friction coefficient was investigated by means of numerical 
simulations. The results, which are presented in Figure 12, show that realistic variations in 𝑓  have a 
negligible effect on the conveying of cylindrical parts. Before the first impact (phase 1), the decrease 
in 𝑓  causes a very small increase in the traveled distance. After the first impact (phase 2), the 
variation in the rolling friction coefficient changes the instants in which the most energetic impacts 
take place, but the traveled distance does not significantly change. 

Figure 13 shows the effect of contact stiffness on the conveying of cylindrical parts. The contact 
stiffness does not affect phase 1, and it does not have a clear effect on the traveled distance in phase 
2. This phenomenon agrees with physical intuition, because the contact stiffness is another factor that 
contributes to randomly varying the relative velocity at the impact, which is the main factor 
influencing the rebound of the cylindrical part. 

 
Figure 11. Numerical results, displacement of the cylindrical part along the track, 𝜃 = 3°, 𝜓 = 0°, 𝑓 =0.005, 𝜇 = 0.3,  𝜇 = 0.6, and parametric values of frequency. 

Finally, the effect of friction coefficients was investigated. 
Figure 14 shows that 𝜇  has a small effect on phase 1: if the static friction coefficient increases 

above 0.6, the traveled distance increases. This phenomenon can be explained looking at Figure 15, 
which shows the sliding speed for the same values of 𝜇 . With 𝜇 = 1 during phase 1, the cylinder 
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does not slide at all, and the traveled distance increases, since the pure rolling motion dissipates less 
energy than the rolling with sliding motion. It is worth noticing that this result agrees with the 
analytical results of Figure 4. 

After the first rebound, the impacts take place at random instants and, again, the relative velocity 
at the impact has the largest effect. 

 
Figure 12. Numerical results, displacement of the cylindrical part along the track, 𝜃 = 3°, 𝜓 = 0, 𝜇 = 0.3,𝜇 = 0.6, and parametric values of 𝑓 . 

 
Figure 13. Numerical results, displacement of the cylindrical part along the track, 𝜃 = 3°, 𝜓 = 0, 𝑓 =0.005 𝜇 = 0.3, 𝜇 = 0.6, and parametric values of contact stiffness. 

The effect of a proportional variation of both friction coefficients (𝜇  and 𝜇 ) is presented in 
Figure 16. In phase 1, the cylinder with the highest 𝜇  reaches the largest distance because it rolls 
without sliding, as shown in Figure 17. After the first impact (phase 2), the motion is dominated by 
the relative velocity at the impact; nevertheless, a decrease in 𝜇  leads to an average increase in the 
traveled distance. With 𝜇 = 0.2, there are 4 rebounds with a traveled distance larger than 0.008 m, 
whereas with 𝜇 = 0.4 , there is no rebound with a traveled distance larger than 0.008 m. This 
phenomenon occurs because for every value of 𝜇  and 𝜇 , there are large sliding velocities (Figure 
17) after the impacts, and a reduction in 𝜇  leads to a reduction in energy dissipation. 
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Figure 14. Numerical results, displacement of the cylindrical part along the track, 𝜃 = 3°, 𝜓 = 0, 𝑓 =0.005, 𝜇  = 0.3, and parametric values of static friction coefficient 𝜇 . 

 
Figure 15. Numerical results, sliding velocity of the cylindrical part along the track, 𝜃 = 3°, 𝜓 =0,𝑓 = 0.005, 𝜇  = 0.3, and parametric values of static friction coefficient 𝜇 . 

 
Figure 16. Numerical results, displacement of the cylindrical part along the track, 𝜃 = 3°, 𝜓 = 0, 𝑓 =0.005, and parametric values of static friction coefficients 𝜇  and 𝜇 . 

0 0.5 1 1.5 2 2.5 3
t [s]

0

2

4

6

8

10

10-3

0.3
0.6
1
Plane

s

0 0.05 0.1 0.15 0.2 0.25 0.3
t [s]

-0.05

0

0.05

0.1

0.15

0.3
0.6
1.0

0 0.5 1 1.5 2 2.5 3
t [s]

0

5

10

15 10-3

0.4 , 0.2
0.6 , 0.3
0.8 , 0.4
Plane

s, c



Appl. Sci. 2020, 10, 1926 14 of 17 

 
Figure 17. Numerical results, sliding velocity of the cylindrical part along the track, 𝜃 = 3°, 𝜓 = 0, 𝑓 = 0.005, and parametric values of static friction coefficients 𝜇  and 𝜇 . 

The numerical results presented in this section clearly highlight that only the decrease in the 
vibration frequency can significantly increase the distance traveled by the cylindrical part. 
Nevertheless, even the largest traveled distances foreseen by simulations (0.043 m), which 
corresponds to about six times the cylinder radius, is not enough to cover the distances requested in 
many automatic manufacturing processes. For this reason, the development of a saw-teeth grooved 
surface of the conveyor track is highly recommended (see Figure 18). In this case, a traveled distance 
equal to 5 ÷ 6 times the cylinder radius is enough to move the cylindrical part from one grove to the 
following grove and to generate a sequential motion. 

  
Figure 18. Conveyor with saw-teeth track. 

5. Comparison between Numerical and Experimental Results 

In order to validate the numerical model, some experimental tests were carried out at the 
Laboratory of Robotics and Mechatronics of Padova University, which is equipped with the linear 
vibratory conveyor shown in Figure 19. 

A track (120 mm long) with a stop plate was printed with additive manufacturing and mounted 
on the conveyor. A single steel cylinder was placed on the track. The motion was monitored by an 
AVT Pike f-032b camera with a frame-rate of 470 frames/s. Both the track and the cylinder were 
equipped with markers that were used to reconstruct their trajectories, using the Hough transform 
[20]. The static friction coefficient of the cylinder on the track was measured as well, and resulted in 𝜇 = 0.7. 
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Figure 19. Vibratory conveyor for experimental tests. 

Figure 20 makes a comparison between numerical and experimental results. The numerical 
model is able to capture the most important features of cylinder motion, since the experimental 
results show a sequence of chaotic rebounds of the cylinder on the stop plate. The largest rebounds 
predicted by the numerical model have about the same duration (0.5 s) of experimental rebounds, 
and the traveled distances are only a bit larger (≈10%) than the measured values. This phenomenon 
may occur because, owing to the three-dimensional geometry of the system, the cylinder velocity 
may have a small component in the transverse direction (𝑧 in Figure 18). 

 
Figure 20. Comparison between numerical (a) and experimental (b) results. 𝜃 = 3°, 𝜓 = 10°, 𝑓 = 55 
Hz, 𝑎 𝑔 ⁄ = 2.254, 𝑘 = 1000000 N/m, 𝑓 = 0.005,  𝜇  = 0.35 and 𝜇  = 0.7. 

The main difference between numerical and experimental results is that the numerical model 
predicts a smaller number of bad impacts, with a short rebound. This happens because the numerical 
model is two-dimensional and assumes an impact between the cylinder and the stop plate along a 
line. In reality, the system is three-dimensional, and often the contact begins when a corner of the 
cylinder impacts the stop plate. The energy transfer from the conveyor to the cylinder is less efficient 
and leads to a reduced traveled distance. 

These phenomena could be analyzed by means of a 3D numerical model, which would be much 
more complex and cumbersome than the presented 2D model (a 2D simulation lasting 1 s requires a 
computation time of about 16 s). Nevertheless, it is worth noticing that a complete agreement between 
numerical and experimental results could be difficult to achieve even with a 3D simulation, since the 
system is non-linear and chaotic; thus, small differences between simulation and experimental 
parameters may lead to large differences in results [19,21]. In actual conveyors, there are many 
cylindrical parts, and their collisions further enhance the chaotic behavior of the system [22]. 
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6. Conclusions 

The dynamics of vibratory conveying of cylindrical parts are very different from the dynamics 
of conveying of block-shaped parts. Both analytical and numerical calculations showed that large 
distances cannot be traveled owing to the backwards rotation of the cylindrical part. 

The impacts of the cylindrical part on the stop plate are an essential feature of this kind of motion 
and strongly increase the traveled distance. After some rebounds, the impacts of the cylindrical part 
on the stop plate of the vibratory conveyor take place at random instants, which correspond to 
random values of the relative velocity between the cylindrical part and the stop plate. The impacts 
with the largest relative velocity lead to the largest rebounds. Eventually, the motion becomes chaotic. 

Numerical simulations made it possible to investigate the effect of the most important 
parameters on the vibratory conveying of cylindrical parts. When vibration acceleration is kept 
constant, a decrease in vibration frequency leads to a relevant increase in the traveled distance. The 
kinetic friction coefficient (𝜇 ) influences the traveled distance; when 𝜇  halves, the maximum 
traveled distance almost doubles. The other parameters have a small or negligible effect on the 
conveying process. This phenomenon occurs because the energy transferred by the impacts to the 
cylindrical part essentially depends on the relative velocity between the part and the stop plate, and 
the variations in 𝜓, 𝑓 , 𝑘 and 𝜇  have a small effect on the relative velocity but influence the instants 
in which the strongest impacts (with large relative velocity) take place. 
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