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Abstract: In the UAV electro-optical pod of the two-axis four-gimbal, the characteristics of a coarse–fine
composite structure and the complexity of dynamics modeling affect the entire system’s high precision
control performance. The core goal of this paper is to solve the high precision control of a two-axis
four-gimbal electro-optical pod through dynamic modeling and theoretical study. In response to this
problem, we used finite element analysis (FEA) and stress study of the key component to design the
structure. The gimbals adopt the aerospace material 7075-t3510 aluminum alloy in order to meet the
requirements of an ultralight weight of less than 1 kg. According to the Euler rigid body dynamics
model, the transmission path and kinematics coupling compensation matrix between the two-axis
four-gimbal structures are obtained. The coarse–fine composite self-correction drive equation in the
Cartesian system is derived to solve the pre-selection and check problem of the mechatronic under
high-precision control. Finally, the modeling method is substituted into the disturbance observer
(DOB) disturbance suppression experiment, which can monitor and compensate for the motion
coupling between gimbal structures in real time. Results show that the disturbance suppression
impact of the DOB method with dynamics model is increased by up to 90% compared to PID
(Proportion Integration Differentiation method) and is 25% better than the traditional DOB method.
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1. Introduction

The UAV electro-optical pod system is widely used in ship-borne, vehicular, and airborne
equipment and also plays a necessary role in recent information technology equipment [1]. It can accept
the region target image information, accurately identify the target motion state, and guide decision
making. Previous studies in the literature [2–6] used the PIOGRAM diagram method to explain the
kinematics principle of the stable mechanism and pointed out the geometric coupling problem of a
two-axis two-gimbal structure. Through special bearing and motor design, previous studies in the
literature [7,8] constructed a two-axis two-gimbal stable tracking platform with large field-of-view
visual axis. One study [9] applied the Euler dynamics theorem to establish the equation of the visual
axis stabilization structure. However, the two-axis two-gimbal structure is suitable for a stable platform
with low speed and low demand for stability precision, which may cause too much error or even
self-locking when working under normal conditions. In the UAV two-axis four-gimbal electro-optical
pod, the characteristics of a coarse–fine composite structure and the complexity of dynamics modeling
affect the high precision control performance of the system. Therefore, it is necessary to adopt new
dynamics modeling and theory to study the two-axis four-gimbal coarse–fine composite electro-optical
pod for use in a UAV.

Appl. Sci. 2020, 10, 1923; doi:10.3390/app10061923 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-6669-8059
http://dx.doi.org/10.3390/app10061923
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/6/1923?type=check_update&version=2


Appl. Sci. 2020, 10, 1923 2 of 19

A previous study [10] adopted external prestressed steel, which is applied to concrete cylinder
pipes. This derivation configures the prestress of steel strands to meet the requirements of ultimate
limit states, serviceability limit states, and quasi-permanent limit states, considering the tensile strength
of the concrete core and the mortar coating, respectively. Another study [11] presents a simplified
mathematical model for the analysis of varying compliance vibrations of a rolling bearing. The results
of the parametric analysis demonstrate that, with the proper choice of the size of the internal radial
clearance and external radial load, the level of the varying compliance vibrations in a rolling bearing can
be theoretically reduced to zero. In the literature [12,13], an aluminum conductor steel-reinforced cable
and a racing tire are modeled to study their vibrations and finite element analysis. The above modeling
methods are worth being referred to. However, these methods do not study the two-axis four-gimbal
electro-optical pod for use in a UAV, and there is lack of experiments on dynamics modeling of a
coarse–fine composite structure platform.

Another previous study [14] analyzed the equal-acceleration model of a two-axis four-gimbal
maneuvering target. Taking the equivalent sinusoidal movement and the uniform linear movement as
examples, the system was simulated. The results show that the precision of the coarse–fine composite
control is higher than that of single-detector control, and the two-axis four-gimbal structure is simple
and suitable for engineering implementation. Reference [15] presents the magnetic field analysis for
the double layer Halbach array voice coil motor. The analytical model is built by adopting Fourier
analysis and proves the feasibility of the analytic method with the equivalent structure. Reference [16]
is an analysis and modeling the fast steering mirror. A detailed analysis was provided to show the
proposed approach and improve disturbance suppression performance with only a slight weakening of
the target tracking ability. The proposed feed-forward control was effectively verified through a series
of comparative simulations and experiments. Besides, the method was applied in a real ship-based
project. However, this dynamic modeling and the theoretical study of these methods are applicable to
medium or large platforms and devices. It is of little significance to the design of an ultralight two-axis
four-gimbal coarse–fine UAV electro-optical pod.

In this paper, the dynamics modeling and theoretical study of the two-axis four-gimbal coarse–fine
composite UAV electro-optical pod is deeply analyzed. In response to this problem, finite element
analysis (FEA) and theoretical analysis of the stress and deflection of the key structural component are
used to design the structure. According to the Euler rigid body dynamics model, the transmission path
and motion coupling compensation matrix between two-axis four-gimbal are obtained, and suitable
aerospace materials were used for analysis. Finally, the simulation verifies the correctness of the model.

2. Structure Design

As shown in Figure 1, the two-axis four-gimbal coarse–fine composite structure can be simplified
to a cantilever beam. Because the integrated shafting structure requires high precision, and there
are deflection errors in actual processing and manufacturing, it is necessary to check the mechanical
parameters of the uniaxial structure to observe whether it meets the performance requirements of the
cantilever beam.

2.1. Bending Internal Force and Deflection

To better clarify the simplified model, the structure of the two-axis four-gimbal electro-optical
pod structure is divided into five key components for analysis. As shown in Figures 1 and 2, S1 is the
spherical cover, S2 is the outer pitch gimbal that is the core component of the simplified model of the
cantilever beam, S3 is the fine-stage components (think of it as the load q in the middle of S2), S4 is the
voice coil motor that outputs constant torque F, S5 is the end cover that is on the left side and the fixed
end of the cantilever beam. What is more, because the rotation angle between the gimbals is relatively
small, the torque change is ignored, and its maximum value is taken for analysis.
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Figure 1. Ultralight two-axis four-gimbal electro-optical pod and coarse–fine composite system. 

BLDC: brushless direct current motor; VCM: voice coil motor. 

 

Figure 2. The clarifications of the model as simplified to a cantilever beam. 

First, the bending internal force of plane bending under external force is analyzed. Moreover, 

the internal force diagram of bending moment and shear force is drawn by force analysis. In additions, 

the core problem is to check the deflection error of the simplified model of the cantilever beam. 

In Figures 2 and 3, suppose that the connection between S2 and S5 is the origin O. Then, establish 

the Cartesian coordinate system Oxy. The distance of 1l , 2l , and 3l  are shown in Figure 2. 1l  is 

the distance between the fixed end of the left end cover and the fine-stage components. 2l  is the 

length of fine-stage components. 3l  is the distance between the fine-stage components and the 

voice coil motor (VCM). Span H is the sum of 1l , 2l , and 3l . F is the VCM output constant torque. 

q is the load that is enforced by the fine-stage components S2 in the middle of the cantilever beam S2 

(outer pitch gimbal). 

 

Figure 3. Force analysis of coarse–fine composite structure. 

Figure 1. Ultralight two-axis four-gimbal electro-optical pod and coarse–fine composite system. BLDC:
brushless direct current motor; VCM: voice coil motor.
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Figure 2. The clarifications of the model as simplified to a cantilever beam.

First, the bending internal force of plane bending under external force is analyzed. Moreover, the
internal force diagram of bending moment and shear force is drawn by force analysis. In additions, the
core problem is to check the deflection error of the simplified model of the cantilever beam.

In Figures 2 and 3, suppose that the connection between S2 and S5 is the origin O. Then, establish
the Cartesian coordinate system Oxy. The distance of l1, l2, and l3 are shown in Figure 2. l1 is the
distance between the fixed end of the left end cover and the fine-stage components. l2 is the length of
fine-stage components. l3 is the distance between the fine-stage components and the voice coil motor
(VCM). Span H is the sum of l1, l2, and l3. F is the VCM output constant torque. q is the load that is
enforced by the fine-stage components S2 in the middle of the cantilever beam S2 (outer pitch gimbal).

In Figure 3, the x-axis is the length of the outer pitch gimbal, which is the simplified model of the
cantilever beam. Fx-x and M-x represent the changing states of shear force Fx and bending moment M
at different positions, X, of in the cantilever beam. What is more, the internal force diagram of bending
moment and shear force is drawn. Figure 3 shows the change of bending moment M and shear force
Fx with x.
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Because the deformation of the cantilever beam is very small, the change of the beam’s span
length after deformation is ignored. Since the example reports a cantilever beam, at the O-point (the
fixed end), the bending moment is max. Figure 4a,b presents the changing states of the shear force Fx

and bending moment M. Moreover, the material of the beam works within the elastic range of the
beam, so the deflection and angle of the beam are linear with the load acting on the beam. Using
static equilibrium analysis of material mechanics, the deflection of cantilever beam is calculated by the
superposition principle. Because of its complicated force, it is divided into three force forms to solve
the equations, respectively, which are finally superimposed together to obtain the deflection curve
equation of the coarse–fine composite structure.
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Figure 5. Superposition principle method static equilibrium analysis. (a) Form 1; (b) Form 2; (c) Form 

3. 

As shown in Table 1, the structure distance data obtained after Solidworks software simulation 

is analyzed. The deflection curve equation of each superposition diagram is as follows: 
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Figure 4. The internal force diagram. (a) Fx − x; (b) M− x.

In Figure 5, due its complexity, the force of the system is divided into three force forms in order to
use the superposition principle to solve the equation. What is more, the rigid displacement of the free
end A of the cantilever beam is selective analysis. The key is to decompose the load q in the middle
into two loads q starting at the origin A. The first is down, the second is up.
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As shown in Table 1, the structure distance data obtained after Solidworks software simulation is
analyzed. The deflection curve equation of each superposition diagram is as follows:

yD1 = y1 + θA1 · l3 =
q(l1 + l2)

4

8EI
+

q(l1 + l2)
3

6EI
· l3 =

3q(l1 + l2)
4 + 4q(l1 + l2)

3l3
24EI

, (1)

yD2 = y2 + θA2 · (l2 + l3) = −
q(l1)

4

8EI
−

q(l1)
3

6EI
· (l2 + l3) = −

3q(l1)
4 + 4q(l1)

3(l2 + l3)
24EI

, (2)

yD3 = y3 =
F(l1 + l2 + l3)

3

3EI
, (3)

Table 1. Structure distance data obtained by Solidworks software.

Length Value/mm

l1 40
l2 43
l3 33

Span H 116

By superimposing Equations (1)–(3), we can obtain

yD = yD1 + yD2 + yD3 =
3q(l1+l2)

4+4q(l1+l2)
3l3

24EI −
3q(l1)

4+4q(l1)
3(l2+l3)

24EI +
F(l1+l2+l3)

3

3EI , (4)

were E = the elastic modulus of the material, N/mm2; I = the cross-sectional area of the material, mm2;
and q = standard values for distributed loads, kN/m. As shown in Table 2, after Solidworks software
simulation, the free end force q and the average distributed load F were obtained as follows:

Table 2. Structure free and force and average distributed load data by Solidworks software.

Parameter Value

F 0.00022 kN
q 0.0085 kN/m

It is made of aluminum alloy nonferrous metal with excellent comprehensive performance and
its brand name is 7075-t3510. According to the data, the elastic modulus of 7075 aluminum alloy is
E = 71.7Gpa. The coarse–fine composite structure adopted the calculation method of moment of inertia
of circular section. All known parameters are substituted into the equation of the deflection curve
derived from the superposition.

yD = yD1 + yD2 + yD3 ≈ 1.67× 10−6mm, (5)

The coarse–fine stage composite structure is the overall plane bending of the main structure.
Therefore, the allowable deflection is less than H/1500. The calculated result is

H
1500

=
0.116
1500

≈ 0.77× 10−4mm > 1.67× 10−6mm. (6)

To sum up, the deflection of the coarse–fine composite structure is checked to meet the specified
deviation requirement. According to the internal force diagram of bending moment and shear force,
the bending internal force of the cantilever beam under the action of external force is within the
normal range.
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2.2. Finite Element Analysis

In the Figure 6, finite element analysis (FEA) was carried out for the force of the key structural
component, and the objects were meshed and solved by FEA. We then analyzed whether the stress,
strain, and displacement parameters met the requirements.Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 20 
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Figure 6. Finite Element Analysis (FEA) of key structure component (outer roll gimbal). (a) Stress 

analysis; (b) strain analysis; (c) displacement analysis. 
Figure 6. Finite Element Analysis (FEA) of key structure component (outer roll gimbal). (a) Stress
analysis; (b) strain analysis; (c) displacement analysis.
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It can be seen from the grading on the right of Figure 6a–c and Table 3 that the more red the
structure is, the more dangerous it is. The increase of stress, strain, and displacement in the drilling
position is large and relatively concentrated, but it still meets the needs for the normal working of the
structure within the safety range. The results of finite element analysis still prove that it can meet the
requirements of operation, and the outer roll gimbal is safe and reliable as a whole.

Table 3. Finite element analysis data obtained by Solidworks software.

Parameter
Value

Max Min

Stress 2.02× 107N/m2 1.13× 104N/m2

Strain 3.49× 10−4 2.79× 10−7

Displacement 3.42× 10−1mm 1.00× 10−30mm

The deformation ratio 49.3719

2.3. Design of Limit Structure of Rotation Angle

According to the Euler transformation of the fixed-point rotation of a rigid body, the Euler angle
has no limit. However, in the coarse–fine composite structure of the two-axis four-gimbal electro-optical
pod, the rotation angle of each gimbal is limited due to the external dimension, load weight, and the
center of mass imbalance of the gimbal.

As shown in Figure 7a, in order to ensure the normal operation of the UAV’s electro-optical pod
in a safe range, a limit stopper is used to limit the rotation angle of each gimbal structure. A balancing
weight is used to allocate the overall mass to prevent the occurrence of center of mass imbalance. As
shown in Figure 7a,b, the rotation angle of inner pitch gimbal limiting stopper is +7◦~−7◦ (a total of
14◦), and the rotation angle of inner roll gimbal limiting stopper is +12◦~−12◦ (a total of 28◦). In this
angle range, the operation of the UAV’s electro-optical pod is normal and safe.
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stopper; (b) the rotation angle of the inner pitch gimbal limiting stopper; (c) the rotation angle of the
inner roll gimbal limiting stopper.
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3. Dynamics Modeling

3.1. Coarse–Fine Composite Analysis

As shown in Figure 1, the structure of the two-axis four-gimbal electro-optical pod is more
complicated. It is therefore an effective solution to study the coarse–fine composite structure first. The
working principle of the coarse–fine composite structure involves the definition of multiple coordinate
systems, which are respectively explained as follows.

A Inertial coordinate system ({i}, OiXiYiZi)
B UAV coordinate system ({d}, OdXdYdZd)
C Coarse motor stator coordinate system ({u}, OuXuYuZu)
D Fine motor rotor coordinate system ({g}, OgXgYgZg)

The coarse motor is fixedly connected with the guide rail through the threaded connection,
without considering the damping effect between the structures. There is geometric eccentricity er in
the shafting structure of the coarse–fine stage mechatronic system, which will cause coaxiality error
and affect the high precision control performance of the electro-optical pod. As shown in Figure 8a, the
geometric eccentricity of the shafting structure is caused by force deformation, uneven cutting force,
and chip formation of the cutting edge.
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Figure 8. (a) Geometric eccentricity error of coarse–fine composite structure; (b) Euler transformation
diagram for fixed-point rotation.

In Figure 8b, according to the transformation matrix of fixed-point rotation in the Cartesian
coordinate system, the Euler transformation [17] is analyzed as shown in Figure 8b, and the Euler
angle is θ,φ,ϕ. The first step is to rotate the θ angle about the k axis, so that the i axis rotates to the
m position and the j axis rotates to the n position; Cartesian coordinate system Oijk→ Omnk . The
second step is to rotate the φ angle about the m axis, so that the n axis rotates to the q position and the k
axis rotates to the p position; Cartesian coordinate system Omnk→ Omqp . The third step is to rotate
the ϕ angle about the p axis, so that the m axis rotates to the r position and the q axis rotates to the s
position; Cartesian coordinate system Omqp→ Orsp . Finally, the Euler transformation of fixed-point
rotation is completed.

In the Cartesian coordinate system, after the system {u} rotates the θ1 angle around the Xi axis, the
system {i} is used as the reference system to observe the position of the system {u}. Then, the system {u}
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rotates the θ2 angle around Zi axis. Euler transformation of coarse–fine composite structure can be
calculated as the rotation transformation matrix, denoted as

EXθ = Aθ =


1 0 0
0 cosθ1 − sinθ1

0 sinθ1 cosθ1

, (7)

EZθ = Aθ =


cosθ2 − sinθ2 0
sinθ2 cosθ2 0
0 0 1

. (8)

According to Euler transformation law of rigid body fixed point rotation, it can be obtained from
Equations (7) and (8) that

E = Ekθ
· Emφ

· Epϕ =


cosθ − sinθ 0
sinθ cosθ 0
0 0 1

 ·


1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 ·


cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1

. (9)

Since the stator of the coarse motor is connected with the guide rail by thread, there is no
fixed-point rotation for the system {u} against the system {i}. Only the installation error of rotation
along the Y-axis exists. The kinematic coupling equation shows that

ωu =


ωux

ωuy

ωuz

 =


cosθu 0 sinθu

0 1 0
− sinθu 0 cosθu



ωix
ωiy
ωiz

+


0
·

θu

0

. (10)

Due to the Euler transformation law of rigid body fixed point rotation, the kinematics coupling
equations of the system {u} against the system {v} and the system {v} against the system {g} are

ωv =


ωvx

ωvy

ωvz

 = EkθvEmφvEpϕv


ωux

ωuy

ωuz

+

·

θvx
·

θvy
·

θvz

, (11)

ωg =


ωgx

ωgy

ωgz

 = EkθgEmφgEpϕg


ωvx

ωvy

ωvz

+


·

θgx
·

θgy
·

θgz

, (12)

The symbols used in the equation and Figure 9 are defined as follows:
·

θu = the angular velocity

vector of the coarse motor stator relative to the inertial coordinate system;
·

θvx,
·

θvy,
·

θvz = the angular
velocity vector of the coarse motor rotor relative to the coarse motor stator coordinate system;
·

θgx,
·

θgy,
·

θgz = the angular velocity vector of the fine motor rotor relative to the coarse motor rotor
coordinate system; ωu,ωv,ωg = the angular velocity and its components on the coordinate axis; and
LOS = the line of sight.

In Figure 9, the external environment disturbance is included. In order to simplify the analysis
process of the coarse–fine stage visual axis stabilization, this paper mainly discusses the conduction
path and characteristics of UAV motion to the mechatronic system. Therefore, the disturbance input of
the external environment is analyzed as an inertial coordinate system, and the whole process of motion
coupling of the coarse–fine mechatronic system is obtained through the transformation of Cartesian
coordinate along the system {u}, system {v}, and system {g}. The Euler angle θ,φ,ϕ is determined
separately in order to determine the relationship between the angular velocities at each stage and the
inertial space.



Appl. Sci. 2020, 10, 1923 10 of 19

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 20 

motion coupling of the coarse–fine mechatronic system is obtained through the transformation of 

Cartesian coordinate along the system {u}, system {v}, and system {g}. The Euler angle , ,    is 

determined separately in order to determine the relationship between the angular velocities at each 

stage and the inertial space. 

 

Figure 9. The coarse–fine composite structure of electro-optical pod kinematic coupling Piogram. 

3.2. Two-Axis Four-Gimbal Structure 

Based on the analysis of the transmission path and kinematics coupling compensation matrix of 

the coarse–fine composite structure, the dynamics modeling and theoretical study of the ultralight 

two-axis four-gimbal electro-optical pod are studied. The working principle of the two-axis four-

gimbal electro-optical pod involves the definition of multiple coordinate systems, which are 

respectively explained as shown in Figure 10. 

 

Figure 10. Simplified Cartesian coordinate system of the two-axis four-gimbal electro-optical pod. 

The inner gimbal rotates in a small range, and the outer gimbal follows the macro-field control 

of the inner gimbal in a large range. At the same time, the feedback error of the outer gimbal is 

compensated by the inner gimbal so that the inner gimbal can offset the disturbance of rolling and 

pitching. Finally, the two-axis four-gimbal electro-optical pod maintains the stability of the visual 

axis to achieve high-precision coarse–fine composite control. 

  

Figure 9. The coarse–fine composite structure of electro-optical pod kinematic coupling Piogram.

3.2. Two-Axis Four-Gimbal Structure

Based on the analysis of the transmission path and kinematics coupling compensation matrix of
the coarse–fine composite structure, the dynamics modeling and theoretical study of the ultralight
two-axis four-gimbal electro-optical pod are studied. The working principle of the two-axis four-gimbal
electro-optical pod involves the definition of multiple coordinate systems, which are respectively
explained as shown in Figure 10.
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Figure 10. Simplified Cartesian coordinate system of the two-axis four-gimbal electro-optical pod.

The inner gimbal rotates in a small range, and the outer gimbal follows the macro-field control
of the inner gimbal in a large range. At the same time, the feedback error of the outer gimbal is
compensated by the inner gimbal so that the inner gimbal can offset the disturbance of rolling and
pitching. Finally, the two-axis four-gimbal electro-optical pod maintains the stability of the visual axis
to achieve high-precision coarse–fine composite control.

A. Direct Connection Stabilization
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The gyroscope is sensitive to the angular velocity of the inner pitch system {e} and the inner roll
system {a} relative to the inertial system {i}. Therefore, make ωYe = ωZe = 0, and then the structure can
keep the visual axis of the detector stabilization.

·

θe
·

θa

 = {
ωgyro_Y
ωgyro_X

=

(
sinθa cosθE

cotθe cosθa cosθE + sinθE

)
ωZA

+

(
− cosθa − sinθE sinθa

cotθe sinθa − cotθe cosθa sinθE − cosθE

)(
ωYE
ωXA

) , (13)

According to Equation (13), the structure can keep the visual axis of the stabilization.
B. Indirect Connection Stabilization
The angular velocity of gyroscope sensitive the outer pitch axis system {E} and the outer roll axis

system {a} relative to the inertial system {i} is ωgyro_X = ωXA,ωgyro_Y = ωYE.
·

θe
·

θa

 = (
1 0
0 − secθe

)(
ωYe
ωZe

)
+

(
sinθa cosθE

cotθe cosθa cosθE + sinθE

)
ωZA

+

(
− cosθa − sinθE sinθa

cotθe sinθa − cotθe cosθa sinθE − cosθE

)(
ωgyro_Y
ωgyro_X

) , (14)

According to Equation (14), the structure can keep the visual axis of the stabilization.
Assuming that, in the case of sensitive motion of pitch and roll gyroscopes, their sensitivity values

are ωgyro_Y, ωgyro_Z, respectively,
·

θa represents the angular velocity vector of the inner roll gimbal

relative to the outer pitch gimbal, and
·

θe represents the angular velocity vector of the inner roll gimbal
relative to the inner roll gimbal; ωA, ωE, ωa, ωe, respectively, represent the angular velocity of the
two-axis four-gimbal structure and the components of its three coordinate axes.

According to the Euler dynamical theorem and Coriolis rotation law,

dH
dt

=
∂H
dt

+ω×H, (15)

where H =
(

HX HY HZ
)T

= moment of momentum; dH
dt = absolute derivatives (rate of change)

of vector H; ∂H
dt = dHX

dt i + dHY
dt j + dHZ

dt k = relative derivatives of vector H; and i, j, k = unit vectors of
coordinate axis of the body reference system, respectively.

According to the moment of momentum theorem,

dH
dt

= M, (16)

where M =
(

MX MY MZ
)T

= the external addition torque vector of the rigid body. Under the
assumption that the all three axes are principal axes of inertia, the following equation can be established:

IX
·
ωX + (IZ − IY)ωYωZ = MX

IY
·
ωY + (IX − IZ)ωXωZ = MY

IZ
·
ωZ + (IY − IX)ωXωY = MZ

, (17)

where IX, IY, IZ = the moment of inertia of the rigid body around the coordinate axis of the follower
reference system.

The moment of momentum theorem is applicable to the calculation of larger angular velocity.
However, the electro-optical pod of two-axis four-gimbal structure is compact and ultralight, with
a mass less than 1 kg and a stabilization precision is 20 µrad. When the design is carried out in
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combination with the actual situation, the values of some parameters are ignored. Based on the space
dynamics [18], the coarse–fine composite self-correction drive equation are derived.

A. Inner Pitch Gimbal

MYe ≈
(
xe ×

·
vb

)
me +

[
xe ×

(
·
ωa × ye

)]
me +

[
xe ×

(
·
ωE × ya

)]
me +

[
xe ×

(
·
ωA × yE

)]
me + IYe

·
ωe + (ωe × IYeωe), (18)

B. Inner Roll Gimbal

MXa ≈
(
xa ×

·
vb

)
ma +

[
xa ×

(
·
ωE × ya

)]
ma +

[
xa ×

(
·
ωA × yE

)]
ma +

(
ye ×

·
vb

)
me

+
[
ye ×

(
·
ωa × ye

)]
me +

[
ye ×

(
·
ωe × ye

)]
me + IXa

·
ωa + [ωa × (IXaωa)] + MYe

, (19)

C. Outer Pitch Gimbal

MYE ≈
(
xE ×

·
vb

)
mE +

[
xE ×

(
·
ωA × yE

)]
mE +

(
ya ×

·
vb

)
ma +

[
ya ×

(
·
ωE × ya

)]
ma

+
[
ya ×

(
·
ωa × ya

)]
ma +

(
ya ×

·
vb

)
me +

[
ya ×

(
·
ωE × ye

)]
me +

[
ya ×

(
·
ωa × ye

)]
me

+
[
ya ×

(
·
ωe × ye

)]
me + IYE

·
ωE + [ωE × (IYEωE)] + MXa + MYe

, (20)

D. Outer Roll Gimbal

MXA ≈
(
xA ×

·
vb

)
mA +

(
yE ×

·
vb

)
mE +

[
yE ×

(
·
ωA × yE

)]
mE +

[
yE ×

(
·
ωE × yE

)]
mE

+
(
yE ×

·
vb

)
ma +

[
yE ×

(
·
ωA × ya

)]
ma +

[
yE ×

(
·
ωE × ya

)]
ma +

[
yE ×

(
·
ωa × ya

)]
ma

+
(
yE ×

·
vb

)
me +

[
yE ×

(
·
ωA × ye

)]
me +

[
yE ×

(
·
ωE × ye

)]
me +

[
yE ×

(
·
ωa × ye

)]
me

+
[
yE ×

(
·
ωe × ye

)]
me + IXA

·
ωA + [ωA × (IXAωA)] + MYE + MXa + MYe

, (21)

where ωi = angular velocity of inner pitch{e}, inner roll{a}, outer pitch{e}, outer roll{a} relative to inertial
gimbal system{i}; vb = the speed of the UAV gimbal {b} relative to the inertial gimbal; mi = the quality
of inner pitch, inner roll, outer pitch and outer roll gimbal; I·· = IYe,IXa,IYE,IXA is the rotational inertia of
the inner pitch, the inner roll, the outer pitch and the outer roll gimbal along their respective rotation
axis; xi = the vector distance from the origin of four gimbal coordinate systems and UAV coordinate
systems to their respective centroids is designated as the inner pitch xe, inner roll xE, outer pitch xa,
outer roll xA, and UAV xb; yi = the vector displacement between the rotation axis of the inner pitch
gimbal and the inner roll gimbal is ye, the vector displacement between the rotation axis of the inner
roll and the outer pitch gimbal is ya, the vector displacement between the rotation axis of the outer
pitch and the outer roll gimbal is yE; and M·· = the torque of the four gimbals relative to the rotation
axis in the inertial coordinate system is the output torque of the four motors.

In order to further study the Euler rigid body dynamics model mechanism of the ultralight
two-axis four-gimbal electro-optical pod, Figure 11 is drawn. In Figure 11, the torques due to gimbal
kinematics and those due to geometrical coupling have been combined. The key problem is to ensure
the high precision control of the structure visual axis.

When both θe = 0 and θa = 0, the inner gimbal angle is zero. The disturbing moment of
the two axes is minimized. Through the following performance of the outer gimbal, the mutual
perpendicularity between the inner gimbals can be guaranteed, so as to eliminate the geometric
constraint coupling brought by the outer gimbal to the visual axis and realize the interference isolation,
proving once again that the system can decouple two stabilization channels from the perspective of
kinematics. The coupling interference of geometric constraints can be eliminated, and the control
precision can be improved.
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3.3. Comparison Validation

Because the motor adopts a direct drive way, it does not consider slip failure. The impact caused
by friction is small, so it is assumed that the transmission efficiency of the final stage of the pod is
η = 99%. The parameters of gimbal rotation angular velocity, UAV maneuvering acceleration, and
gimbal angular velocity are

·
ωYe =

·
ωXa =

·
ωYE =

·
ωXA = ε = 120◦/s2

≈ 2rad/s2
≈ 0.318r/s2, (22)

·
vb = a ≤ 5g ≈ 50m/s2, (23)

ωYe = ωXa = ωYE = ωXA = ωmax = 60◦/s ≈ 1rad/s ≈ 0.159r/s, (24)

As shown in the coarse–fine composite drive self-correction equation, the cross-product term
value is small, and the included angle is small as it approaches zero infinitely and is greater than zero.
According to the trig function, if θ→ 0, cosθ→ 1 . What is more, a× b = |a| · |b| · cos〈a , b〉. Therefore,
the term cos〈a , b〉 can be ignored as the constant 1.

As shown in Table 4, the moment of inertia and mass data of gimbals at all stages when the
electro-optical pod rotates at 0◦ are presented. The moment of inertia and the distance between the
center of mass and the origin are analyzed when the electro-optical pod rotates at different angles.
We then calculate the coarse–fine composite forecast torque (Equations (18)–(21)), full payload, and
equivalent dynamics load calculates torque (Equations (22)–(24)) of the electro-optical pod structure.
Our results are shown in Figure 12.

Table 4. Rotational inertia when the initial rotation angle is 0◦ and quality simulation data.

Gimbal
Rotational Inertia (Including Load/kg·m2) Mass (Including

Load/kg)X Y Z

Inner pitch e 0.57× 10−3 0.58× 10−3 0.48× 10−3 0.471
Inner roll a 0.89× 10−3 0.84× 10−3 0.93× 10−3 0.681

Outer pitch E 0.99× 10−3 0.94× 10−3 0.11× 10−2 0.740
Outer roll A 0.26× 10−1 0.88× 10−2 0.27× 10−1 1.925

It can be observed from Figure 12 that the difference of the coarse–fine composite forecast torque,
full payload, and equivalent dynamics load calculates the torque. This is due to the influence of friction,
wind load, and conductor’s interference torque. The load of the inner pitch gimbal is less at the center
and the influence of disturbance is minimal, so the difference with the real value is not large. The
gimbal is extended one level outward, the bearing load increase, the shape is more irregular, the circuit
board leads are complex, and other factors cause the error to increase within a certain range of the
true value.
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Figure 12. The ultralight two-axis four-gimbal electro-optical pod torque comparison validation. (a)
Inner roll gimbal; (b) inner pitch gimbal; (c) outer roll gimbal; (d) outer pitch gimbal.

4. Experiment

In view of the problem that the coupling effect between two-axes four-gimbal seriously affects
the stability precision, it is necessary to combine the coupling relationship of rotational inertia of
each gimbal axis for disturbance suppression analysis. Because of the effectiveness of the interference
observer (DOB) in suppressing external interference [19,20], in this paper, an interference observer
suitable for the ultralight two-axis four-gimbal electro-optical pod is studied.

As shown in Figure 13, the control object is set as the ultralight two-axis four-gimbal system, and
the minimum phase system under ideal state is adopted. The nominal inverse model of the controlled
object is Js + B. Based on the kinematic coupling analysis and modeling, a DOB disturbance observer
is used to study self-correcting disturbance suppression. The traditional DOB controller is improved to
a time-varying DOB controller with rotational inertia. At the same time, the results of the moment of
inertia analysis after the modeling mentioned in this paper are substituted into the nominal inverse
model Jn of each gimbal control loop. Realize the real-time change of Jn following the change of gimbal
angle θ. The control loop of the outer roll gimbal A was given sinusoidal interference as an example,
and a Matlab Simulink simulation comparison experiment was carried out.Appl. Sci. 2020, 10, x FOR PEER REVIEW 17 of 20 
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The rotational inertia of the rotating axis changes in real time. First, the parameters of the
traditional PID controller are set as follows: Kp = 20, Ki = 6. As can be seen from Table 4, the initial
parameters of rotational inertia are set as J = JXA = 0.176 × 10−1kg ·m2. The parameters of the
disturbance observer and its low-pass filter are set as follows: B = 0.002,g = 200, Bn = 0.002. From the
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motion coupling and modeling analysis, it can be known that the coupling rotational inertia on the
outer roll gimbal A is

J = (cosθE cos2 θe − sinθE cosθa sinθe cosθe)JXe+

(cosθE sin2 θe − sinθE sinθa cosθa cos2 θe)JZe + cosθE JXE + JXA
, (25)

Figures 14 and 15 verify the optimality of the velocity loop’s traditional PID control, the traditional
DOB disturbance suppression control, the improved DOB self-correcting disturbance suppression
control, and the low-pass filter parameter selection. Set the system input amplitude to 0. The input
amplitude of sine wave disturbance is 10 rad/s, and the frequency is 8 Hz. As shown in Figure 14, in
order to facilitate the observation of the experimental results, the output value of the improved DOB
was taken as negative gain output Scope which was distinguished from the other three waveforms.
Further observation of the experimental results shows that

∆X < ∆Y, (26)
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The results show that the disturbance suppression impact of DOB method with dynamics model
is increased by up to 90% better than PID. As shown in Figure 13, this is defined as

e = d− d′, (27)

As shown in Figure 16, by comparing the two figures, it can be known that the estimated deviation
of traditional DOB disturbance suppression is e = 0.51 and the estimated deviation of the improved
DOB disturbance suppression is e = 0.43. The results show that the disturbance suppression impact of
DOB method with dynamics model is increased by up to 25% compared to the traditional DOB.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 18 of 20 

 

Figure 15. Comparison diagram of disturbance suppression output of outer roll gimbal A. 

The results show that the disturbance suppression impact of DOB method with dynamics model 

is increased by up to 90% better than PID. As shown in Figure 13, this is defined as 

'e d d  , (27) 

As shown in Figure 16, by comparing the two figures, it can be known that the estimated 

deviation of traditional DOB disturbance suppression is 0.51e   and the estimated deviation of 

the improved DOB disturbance suppression is 0.43e  . The results show that the disturbance 

suppression impact of DOB method with dynamics model is increased by up to 25% compared to the 

traditional DOB. 

  

(a) (b) 

Figure 16. Comparison diagram of disturbance suppression difference output of outer roll gimbal A. 

(a) The output deviation of traditional DOB disturbance suppression; (b) the output deviation of 

improved DOB disturbance suppression. 

5. Conclusions 

This paper represents an in-depth study on the dynamics modeling and theoretical study of the 

two-axis four-gimbal coarse–fine composite electro-optical pod. Our conclusions are as follows. 

Figure 16. Comparison diagram of disturbance suppression difference output of outer roll gimbal
A. (a) The output deviation of traditional DOB disturbance suppression; (b) the output deviation of
improved DOB disturbance suppression.

5. Conclusions

This paper represents an in-depth study on the dynamics modeling and theoretical study of the
two-axis four-gimbal coarse–fine composite electro-optical pod. Our conclusions are as follows.

A In the UAV electro-optical pod of the two-axis four-gimbal, the characteristics of the coarse–fine
composite structure and the complexity of dynamics modeling affect the entire system’s
high-precision control performance. The core goal of this paper is solve the high precision
control of two-axis four-gimbal electro-optical pod through dynamic modeling and theoretical
study. FEA and theoretical analysis of the stress and deflection of the key structure component
was used to design the structure. The gimbal structure adopts 7075-t3510 aluminum alloy, which
is an aerospace material that meets the requirements of an ultralight electro-optical pod weighing
less than 1 kg.

B According to the Euler rigid body dynamics model, the transmission path and kinematics coupling
compensation matrix for the two-axis four-gimbal are obtained. The coarse–fine composite drive
correction equation of the inner-outer gimbals is derived to solve the pre-selection and check
problem of the coarse–fine motors under high-precision control.

C The modeling method is substituted into the DOB disturbance suppression experiment, which
can monitor and compensate for the motion coupling between gimbal structures in real time. Our
results show that the disturbance suppression impact of the DOB method with dynamics model
is up to 90% better than PID and 25% better than traditional DOB.

D This manuscript is based on the dynamics modeling and theoretical study of the two-axis
four-gimbal coarse–fine composite UAV electro-optical pod. This manuscript is valuable for all
researchers interested in the coarse–fine composite, two-axis four-gimbal structures, and ultralight
electro-optical pods.
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