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Abstract: According to the World Health Organization global status report on road safety, traffic
accidents are the eighth leading cause of death in the world, and nearly one-fifth of the traffic
accidents were cause by driver distractions. Inspired by the famous two-stream convolutional neural
network (CNN) model, we propose a driver behavior analysis system using one spatial stream
ConvNet to extract the spatial features and one temporal stream ConvNet to capture the driver’s
motion information. Instead of using three-dimensional (3D) ConvNet, which would suffer from
large parameters and the lack of a pre-trained model, two-dimensional (2D) ConvNet is used to
construct the spatial and temporal ConvNet streams, and they were pre-trained by the large-scale
ImageNet. In addition, in order to integrate different modalities, the feature-level fusion methodology
was applied, and a fusion network was designed to integrate the spatial and temporal features for
further classification. Moreover, a self-compiled dataset of 10 actions in the vehicle was established.
According to the experimental results, the proposed system can increase the accuracy rate by nearly
30% compared to the two-stream CNN model with a score-level fusion.
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1. Introduction

According to the World Health Organization (WHO) global status report on road safety, in 2018,
traffic accidents were the eighth leading cause of death in the world [1]. Nearly 135 million people
were killed and injured every year. According to the report, nearly one-fifth of the traffic accidents
were cause by driver distractions [2]. Although the mortality rate of traffic accidents in the world
declined in recent years, compared with other countries, the mortality rate is much higher in Taiwan.
In addition, due to the development of science and technology in recent years, in-vehicle information
systems (IVISs) such as navigation and media devices were installed in cars. These devices would
introduce more driver distractions and lead to more accidents [2]. Road traffic accidents cause huge
damage, and the number of accidents due to distractions is increasing. According to the National
Highway Traffic Safety Administrator of the United States (NHTSA) reports [2], human errors caused
approximately 90% road accidents in the United States and represented a dominant factor for vehicle
crashes [3]. Among them, the major cause of these accidents was the use of mobile phones [4]. As a
result, the government enacted several laws to punish drivers and prevent distractions caused by the
use of hi-tech products while driving.

In fact, using a smartphone is not the only reason for driver distractions. NHTSA defines a
distraction during driving as “any activity that diverts attention of the driver from the task of driving”,
including talking or texting on one’s phone, eating and drinking, or talking to people in the vehicle [4].
The Centers for Disease Control and Prevention (CDC) [5] classified distracted driving as cognitive,
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visual, and manual distractions. Cognitive distraction means that the driver’s mind is off driving. In
other words, even though the driver is in a safe driving posture, they might be lost in their thoughts
and mentally distracted from safe driving. Visual distractions refer to situations where the driver’s
eyes are off the road because of fatigue, sleepiness, drowsiness, inattention, or the use of multimedia
devices. Manual distractions are concerned with various activities where the driver’s hands are off the
driving wheel. Such distractions include using the cellphone, eating or drinking, adjusting hair and
makeup, or talking to a passenger.

In order to prevent accidents, distraction detection systems become an important component in
semi-autonomous or autonomous cars, which can alert the driver to potential problems. Motivated by
the fact that the major cause of manual distractions is the usage of the cellphones [6], some researches
focused on cellphone usage detection while driving. In 2011, Zhang et al. [7] extracted features of the
face, mouth, and hands from the images captured by a camera installed on the dashboard, and a hidden
condition random field (HCRF) model was applied to detect cellphone usage. In 2014, Berri et al. [8]
applied an support vector machine (SVM) model to check the hand and face locations and detect the
usage of cellphones with a frontal image view of the driver. In 2015, Craye et al. [9] used AdaBoost and
hidden Markov models to classify driver distraction by analyzing the RGB-D data captured by Kinect
sensors. However, in the data collection process, the experimental set-up missed two essential points:
the lighting conditions and the distance between the sensor and the driver [2]. In real cases, a driver is
exposed to a variety of lighting conditions, including sunlight and shadows [2]. Seshardi et al. [10]
created their own dataset for cellphone detection and applied a supervised descent method (SDM)
to track the locations of face landmarks for the extraction of regions of interest. Unlike previous
methods, no assumption where a face or hands were expected to be found was made. The authors
applied a histogram of gradients (HOG) and an AdaBoost classifier trained for each side of the face
regions to classify cellphone usage as right hand, left hand, or no usage Das et al. [11] introduced a
video-based hand detection dataset in an automotive environment and used the aggregate channel
features object detector.

In recent years, with the great success achieved by deep learning networks in computer vision [12–14],
some deep-learning-based object detection models were applied to detect hand location. In 2016,
Le et al. [15] trained a faster R-CNN model [16] to classify whether the hands are holding a steering
wheel or not, and the results showed that the model could achieve a higher accuracy rate than found
in Reference [10]. In 2016, Yuen et al. applied AlexNet to perform head pose estimation and used the
stacked hourglass network in the refinement stage to estimate facial landmarks and refine the face
localization [17]. The detected results can provide a basis for the estimation of the driver’s state in
terms of distraction and drowsiness. In addition, some studies were proposed to recognize the driver’s
behavior to detect distraction. Then, in Reference [18], the authors proposed DarNet and investigated
the mixing of different models, i.e., CNNs, recurrent neural network (RNNs), and SVMs, to detect driver
distraction. In 2018, Majdi et al. proposed Drive-Net to classify 10 distracted behaviors, which was
composed of a convolutional neural network (CNN) and a random decision forest [19]. Tran et al. [20]
utilized four different CNN models including VGG-16 [21], AlexNet [12], GoogleNet [22,23], and a
residual network to classify 10 distracted behaviors. In addition, they developed a warning system
that can alert the driver in real time when a distraction behavior is detected. According to their results,
the authors observed that the deeper models could provide higher detection accuracy, but the cost
of inference time was increased. The trade-off between accuracy and efficiency remains an issue. In
addition, only spatial information was considered, but temporal information, related to important cues
for behavior recognition, was ignored in recent works [19,20,24–26]. Although behavior analysis or
action recognition was studied for many years in the computer vision field, driver behavior analysis is
a specific issue and is challenging due to the light changing, occlusion, clutter, and subtle actions.

In this study, we aimed to analyze driver behavior and detect manual distractions in order to
develop a warning system for drivers. For action recognition, temporal information is important,
as well as spatial information, but it was ignored in recent works of distracted behavior recognition.
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Hence, inspired by the famous network architecture, using a two-stream CNN model [27] composed
of a spatial and a temporal stream ConvNet, the spatial and temporal information was extracted using
powerful CNN models for the classification of common 10 distracted behaviors inside the vehicle. For
the spatial information, an average pooling in the temporal domain was performed on 10 consecutive
RGB images, and then the resulting map was input to the following convolutional layers. The feature
map from the last convolutional layer was taken as the spatial features for further processing. On the
other hand, TVL1 optical flow [28] was firstly applied to extract the horizontal and vertical motion
information between input frames, and then two stacks of flow images were concatenated and input to
the temporal stream ConvNet. The feature map from the last convolutional layer was extracted as
the temporal features. Note that, instead of using a three-dimensional (3D) ConvNet, which would
suffer from large parameters and the lack of a pre-trained model, two-dimensional (2D) ConvNet
was used to construct the spatial and temporal ConvNet streams, and they were pre-trained using
the large-scale ImageNet [12]. Moreover, in order to integrate different modalities, rather than using
manually defined weights in the score-level fusion [27] or weights obtained via the optimization
process [24], the feature-level methodology was applied and a fusion network was proposed to analyze
the concatenated spatial and temporal features for classification.

The remainder of this paper is organized as follows: Section 2 reviews the issues of driver
distraction; Section 3 presents the proposed system consisting of three modules, spatial deep network,
temporal deep network, and integration module; Section 4 presents the experiment results of the
proposed system and compares it with other systems; Section 5 concludes the paper.

2. Related Works

In the computer vision field, action recognition was developed for many years. Among these
researches, how to extract action features is a key issue. In early years, studies focused on the
hand-crafted local features that were designed by human experts to extract a given set of chosen
characteristics [29]. Since temporal information includes important cues for action recognition, famous
feature descriptors for image classification such as scale-invariant feature transform (SIFT) and
histogram of oriented gradient (HOG) were extended to extract features for 3D data (2D spatial +

one-dimensional (1D) temporal data). In 2003, Laptev et al. [30] proposed spatio-temporal interest
points (STIPs) by extending Harris corner detectors. SIFT and HOG were also extended to SIFT-3D and
HOG3D for action recognition. Dollar et al. [31] proposed the cuboid feature for behavior identification.
Sadanand and Corso [32] established the ActionBank for action recognition. In 2013, Wang et al. [33]
proposed improved dense trajectories (iDT). Although action recognition was studied for at least
20 years, the performance is still limited due to the difficulties including large appearance and pose
variations, as well as a cluttered background [34]. With the development of convolutional neural
networks (CNNs), CNN showed the advantages of performance improvement for action recognition
compared to hand-crafted features [29]. It also makes real-life applications of action recognition
possible. Among them, driver behavior analysis is a specific issue and becomes very important because
in-vehicle information systems (IVISs) such as navigation and media devices are being developed
rapidly but they introduce more distractions which cause accidents.

In early studies of driver distraction detection, motivated by the fact that the major cause of
distractions is using a cellphone while driving [6], the detection of cellphone usage became a focus
and many machine learning models were applied. For example, in 2011, Zhang et al. [7] extracted
the features from the image captured by a camera installed on the dashboard and a hidden condition
random field model was applied. Berri et al. [8] applied an SVM model to check the hands and face
locations with the frontal image view of the driver. In order to cope with occlusion, Craye et al. [9]
used the RGB-D data captured by Kinect sensors, but the distance between the sensor and the driver
was missed in the data collection process. Unlike previous methods that assumed safe driving based
on the location or state of the face or hands, Seshardi et al. [10] applied a supervised descent method
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to track the locations of face landmarks, and an AdaBoost classifier trained for each side of the face
regions was used to classify the cellphone usage as right hand, left hand, or no usage.

According to the definition of a distraction by the NHTSA as “any activity that diverts attention
of the driver from the task of driving” [4], the CDC [5] classified distracted driving as cognitive,
visual, and manual distractions, whereby not only cellphone usage detection was developed but
more distracted behaviors were also considered. In 2014, Martin et al. [35] collaborated with the
University of California, San Diego (UCSD) Laboratory of Intelligent and Safe Automobiles and
presented a vision-based hand activity analysis system to detect three types of distractions: adjusting
video, adjusting mirrors, and operating gear. The images are captured by two Kinect cameras that
can provide the frontal and back views of the driver. Ohn-bar et al. [36] divided images into three
regions: steering wheel, gear, and radio panel. A region-based model was designed to detect the
presence of hands in certain pre-defined regions to classify three types of distractions. A more inclusive
distracted driving dataset including four distractions (safe driving (holding steering wheel), operating
shift, eating, and talking on the cellphone) was considered in Reference [37]. Zhao et al. [37] used
contourlet transform for feature extraction, and different classifiers were applied including random
forests, k-nearest neighbor, and multiplayer perceptron. Note that, in earlier years the datasets defined
a limited number of distracted behaviors for distraction detection, and most datasets were not public.
In 2016, StateFarm’s distracted driver detection competition on Kaggle [38] was the first publicly
available dataset for competition purposes. They defined 10 distractions to be detected: safe driving,
texting using right hand, talking on the phone using right hand, texting using left hand, talking on
the phone using left hand, operating the radio, drinking, reaching behind, doing hair and makeup,
and talking to passenger. In 2017, Abouelnaga et al. [24] created a new AUC Distracted Driver dataset
similar to StateFarm’s dataset. The dataset was composed of the same 10 distraction behaviors and
31 participants from seven different countries in four different cars. They also proposed a real-time
distracted driver posture classification system.

Driver behavior recognition is a kind of action recognition where the performance is rapidly
increasing because of the rise of deep learning models [12–14], where some network architectures were
developed for action recognition [39]. By extending the network architecture for image classification
and the spirit of the bag-of-words model to extract features and identify each video frame [39,40], static
CNNs were used to identify single or several video frames, and then the final recognition result was
obtained by averaging scores across the whole video [40]. However, the motion information in the
temporal domain between objects is ignored and the lack of specific temporal structure leads to only
a slight accuracy improvement compared to methods based on hand-crafted features. Hence, some
researchers improved the network architecture [39,41–46]. The studies [41,42] added a recurrent layer,
such as an long short-term memory (LSTM), to the 2D ConvNets (2D ConvNets + LSTM) and, thus,
the temporal ordering could be captured and encoded in the states. Although LSTMs on the features
from the last layers of 2D ConvNets could model high-level variations, fine low-level motion could not
be captured, and the detailed descriptor of the network was lost because of the backpropagation [39].
The training time was also increased because it required unrolling the network through multiple
frames for backpropagation through time [27,39]. On the other hand, 3D ConvNets [43,44] seem to
be a natural method to describe videos, and it can extract spatio-temporal features. However, there
are two problems with this model [27]. Firstly, it is harder to train than 2D ConvNets because more
parameters are needed. Secondly, due to the large network architecture and 3D filter usage, it cannot
directly use the pre-trained model on large-scale datasets, such as ImageNet. As a result, it is necessary
to train from scratch, and an overfitting situation would happen in the case of an increased number
of parameters. In 2017, Simonyan and Zisserman [39] proposed a practical approach by modeling
spatial and short temporal snapshots via two-stream networks. A single RGB image and a stack of
10 continuous optical-flow frames were input to the 2D ConvNets which were pre-trained on the
ImageNet dataset, while, in the test process, multiple snapshots were sampled from the video and
the action prediction was averaged. According to the experimental results, this network architecture
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achieved high performance on the existing benchmarks, while the network was very efficient to train
and test [39]. In addition, other models such as bidirectional LSTM [45] or neural hypergraph-based
model [46] for sequence prediction in natural language processing could be applied as well.

For distraction behavior recognition, some deep-learning-based methods were proposed in recent
years. In 2016, Le et al. [15] trained a faster RCNN model to classify whether the hands are holding the
steering wheel or not, and the results showed that the work could achieve a higher accuracy rate than
found in Reference [10]. In Reference [18], Streiffer et al. proposed DarNet and investigated the mixing
of different models, i.e., CNNs, RNNs, and SVMs, to detect driver distraction. In 2018, Majdi et al. [19]
proposed Drive-Net, which was composed of a convolutional neural network (CNN) and a random
decision forest, for the classification of 10 distracted behaviors. Tran et al. [20] utilized four different
CNN models including VGG-16, AlexNet, GoogleNet, and residual network to classify 10 distracted
behaviors. Yen et al. [47] applied a CNN model to extract features and recognize four postures,
including normal driving, using a cell phone call, eating, and smoking on the Southeast University
(SEU) driving posture dataset [37]. Note that the authors also conducted the system on self-compiled
infrared images, which could be invariant to illumination changes seen in daytime/night conditions for
real driving environments. The results demonstrated better performance than conventional classifiers,
e.g., SVM, with hand-crafted features. In 2017, Abouelnaga et al. [18,24] proposed a real-time distracted
driver posture classification system. The input image was firstly pre-processed by the detection and
segmentation methods that were applied to the regions of face, hands, and skin, and then a weighted
ensemble of four different convolutional neural networks was applied for classification. In 2018,
Masood et al. [26] applied VGG-16 and VGG-19 to recognize 10 distraction actions on the StateFarm
dataset and showed that the impressive results achieved by the CNN models and the usage of the
pre-trained model indeed saved training time. Baheti et al. [25] proposed a CNN-based system by
modifying the VGG-16 network, including using the leaky rectified linear unit (Leaky ReLU) activation
function instead of ReLU and applying various regularization techniques to cope with the problem of
overfitting. Moreover, the authors proposed the network of modified-VGG16 by replacing the whole
fully connected layer with a convolutional layer in order to reduce the number of network parameters.
The results showed that the system could achieve 96.31% accuracy on the AUC Distracted Driver
dataset. However, in recent works [19,20,24–26], only spatial information was considered, but temporal
information, related to important cues for behavior recognition, were discarded. In Reference [48],
Chuang et al. proposed a skeleton-based and a point-cloud approach with multiple views based on
Kinect depth cameras for driver behavior recognition, and LSTM was adopted to train the behavior
model. The authors evaluated the proposed system on the VAP multiple views dataset which was
collected in the laboratory to simulate an in-vehicle scene. However, the distance between the sensor
and the driver was missed, and there was a difficulty in the training process inherited from the LSTM
model [27,39]. Additionally, there were related issues such as driver intention prediction to anticipate
driver maneuvers. In Reference [49], Gebert et al. proposed an end-to-end network architecture which
consisted of FlowNet [26] to extract optical flow, a 3D residual network for maneuver classification,
and an LSTM model for handling temporal data with varying length. Note that FlowNet was used to
extract the optical flow in the video interpolation as well; however, labeling the ground-truth flow data
to train FlowNet for a specific task is hard work and time-consuming.

Moreover, in order to cope with illumination changes encountered in realistic driving scenarios,
there are other methods of analyzing data captured by illumination-invariant sensors such as depth
sensors [9,48,50], infrared cameras [47], or fusion of various sensor types [9,51]. In 2019, Martin et al. [52]
presented the first large-scale dataset, Drive & Act dataset, for fine-grained categorization of driver
behavior. The image frames were captured by six different views and three modalities that were
collected by five near-infrared cameras and Kinect v2 cameras used to acquire color, infrared, and
depth data. The authors aimed to facilitate researches for video- and pose-based action recognition.
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3. Method

For action recognition, temporal information is important, as well as spatial information. Motivated
by work [27] using temporal information, we proposed an architecture of two-stream convolutional
networks for distracted detection as shown in Figure 1. The network is composed of three sub-networks:
spatial stream ConvNet, temporal stream ConvNet, and a fusion network. Spatial stream ConvNet
and temporal stream ConvNet are used to extract the spatial and temporal features, respectively, and
the different features are integrated in the fusion network. By benefitting from transfer learning, the
spatial stream ConvNet was designed based on the famous network configuration, VGG-16, and the
pre-trained model on the ImageNet dataset can be applied. The average pooling in the temporal
dimension is firstly performed on 10 consecutive RGB images, and the result is passed to the following
layers of the spatial stream ConvNet. Via convolution operators performed in the convolutional layers,
the spatial features are obtained from the feature map in the last convolutional layer. On the other
hand, instead of using the famous 3D ConvNet that would suffer from large parameters and overfitting
when there is lack of a large training dataset [27], the temporal features are obtained by extracting the
motion information via the TVL1 optical flow [28] from video frames and then a stack of consecutive
flow images capturing vertical and horizontal motion information are input to the temporal stream
ConvNet. Then, the temporal features are obtained from the feature map in the last convolution layer
of temporal stream ConvNet. In the end, a fusion network, consisting of two convolutional layers and
two fully connected layers, was designed to integrate the spatial and temporal features to classify 10
distracted behaviors.
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Figure 1. Driver distraction system flowchart.

3.1. Spatial Stream ConvNet

The convolutional neural network (CNN) plays an important role in deep learning models. In
recent years, many studies relied on famous network architectures such as AlexNet [12], VGG-16 [21],
and GoogleNet [22,23]. These networks usually consist of convolutional layers and pooling layers,
followed by few fully connected layers. Some studies showed that better accuracy can be achieved
using a deeper network. By considering the balance of performance and computation efficiency
and the promising results [26], the spatial stream ConvNet was based on the network configuration
of VGG-16 [21], which was designed for image classification and was proven to effectively extract
the features of images layer by layer. Figure 2 shows the network configuration of spatial stream
ConvNet. The network input is a stack of 10 consecutive RGB frames, each of which were resized
to 224 × 224 pixels. By benefitting from the transfer learning of using the pre-trained model on the
large-scale dataset, averaging pooling of the temporal direction is firstly performed on these input
frames, and the resulting map with the size of 224 × 224 × 3 pixels is obtained. Following the average
pooling layer, the network is composed of 13 convolution layers, while five max pooling and the ReLU
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activation function are set in each layer. Unlike other CNN models which set different kernel size in
convolutional layers, a small kernel size of 3 × 3 pixels is set in all convolution layers which keeps the
scale-invariant feature transform after convolution by using the same padding mechanism. The max
pooling can help to extract the feature information of a larger area. Although the configuration of the
VGG-16 is simple and effective, the large number of parameters (140 million) on fully connected layers
is the main problem [21]. This leads to high cost for the training and test process. Hence, in our work,
unlike the original VGG-16 configuration, the fully connected layer was not used in the proposed
spatial stream ConvNet. Here, a feature map with the size of 7× 7× 256 pixels from the last convolution
layer is extracted as the spatial features and further processed in the following fusion network.
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Since the parameters of CNN models are large, transfer learning, using the pre-training model
to initialize the network, is applied in the training process. For driver distracted behavior analysis,
the hand movements are the main changes. Hence, rather than using the pre-trained model on the
ImageNet, the spatial stream ConvNet was pre-trained on the dataset that contains the videos of
N (N = 10 in our study) actions containing obvious hand movements from thUCF-101 dataset [53].
Additionally, data augmentation, including cropping, rotating, horizontal flipping, and shifting, was
performed to enlarge the size of dataset. Note that, in order to obtain the pre-trained model with the
ability to extract discriminative features, a softmax layer with the size of 1 × 1 × N was added after the
last convolutional layer, which was removed in the fine-tuned process. The network was trained by
stochastic gradient descent with a learning rate of 0.0001, decay rate of 10−6, and momentum value 0.9.
The batch size and number of epochs were set to 32 and 100, respectively.

3.2. Temporal Stream ConvNet

Although distracted behavior analysis was studied in recent works [19,24–26], only spatial
information was considered while temporal information was discarded. In previous studies of
action recognition, many network configurations were designed to integrate the spatial and temporal
information, for example, 2D ConvNets + LSTM [41,42], 3D ConvNet [43,44], and two-stream
network [27]. Instead of using the famous 3D ConvNet [43,44] that would suffer from large parameters
and overfitting when there is lack of a large training dataset [27], the two-stream network was used
to design the temporal stream ConvNet. In order to extract the motion information, TVL1 optical
flow [28] with default parameters in OpenCV is firstly applied to obtain vertical and horizontal flow
frames between two consecutive frames.

Then, the optical frames of two directions are concatenated, and a stack of 20 flow images with
the size of 224 × 224 × 20 pixels are input to the temporal stream ConvNet. Figure 3 shows the
configuration of the temporal stream ConvNet. Following the input layer, the network is composed of
13 convolution layers with a kernel size of 3 × 3 pixels, while five max pooling and the ReLU activation
function are set in each layer. Note that, in our work, unlike the original VGG-16 configuration, the
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fully connected layers were not used in the proposed temporal stream ConvNet. Here, a feature map
with the size of 7 × 7 × 256 pixels from the last convolution layer is extracted as the temporal features
and fused with the spatial features in the following fusion network.
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In order to train the temporal stream ConvNet, the pre-trained dataset, consisting of videos of N
(N = 10) actions involving hand motions from the UCF-101 dataset, as used in the training process
of the spatial stream ConvNet, was applied. Data augmentation involving random cropping and
horizontal flipping was also performed to enlarge the dataset. The vertical and horizontal motion
information was estimated between two frames via TVL1 optical flow. Additionally, in order to reduce
the impact caused by the camera movement, the mean flow frame of each direction is calculated, and
the flow frames were subtracted from the corresponding mean frame. For the pre-training process,
a softmax layer with the size of 1 × 1 × N was added after the last convolutional layer, which was
removed in the fine-tuned process, and the hyper-parameters were the same as used in the spatial
stream ConvNet. The pre-trained model was then obtained, which was used to initialize the temporal
stream ConvNet in the training process of the whole network.

3.3. Classification of Distractions by a Fusion Network

After the spatial and temporal stream ConvNet, the spatial and temporal feature maps with a size
of 7 × 7 × 256 pixels are obtained. In other to fuse different modalities, score-level and feature-level
fusion are common methodologies [54]. Since the dimension of features is high, i.e., 25,088, rather
than using either the manual-defined weights or weights obtained via the optimization method,
e.g., genetic algorithm (GA) [24], at the score level, a fusion network was designed to fuse features
in the feature level. Figure 4 shows the configuration of the fusion network. Two kinds of feature
maps are concatenated in the third dimension, and then the resulting feature map with a size of
7 × 7 × 512 pixels is input to the following convolutional layer. Since the CNN model as used in the
spatial and temporal stream ConvNet has promising ability of feature extraction, the fusion network
was not designed with deep layers in order to reduce the risk of overfitting. In our study, the fusion
network consisted of two convolutional layers, as well as one pooling layer and two fully connected
layers with sizes of 1 × 1 × 512 and 1 × 1 × 10, respectively. The kernel size of the first and second
convolutional layers was 1 × 1 and 3 × 3 pixels, and the ReLU activation function was applied to both
convolutional layers. The classification result of 10 distracted behaviors is obtained in the softmax layer.
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In the training process, the whole network, including the spatial stream ConvNet and the temporal
stream ConvNet with the pre-trained weights and the fusion network, was trained by the self-compiled
dataset. Note that all layers of the spatial stream ConvNet and the temporal stream ConvNet were
fine-tuned. A higher dropout value of 0.9 was set in the fully connected layers to reduce interdependent
learning amongst the neurons, which is an efficient way of coping with overfitting.

4. Experiment Results

We evaluated the performance of the proposed driver distraction detection system in the
self-compiled dataset. The experimental set-up is firstly introduced, including the dataset and the
computing environment. Then a performance comparison with other existing systems is performed.

4.1. Dataset and Experimental Setting

A limited set of distraction classes were included in earlier datasets and most datasets were not
public. The dataset of StateFarm on Kaggle [38] was the first publicly available dataset containing 10
distraction classes, used for competition purposes. The AUC Distracted Driver dataset [24], shown
in Figure 5, is similar to the StateFarm dataset with the same 10 distraction classes. However, the
sampling rate is low, and the motion information between consecutive frames is unstable. Hence,
in this study, we referred to the StateFarm and AUC Distracted Driver datasets to compile our own
dataset as shown in Figure 6. Ten driver distraction classes were also defined [24,38], including safe
driving, text right, phone right, text left, phone left, adjusting radio, drinking, reaching behind, hair
or makeup, and talking to passenger. We had 20 participants and the videos were shot in the same
car. The videos were divided into 198 films, 28,779 RGB images, and 57,558 optical flow images of
horizontal and vertical components. All images were resized to 344 × 356 pixels before the training
and test process.
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Due to the limited amount of data in our dataset, the pre-trained model on UCF-101 [53] was
used for network initialization, and then all the layers of spatial and temporal ConvNet streams were
fine-tuned. In order to reduce the training time, videos of the 10 actions with large hand movements
were selected from the UCF-101 dataset. All experiments were performed on a personal computer (PC)
with an NVIDIA GeForce GTX TITAN X graphics processing unit (GPU) having 3072 CUDA cores
with 12 GB of random-access memory (RAM), using an Intel i7-6700K central processing unit CPU and
16 GB of RAM; the frameworks of Keras and Tensorflow were used.

4.2. Comparison with Existing Systems

We firstly performed experiments on the AUC Distracted Driver Dataset to evaluate the accuracy
of the spatial network. As with the train/test data split proposed in Reference [17], it was found
that there was a high correlation between training and test data. In other words, similar images of
a person performing one distraction behavior would be in the training and test data. In order to
avoid this situation, we re-split the AUC dataset according to the drivers’ identifier (ID), and the
IDs used in training and test data were separated. The experimental results were compared with
Reference [25] as shown in Table 1. “Original Split” means the original data split used in Reference [25],
and “Re-Split” means the data was re-split according to the drivers’ IDs. The study applying VGG-16
with regularization was compared. Note that we only evaluated the performance of the spatial stream
ConvNet because, in the AUC Distracted Driver Dataset, the sampling rate was low which resulted in
discontinuous motion. This would cause very large errors for motion estimation, and the proposed
temporal stream ConvNet was not suitable for this case. According to the results, it was found that the
data split affected the performance much. The results of using different data splits were quite different.
The regularization methodology could increase the accuracy rate by about 1% to 2%.

Table 1. Performance evaluation and comparison for spatial stream ConvNet in the AUC Distracted
Driver Dataset.

Model Dataset Accuracy (%)

Spatial Stream ConvNet Original Split 94.44
VGG-16 with Regularization [25] Original Split 96.31

Spatial Stream ConvNet Re-Split 76.25
VGG-16 with Regularization [25] Re-Split 77.15

Since the displacement of the objects between two consecutive frames is large in the AUC
Distracted Driver Dataset, it might cause errors in the process of motion estimation. We compiled our
distraction dataset for performance evaluation. In the training process, stochastic gradient descent
was used for an optimization learning rate of 0.0001, decay rate of 10−6, and momentum value of 0.9.
The batch size and number of epochs were set to 16 and 500 respectively. We compared the results
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with the two-stream method [27], and the results are shown in Table 2. Firstly, it was found that the
two-stream method [27] and the proposed method indeed increased the accuracy rate of the pre-trained
model, especially for the temporal stream ConvNet in the proposed method. Secondly, fusion results
were better than using either spatial or temporal stream ConvNet alone. Hence, fusing information is
recommended. In addition, the proposed method increased the accuracy rate by nearly 30% compared
with Reference [27].

Table 2. Accuracy rate in the self-compiled dataset.

Model Spatial Stream ConvNet Temporal Stream ConvNet Fusion Result

Two-Stream Method 27 9.52 39.68 38.10

Two-Stream Method 27
with Pre-trained model 12.98 41.27 39.68

Proposed Method 33.34 9.52 34.92

Proposed Method with
Pre-trained models 49.21 65.08 68.25

Table 3 shows the confusion matrix for distraction behavior analysis in the self-compiled dataset.
The proposed system provided better results for the actions of text left and phone left, while the action of
phone right was easily confused with the action of hair or makeup.

Table 3. Confusion matrix in the self-compiled dataset.

Safe
Driving

Text
Right

Phone
Right

Text
Left

Phone
Left

Adjusting
Radio Drinking Reaching

Behind
Hair or
Makeup

Talking to
Passenger

Safe Driving 0.80 0.0 0.0 0.0 0.20 0.0 0.0 0.0 0.0 0.0

Text Right 0.0 0.75 0.0 0.0 0.0 0.0 0.25 0.0 0.0 0.0

Phone Right 0.0 0.0 0.33 0.0 0.0 0.0 0.17 0.0 0.50 0.0

Text Left 0.0 0.0 0.0 1.00 0.0 0.0 0.0 0.0 0.0 0.0

Phone Left 0.0 0.0 0.0 0.0 1.00 0.0 0.0 0.0 0.0 0.0

Adjusting
Radio 0.11 0.22 0.0 0.0 0.0 0.56 0.0 0.11 0.0 0.0

Drinking 0.0 0.13 0.25 0.0 0.0 0.0 0.5 0.0 0.12 0.0

Reaching
Behind 0.0 0.0 0.0 0.0 0.0 0.25 0.0 0.75 0.0 0.0

Hair or
Makeup 0.0 0.0 0.14 0.0 0.0 0.0 0.0 0.0 0.86 0.0

Talking to
Passenger 0.0 0.0 0.11 0.0 0.0 0.0 0.0 0.23 0.0 0.67

5. Conclusions

Driver distraction is one of the major causes of traffic accidents, especially in Taiwan. It would be
worth developing a system to detect driver distraction for automatic vehicles. Inspired by the famous
two-stream CNN model, we proposed a driver behavior analysis system using CNNs to analyze the
input consecutive frames, and the feature maps from the last convolution layer were extracted as
the spatial and temporal features for further classification. Unlike previous studies using manually
defined weights or weights obtained via the optimization process, a fusion network was designed to
integrate the modality features for classification. In addition, a self-compiled dataset of 10 actions in
the vehicle was established. According to the experimental results, the proposed system can increase
the accuracy rate by nearly 30% compared to the original two-stream CNN model. In the future, a
comprehensive network configuration could be designed for more fine-grained actions and various
scene challenges, such as behavior recognition in the night.
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