
applied  
sciences

Article

Directional DC Charge-Transfer Resistance on an
Electrode–Electrolyte Interface in an AC Nyquist
Curve on Lead-Acid Battery

Wubin Wang 1 , Wenxi Yao 1, Wei Chen 2, Dong Chen 2, Zhen Ma 3 and Zhengyu Lu 1,*
1 College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China;

wubinwangzju@163.com (W.W.); ywxi@zju.edu.cn (W.Y.)
2 Zhejiang Narada Power Source Co., Ltd., Hangzhou 310030, China; chw@narada.biz (W.C.);

chendong0127@126.com (D.C.)
3 Shanghai Institute of Space Power-sources, Shanghai 200245, China; mazhen810615@126.com
* Correspondence: eeluzy@cee.zju.edu.cn; Tel.: +86-571-879-52664

Received: 21 February 2020; Accepted: 8 March 2020; Published: 11 March 2020
����������
�������

Featured Application: Battery management system design on lead-acid batteries with
electrochemical impedance spectroscopy and first principle linear circuit model.

Abstract: Both the frequency domain Nyquist curve of electrochemical impedance spectroscopy (EIS)
and time domain simulation of DC equivalent first principle linear circuit (FPLCDCequ) are some of
the fundamentals of lead-acid batteries management system design. The Nyquist curve is used to
evaluate batteries’ state of health (SoH), but the curve does not distinguish charging/discharging
impedances on electrode–electrolyte interfaces in the frequency domain. FPLCDCequ is used to
simulate batteries’ terminal electrical variables, and the circuit distinguishes charging/discharging
impedances on electrode–electrolyte interfaces in the time domain. Therefore, there is no direct
physical relationship between Nyquist and FPLCDCequ This paper proposes an AC equivalent first
principle linear circuit (FPLCACequ) by average switch modeling, and the novel circuit distinguishes
charging/discharging impedances on electrode–electrolyte interfaces in Nyquist. The novel circuit
establishes a physical bridge between Nyquist and FPLCDCequ for lead-acid batteries management
system design.

Keywords: state of health; state of charge; lead-acid battery; electrochemical impedance spectroscopy;
battery management system; charge-transfer resistance; double-layer capacitance; first principle
circuit; behavioral circuit; power electronics; average switch modeling

1. Introduction

Lead-acid batteries are widely used as a backup in power systems, e.g., in telecommunication
stations and power plants. On lead-acid batteries, both the frequency domain Nyquist curve of EIS [1]
and time domain simulation of DC equivalent first principle linear circuit (FPLCDCequ) [2] are widely
used in battery management system (BMS) design. In BMS design, linear electrical circuits, including
AC and DC equivalent circuits, are more competitive than nonlinear electrochemical circuits. Firstly,
linear electrical circuits, with electrical equivalent lumped elements, are intuitive for electrical engineers
to understand the physical and electrochemical characteristics of batteries [3]. Batteries’ physical and
electrochemical parameters are mapped to electrical lumped elements, which are used to estimate
batteries’ state of health (SoH) or state of charge (SoC) [4]. Secondly, linear impedances are more
convenient for simulating batteries’ terminal electrical variables in software. Advanced digital signal
processing requires that elements should be linear functions of frequency [5], and electrical lumped
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impedances are nature linear functions of frequency. However, lumped electrochemical impedances
are nonlinear functions of frequency [6], and are not convenient for programming. Unless special
mention is given, the following circuits in this paper only refer to linear electrical circuits.

Elements in a circuit, fitting for EIS, are simplified from governing equations [7,8] in lead-acid
battery and have clear physical/electrochemical meanings; so, they are the first principle and basis
of classic threshold-based BMS design. Charge-transfer resistance and double-layer capacitance are
related to non-cohesion of active mass of electrodes; contacting resistances represent the existence
of stratification and corrosion of electrodes; nonlinear diffusion impedances characterize sulfating
of electrodes [4,9]. Multi-scale SoC/SoH judgment based on EIS is an extension of threshold-based
management [10,11]; circuits elements are nonlinearly influenced by various factors, e.g., SoC, charging
or discharging, superimposed DC current [12]; other form signals, such as short step response, can
take place of sinusoidal excitation to demonstrate dominant aging mechanisms on battery capacity [8].
The leading edge of BMS to forecast and optimize batteries’ SoC/SoH is usually based on time domain
simulation [13,14]; therefore, extracting directional DC charge-transfer resistances from an AC Nyquist
curve is significant in time domain research on BMS.

The Nyquist curve, describing AC steady-state volt-ampere characteristics of batteries, is used
to evaluate SoH [1], and AC equivalent behavioral linear circuit (BHLCACequ) is used for the curve
fitting [15]. In certain frequency bands of Nyquist, impedances on electrode–electrolyte interfaces
dominate curve shape [1,3]; at a certain frequency point of Nyquist, BHLCACequ has a corresponding
time domain waveform to approach the measurement point. Then, the behavioral relationship between
BHLCACequ and Nyquist is established.

BHLCACequ is an interpretation basis of the Nyquist curve [16]. The physical and electrochemical
meanings of contacting resistor (RC), stray inductor (LS) and electrolyte bulk capacitor (Cbulk) in
BHLCACequ are relatively clear [3]. Individual elements in BHLCACequ rely on the first principle [17],
simplified from governing equations [7,8], but the elements’ combination does not consider the
first principle. Linear impedance on positive (or negative) electrode–electrolyte interfaces is
generally modeled by a charge-transfer resistor (Rct) and a double-layer capacitor (Cdl) [3,18].
The Rct describes the DC steady-state volt-ampere characteristics of an electrode–electrolyte interface
according to Tafel law [19]; the Cdl describes the DC transient-state volt-ampere characteristics of an
electrode–electrolyte interface according to spatial anisotropy [19]. Both Cdl and Rct in BHLCACequ do
not distinguish charging/discharging, too [15,18,20]. The impedance, on a single (positive or negative)
electrode–electrolyte interface, consisting of one Rct and one Cdl, characterizes both charging and
discharging at the same time. The authors of [21] also suggest that the long-chain series of an Rct ‖ Cdl
circuit can approximate the Nyquist curve as close as possible, but long-chain series elements do not
have practical physical and electrochemical meanings, and cannot distinguish charging/discharging
impedances either.

FPLCDCequ, describing DC steady-state and transient-state volt-ampere characteristics of batteries,
typically includes LS, RC, Cbulk and impedances on electrode–electrolyte interfaces (zeei) [20]. zeei
distinguishes Rct into charging (Rct,pc and Rct,nc)/discharging (Rct,pd and Rct,nd) [2,20,22]. Rct,pc, Rct,nc,
Rct,pd and Rct,nd in FPLCDCeq are a function of the surface area of the solid electrolyte [2,3,22]. Surface
areas of charging and discharging for electrochemical processes are mutually exclusive and collectively
exhaustive [2,3,22]. Generally, they are different; therefore, charging (Rct,pc and Rct,nc) and discharging
(Rct,pd and Rct,nd) charge-transfer resistors are different. However, Cdl in FPLCDCequ does not distinguish
charging/discharging [3,20], and only one capacitor (Cdl,p or Cdl,n) combines both charging and
discharging DC transient-state volt-ampere characteristics of each electrode. Cdl is generated on a solid
electrolyte interface and always in parallel with Rct in FPLCDCequ [3,20]. Therefore, charging (Cdl,pc
or Cdl,nc) and discharging (Cdl,pd or Cdl,nd) double-layer capacitors should depend on their individual
electrochemical reaction surface areas, and they should be different in general.
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Existing BHLCACequ does not distinguish charging impedances (Rct,pc, Cdl,pc, Rct,nc and Cdl,nc) from
discharging impedances (Rct,pd, Cdl,pd, Rct,nd and Cdl,nd) on electrode–electrolyte interfaces. Therefore,
there is no physical relationship between the EIS Nyquist curve and FPLCDCequ.

This paper proposes AC equivalent first principle linear circuit (FPLCACequ) by average switch
modeling [23]. FPLCACequ accurately models the steady-state AC fundamental response as the same as
FPLCDCequ, and average switch modeling calculates steady-state DC static response as the same as
FPLCDCequ. FPLCACequ bridges the physical relationship between Nyquist and FPLCDCequ. FPLCACequ,
focused on AC-input, is an extension of FPLCDCequ. These two first principle linear circuits complement
each other to guide lead-acid BMS design.

2. AC Equivalent First Principle Linear Circuit and Experiments

2.1. Requirements of FPLCACequ

The FPLCACequ must meet three requirements: Firstly, elements in FPLCACequ should be AC
equivalent linear, and voltage responses in circuit simulation should not contain a steady-state DC
static component. Secondly, charging impedances (Rct,pc, Cdl,pc, Rct,nc and Cdl,nc) and discharging
impedances (Rct,pd, Cdl,pd, Rct,nd and Cdl,nd) on electrode–electrolyte interfaces in FPLCACequ should be
distinguished. Thirdly, steady-state AC fundamental responses in FPLCACequ should be consistent with
steady-state AC fundamental responses in FPLCDCequ.

2.2. Analysis of AC Equivalent Impedances on Electrode–Electrolyte Interfaces by Average Switch Modeling

Directional linear impedances on electrode–electrolyte interfaces of FPLCDCequ are solid in
theory [2,3], and its transient-state and steady-state responses under DC-input have also been
experimentally verified [2,3]. Furthermore, in this paper, average switch modeling is proposed to
explore responses of FPLCDCequ under pure AC-input and to analyze AC equivalent linear impedances
on electrode–electrolyte interfaces.

2.2.1. Vector Analysis of Responses of Electrode–Electrolyte Interfaces by Average Switch Modeling

Assuming that amplitudes of sinusoidal currents excited from the electrochemical workstation
are small enough, voltage responses of batteries’ terminals are also trigonometric waveforms as
the same frequency as excitation currents [24]. At any certain frequency, internal impedances
of batteries are equivalent to linear-constant-time-invariant impedances, and impedances on
electrode–electrolyte interfaces of both positive and negative electrodes are also considered as
linear-constant-time-invariant [1,3].

• Analysis of Steady-State DC Static Responses by Tafel law

Under stable AC current injection, steady-state DC static responses of impedances on
electrode–electrolyte interfaces should be zero in EIS operation. If there are any steady-state DC static
voltage responses of batteries’ terminals, there should exist non-zero steady-state DC static current
injections through batteries’ terminals according to Tafel law [25]. This is contradictory to EIS practice.

• Vector Analysis of Steady-State AC Fundamental Voltage Response by average switch modeling

Firstly, linear decomposition of equivalent steady-state AC fundamental response vector on
electrode–electrolyte interfaces exists. According to the electrical vector analysis principle [26], space
vector is regarded as a static vector in rotating the coordinate as the same rotating frequency as stable
excitation, and each space vector (VO) has a clear amplitude and phase in the rotating coordinate.
In the rotating coordinate, the target vector can be equivalent to two vectors (V1 and V2) by linear
superposition. As shown in Figure 1a, amplitudes and phases of the two vectors can be different,
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and there are infinite sets of two vectors (V1i and V2i) equivalent to the target space vector (VO). In
the following sections, the target vector is set as steady-state AC fundamental voltage response of
impedances on electrode–electrolyte interfaces of both positive and negative electrodes.Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 22 
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Figure 1. Vector analysis of steady-state AC fundamental voltage responses: (a) there are infinite
sets of two vectors (V1i and V2i) equivalent to target vector (VO) in rotating coordinate; (b) the target
vector (Veei) is equivalent to the sum of new charging (0.5VCha) and discharging (0.5VDis) vectors by
linear superposition.

Secondly, the linear decomposition of steady-state AC fundamental voltage response vector on
electrode–electrolyte interfaces is unique. When stable AC current injections flow through charging
impedances on electrode–electrolyte interfaces of both positive and negative electrodes, the charging
vector of steady-state the AC voltage fundamental response (VCha) is obtained as Equation (1), so be
discharging vector of steady-state AC voltage fundamental responses (VDis), as Equation (2). During
one period of stable AC current injections, both charging and discharging vectors appear for exactly
half a period, and their available time is mutually exclusive and collectively exhaustive. According
to average switch modeling [23,26], a new charging vector (V′Cha), as Equation (3), is exactly half
an amplitude and the same phase of charging vector in the coordinate plane. So be new discharging
vector (V′Dis), as Equation (4) because, during stable AC excitation, both charging and discharging
vectors are only available at a half-cycle of stable AC injection. The target vector (Veei) can only be
formed by new charging (V′Cha) and discharging (V′Dis) vectors by linear superposition as Equation (5)
and Figure 1b. Figure 2 is an AC equivalent impedance (Zeeie jθeei ) similar to Equation (6) by removing
the current (IEISe jθEIS) from Equation (5). The physical meanings of elements in the above equations
are explained in Table A1 of the Appendix A.

VCha =
(
IEISe jθEIS

)(
ZChae jθCha

)
, (1)

VDis =
(
IEISe jθEIS

)(
ZDise jθDis

)
, (2)

V′Cha= 0.5×
(
IEISe jθEIS

)(
ZChae jθCha

)
, (3)

V′Dis = 0.5×
(
IEISe jθEIS

)(
ZDise jθDis

)
, (4)

Veei= V′Cha + V′Dis, (5)

Zeeie jθeei = 0.5×
(
ZChae jθCha

)
+ 0.5×

(
ZDise jθDis

)
, (6)
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• Time Domain Simulation of FPLCACequ Impedances

During charging, the voltage response of impedances on electrode–electrolyte interfaces of both
positive and negative electrodes is regarded as a linear transfer function [3,20], and positive half-wave
sinusoidal current excites the transfer function in its charging half-cycle. So be during discharging.
Two linear transfer functions responses are linearly superposed to simulate a one-cycle voltage response
of impedances on electrode–electrolyte interfaces.

Vector analysis has a strict time-sharing requirement; the sinusoidal current excitation is naturally
divided into positive and negative half. Amplitude superposition is carried out by linearly adding up
charging and discharging voltage responses. Figure 3 is an FPLCDCequ [3,20] for steady-state simulation
with divided half-wave sinusoidal currents, and is intuitive compared with Figure 2.
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However, in FPLCDCequ simulation, steady-state DC static voltage response of impedances on
electrode–electrolyte interfaces appear in Figure 4. Under positive half-wave sinusoidal current
injection, periodic voltage responses of charging impedances on electrode–electrolyte interfaces are
excited; According to average switch modeling principles, an equivalent DC positive response 〈vCha〉

is on electrode–electrolyte interfaces, as Equation (7). Similarly, an equivalent DC negative response
〈vDis〉 is on electrode–electrolyte interfaces, as Equation (8). Then equivalent DC response VDC on
electrode–electrolyte interfaces is the sum of 〈vCha〉 and 〈vDis〉, as Equation (9). Steady-state DC static
voltage responses are shown in FPLCDCequ simulation under DC-input [2,3,20], but do not exist in
experiments under AC-input. The physical meanings of elements in the above equations are explained
in Table A1 of the Appendix A.

〈vCha〉 =
1
T

∫ T

0
vChadt, (7)

〈vDis〉 =
1
T

∫ T

0
vDisdt, (8)

VDC = 〈vCha〉+ 〈vDis〉, (9)

Linear superposition of terminal transient voltage responses in FPLCDCequ, excited by time-division
input, has been verified on physical-electrochemical derivation, numerical calculations and experiments
under DC-input [20]; linear sub-models are switched by a low-pass filter and hysteresis relay [20]. In
Figure 4, the black solid line is the output of transient voltage responses in FPLCDCequ simulation under
AC-input. The black dashed line cancels the steady-state DC voltage response from the black solid line,
and the DC component is exactly equal to Equation (9). The blue dotted line filters the steady-state AC
fundamental voltage response out of the black solid line by Equation (10), and the blue dotted line
is very close to the black dashed line, which has a little distortion from higher harmonics. The pink
dot-dash line is the steady-state AC voltage response in the FPLCACequ simulation. The physical
meanings of elements in the above equations are explained in Table A1 of the Appendix A.

TF f ilter =

ω
Q s

s2 + ω
Q s +ω2 , Q = 10, (10)
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In Figure 4, the steady-state AC fundamental voltage response of both FPLCACequ and FPLCDCequ
in the simulation are equal, and electrode–electrolyte interface impedances in FPLCACequ and FPLCDCequ
are one-to-one equivalent. The equivalent relationship is unique, and equivalent results in vector
analysis are available for both steady and transient states in electrical circuits [27]. The possibility
of distinguishing charging/discharging impedances is lost in BHLCACequ because BHLCACequ obtains
a steady-state AC fundamental voltage response by filtering out DC responses in FPLCDCequ as the
blue dotted line. Therefore, the composition of steady-state AC fundamental voltage is not studied in
BHLCACequ, but research on the composition of DC components is necessary to study FPLCDCequ and
FPLCACequ.
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Figure 4. Steady-state AC fundamental voltage responses of both DC equivalent first principle linear
circuit (FPLCDCequ) and AC equivalent first principle linear circuit (FPLCACequ) are equal in simulations:
(a) 5A rms current injections at 0.5 Hz; (b) 5A rms current injections at 1.0 Hz.

2.2.2. AC Equivalent Frist Principle Impedances on Electrode–Electrolyte Interfaces

Equation (6) implies that equivalent AC impedances on electrode–electrolyte interfaces is equal to
half of the sum of charging and discharging impedances on electrode–electrolyte interfaces of both
positive and negative electrodes.

Each element in AC equivalent first principle impedances is non-directional and totally linear.
This advantage simplifies the simulation, and it does not need to determine the direction of excitation
in advance, nor does it need auxiliary circuits to switch sub-models in simulations [20]. Further,
the charging impedances (ZChae jθCha) are strictly separated from discharging impedances (ZDise jθDis).
Equations (11) to (13) expand the impedances (ZChae jθCha , ZDise jθDis , Zeeie jθeei ) to charge-transfer resistors
(Rct,pc, Rct,nc, Rct,pd and Rct,nd) and double-layer capacitors (Cdl,pc, Cdl,nc, Cdl,pd and Cdl,nd); Equation (14)
is an equivalent transformation for the Nyquist fitting. The physical meanings of elements in the above
equations are explained in Table A1 of the Appendix A.

ZChae jθCha =
Rct,pc

1 + jRct,pcωCdl,pc
+

Rct,nc

1 + jRct,ncωCdl,nc
, (11)

ZDise jθDis =
Rct,pd

1 + jRct,pdωCdl,pd
+

Rct,nd

1 + jRct,ndωCdl,nd
, (12)

Zeeie jθeei = 0.5×

 Rct,pc

1 + jRct,pcωCdl,pc
+

Rct,nc

1 + jRct,ncωCdl,nc
+

Rct,pd

1 + jRct,pdωCdl,pd
+

Rct,nd

1 + jRct,ndωCdl,nd

, (13)

Zeeie jθeei =
0.5Rct,pc

1+ j(0.5Rct,pc)ω(2Cdl,pc)
+

0.5Rct,nc

1+ j(0.5Rct,nc)ω(2Cdl,nc)
+

0.5Rct,pd

1+ j(0.5Rct,pd)ω(2Cdl,pd)
+

0.5Rct,nd

1+ j(0.5Rct,nd)ω(2Cdl,nd)
, (14)
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2.3. AC Equivalent First Principle Linear Elements on Batteries

RC, LS and Cbulk are typical equivalent first principle linear elements on batteries [3,20]. Under
AC current injections, steady-state DC static and AC fundamental voltage responses of each element
are formulated in Equations (15)–(20). These equivalent elements only have AC fundamental voltage
responses, and do not have DC static voltage responses; therefore, it is not necessary to determine the
direction of excitation in advance, nor does it need to switch sub-models in simulations. The physical
meanings of elements in the above equations are explained in Table A1 of the Appendix A.

Linear Cbulk, replacing the nonlinear Warburg impedance (zWarburg) in Equation (21), represents the
diffusion process of electrolyte. zWarburg usually characterizes the diffusion process of electrolyte [19],
so researchers [28] propose to connect zWarburg with impedances on electrode–electrolyte interfaces in
series to simplify the equivalent circuit. Warburg impedances of both negative and positive electrodes
are combined as one equivalent zWarburg. In this paper, this equivalent zWarburg is replaced by one Cbulk.
Firstly, linear Cbulk has a clear electrochemical meaning under small-signal EIS operation [20]; secondly,
linear Cbulk is a special nonlinear Constant Phase Element (zCPE) with P equal to one in Equation (22).

VC =
(
IEISe jθEIS

)(
RCe j0

)
, (15)

〈vC〉 =
1
T

∫ T

0
vCdt = 0, (16)

VStrayInd =
(
IEISe jθEIS

)(
LSe j π2

)
, (17)

〈vStrayInd〉 =
1
T

∫ T

0
vStrayInddt = 0, (18)

VBulkCap =
(
IEISe jθEIS

)(
Cbulke j(− π2 )

)
, (19)

〈vBulkCap〉 =
1
T

∫ T

0
vBulkCapdt = 0, (20)

zWarburg =
R(

jwTWarburg
)P tanh

(
jwTWarburg

)P
, (21)

zCPE =
TCPE

−1

( jω)P , (22)

2.4. Experiment of Steady-state DC static Voltage Responses on Battery Terminals

The purpose of the experiment is to clarify that there are no steady-state DC static voltage responses
on batteries’ terminals under stable AC sinusoidal current excitation. Nowadays, board-level BMS is
used to operate at frequencies as low as 0.5 Hz or 1.0 Hz. So, the electrochemical workstation (Solartron
ModulabXM) sends high-precision pure trigonometric (sinusoidal) current-source excitations (5A rms)
to the tested battery at two fixed frequencies, 0.5 Hz and 1.0 Hz. The tested battery, manufactured by
Zhejiang Narada Power Source Co., Ltd., as shown in Figure 5, is a 500 Ah lead-acid cell with model
name GFM-500R and number E-08#. The detection circuit, in Figure 6, is designed to sample battery
terminal voltage and to amplify errors between terminal voltage and reference voltage (2.132 V) with
DC gain (40.14). The overall configuration of the experimental platform is in Figure 7. AC current
injections of the electrochemical workstation are intermittently closed and open, and the outputs of the
detection circuit are measured by a digital multimeter (UNI-T UT33A+). When AC current injection is
closed, the multimeter display is read at a fixed time delay; when AC current injection is open, the
multimeter display is read at the same fixed time delay. After measuring two cycles by the same time
delay, length of the next time delay is increased by 30 s.
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Figure 7. Experimental platform.

2.5. Experiment of Steady-State AC fundamental Voltage Responses on Battery Terminals

Voltage response in the frequency domain reflects the steady-state amplitude and phase electrical
characteristic of batteries’ terminals. The experimental platform is set as Figure 7, but excludes the
detection circuit.
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2.6. Experiment of Extracting Directional Charge-Transfer Resistance in AC Nyquist Curve

Four batteries were paralleled in 70 ◦C accelerated aging tests for seven months, part of the twelve
batteries stack multi-objective experiments in Figure 8. All batteries were designed and manufactured
by Zhejiang Narada Power Source Co., Ltd. with model name GFM-500R; these four samples were
numbered as E-52#, E-11#, E-02# and E-20#. After float charging with regulated terminal voltage
(N*2.23 V, N is the number of testing batteries in the stack) at 70 ◦C for a month, the batteries stack
was discharged for checking capacities and recharged for capacities recovering at room temperature.
Twenty-four hours after recharging, each battery was individually scanned by the electrochemical
workstation (Solartron ModulabXM) with 5A rms pure sinusoidal currents excitation and frequencies
bands were from 1 MHz to 1 kHz. After EIS scanning, batteries were put back into a high-temperature
container for the next test round. Battery capacities checking are plotted in Figure 9a and Nyquist
curves of EIS are displayed in Figure 9b–e. Only even-numbered round experiments are shown to
avoid crossing in Figure 9b–e.
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3. Results and Discussion

3.1. Results of Steady-State DC Static Voltage Responses on Battery Terminals

All measurement points are shown in Table 1. Some points data, before closed AC injection, are
off records because they are almost the same as the last check point. The time domain outputs of the
detection circuit are shown in Figure 10. Procedures of pulse and step were used to reduce sampling
points and to act as low-pass filtering. In Figure 10, outputs are mainly in the transient process at
the beginning, and gradually approaching to 660 mV after one hour. Then, the outputs are nearly
stable around 660–670 mV, and the maximum voltage fluctuation, 10 mV in the secondary side, will
not exceed 0.25 mV in the primary side, which is significantly less than the magnitude (3.2 mV in the
primary side) obtained by FPLCDCequ simulation in Figure 4. Therefore, the experiment can prove
that steady-state DC static overpotential on electrode–electrolyte interfaces is indeed zero under fixed
frequency AC current inputs.

Table 1. Measurement timings and results.

No. Pulse Procedures Timing (s) Output (mV)

1 Before 0.5 Hz/5 A injection 740 451
2 150 s after 0.5 Hz/5 A injection close 880 484
3 150 s after 0.5 Hz/5 A injection open 1070 512
4 Before 0.5 Hz/5 A injection 1160 521
5 150 s after 0.5 Hz/5 A injection close 1310 546
6 150 s after 0.5 Hz/5 A injection open 1490 560
7 Before 0.5 Hz/5 A injection 1580 566
8 180 s after 0.5 Hz/5 A injection close 1760 577
9 180 s after 0.5 Hz/5 A injection open 1950 586
10 Before 0.5 Hz/5 A injection 2000 Missing
11 180 s after 0.5 Hz/5 A injection close 2180 597
12 180 s after 0.5 Hz/5 A injection open 2370 611
13 Before 0.5 Hz/5 A injection 2420 613
14 210 s after 0.5 Hz/5 A injection close 2630 619
15 210 s after 0.5 Hz/5 A injection open 2870 633
16 Before 0.5 Hz/5 A injection 3000 627
17 210 s after 0.5 Hz/5 A injection close 3210 636
18 210 s after 0.5 Hz/5 A injection open 3450 637
19 Before 0.5 Hz/5 A injection 3680 645
20 240 s after 0.5 Hz/5 A injection close 3920 644
21 240 s after 0.5 Hz/5 A injection open 4210 653
22 Before 0.5 Hz/5 A injection 4280 648
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Table 1. Measurement timings and results.

No. Pulse Procedures Timing (s) Output (mV)

23 240 s after 0.5 Hz/5 A injection close 4520 654
24 240 s after 0.5 Hz/5 A injection open 4815 663
25 Before 1.0 Hz/5 A injection 5970 663
26 150 s after 1.0 Hz/5 A injection close 6110 676
27 150 s after 1.0 Hz/5 A injection open 6340 668
28 Before 1.0 Hz/5 A injection
29 150 s after 1.0 Hz/5 A injection close 6490 660
30 150 s after 1.0 Hz/5 A injection open 6720 668
31 Before 1.0 Hz/5 A injection
32 180 s after 1.0 Hz/5 A injection close 6900 663
33 180 s after 1.0 Hz/5 A injection open 7130 674
34 Before 1.0 Hz/5 A injection
35 180 s after 1.0 Hz/5 A injection close 7310 670
36 180 s after 1.0 Hz/5 A injection open 7535 665
37 Before 1.0 Hz/5 A injection
38 210 s after 1.0 Hz/5 A injection close 7745 674
39 210 s after 1.0 Hz/5 A injection open 7990 669
40 Before 1.0 Hz/5 A injection
41 210 s after 1.0 Hz/5 A injection close 8200 669
42 210 s after 1.0 Hz/5 A injection open 8450 661
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Figure 10. Time series of outputs of detection circuit.

Under sinusoidal AC current injections, steady-state DC static voltage responses on
electrode–electrolyte interfaces are nearly zero in this detection experiment. Results of the detection
circuit are almost ideal; some small errors can be tolerated and may be caused by ambient temperature
fluctuations and battery self-heating by injection currents. Maybe a little steady-state DC static
voltage response does appear on battery terminals, although it does not affect FPLCACequ in
engineering applications.

3.2. Results of Steady-State AC Fundamental Voltage Responses on Battery Terminals

Figure 11a is FPLCACequ on battery, and Figure 11b is BHLCACequ on battery. FPLCACequ is shown
in Equation (23) and BHLCACequ is shown in Equation (24). The Nyquist curve from the EIS of the
same 500 Ah battery (E-08#) is plotted with diagonal cross points in Figure 12. In Figure 12, the fitting
curve of FPLCACequ is plotted with cross points, and the fitting curve of BHLCACequ is plotted with dot
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points. The physical meanings of elements in the above equations are explained in Table A1 of the
Appendix A.

zFPLCACequ= RCFP+ jωLSFP +
1

jωCbulkFP
+

0.5Rct,pc

1 + j
(
0.5Rct,pc

)
ω
(
2Cdl,pc

) + 0.5Rct,nc

1 + j(0.5Rct,nc)ω
(
2Cdl,nc

)+
0.5Rct,pd

1 + j
(
0.5Rct,pd

)
ω
(
2Cdl,pd

) + 0.5Rct,nd

1 + j
(
0.5Rct,nd

)
ω
(
2Cdl,nd

) ,
(23)

zBHLCACequ= RCBH+ jωLSBH +
1

jωCbulkBH
+

Rct,p

1 + jRct,pωCdl,p
+

Rct,n

1 + jRct,nωCdl,n
, (24)
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The Nyquist curve is fitted by FPLCACequ and BHLCACequ through software Zview, and element 

values in circuits are compared in Table 2. According to test conditions, SoC on batteries are nearly 
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Table 2. Values of elements in FPLCACequ and BHLCACequ for E-08#. 

Elements in First 

Principle Circuit 
Values Error Error% 

Elements in 

Behavioral Circuit 
Values Error Error% 

RCFP 604.4 μΩ 10.9 μΩ 1.8 RCBH 628.2 μΩ 8.1 μΩ 1.3 

LSFP 185.9 nH 4.9 nH 2.6 LSBH 182.5 nH 5.2 nH 2.9 

CbulkFP 12,300.0 F 754.9 F 6.1 CbulkBH 11855.0 F 737.5 F 6.2 

Rct,nd 116.2 μΩ 59.452 μΩ 51.1 Rct,n 410.0 μΩ 24.6 μΩ 6.0 

Rct,nc 467.6 μΩ 147.8 μΩ 31.6 Rct,p 978.5 μΩ 42.1 μΩ 4.3 
Rct,pd 643.2 μΩ 153.6 μΩ 23.9 Cdl,n 125.2 F 10.8 F 8.7 
Rct,pc 1711.6 μΩ 153.9 μΩ 9.0 Cdl,p 1272.0 F 111.8 F 8.8 

Cdl,nd 34.5 F 19.2 F 55.7     

Cdl,nc 83.9 F 25.7 F 30.7     
Cdl,pd 358.0 F 196.9 F 55.0     
Cdl,pc 1036.0 F 227.0 F 31.6     

Chi-squared 0.011   Chi-squared 0.013   

Figure 11. Circuits fitting for EIS and Bode plots: (a) FPLCACequ; (b) behavioral linear circuit (BHLCACequ).
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Figure 12. Experiment Nyquist curve is fitted by FPLCACequ and BHLCACequ.

The Nyquist curve is fitted by FPLCACequ and BHLCACequ through software Zview, and element
values in circuits are compared in Table 2. According to test conditions, SoC on batteries are nearly
100%; charge-transfer resistances (Rct,pc and Rct,nc) for charging of FPLCACequ, are much higher than
charge-transfer resistances (Rct,pd and Rct,nd) for discharging [3,20]. Charge-transfer resistors and
double-layer capacitors are directional different. In Figure 4, elements values for simulation are also
from Table 2.
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Table 2. Values of elements in FPLCACequ and BHLCACequ for E-08#.

Elements in First
Principle Circuit Values Error Error% Elements in

Behavioral Circuit Values Error Error%

RCFP 604.4 µΩ 10.9 µΩ 1.8 RCBH 628.2 µΩ 8.1 µΩ 1.3
LSFP 185.9 nH 4.9 nH 2.6 LSBH 182.5 nH 5.2 nH 2.9

CbulkFP 12,300.0 F 754.9 F 6.1 CbulkBH 11,855.0 F 737.5 F 6.2
Rct,nd 116.2 µΩ 59.452 µΩ 51.1 Rct,n 410.0 µΩ 24.6 µΩ 6.0
Rct,nc 467.6 µΩ 147.8 µΩ 31.6 Rct,p 978.5 µΩ 42.1 µΩ 4.3
Rct,pd 643.2 µΩ 153.6 µΩ 23.9 Cdl,n 125.2 F 10.8 F 8.7
Rct,pc 1711.6 µΩ 153.9 µΩ 9.0 Cdl,p 1272.0 F 111.8 F 8.8
Cdl,nd 34.5 F 19.2 F 55.7
Cdl,nc 83.9 F 25.7 F 30.7
Cdl,pd 358.0 F 196.9 F 55.0
Cdl,pc 1036.0 F 227.0 F 31.6

Chi-squared 0.011 Chi-squared 0.013
Weighted sum of

squares 0.98 Weighted sum of
squares 1.27

3.3. Results of Extraction Directional Charge-Transfer Resistance in AC Nyquist Curve

In Figure 13c,d, both magnitude and phase bode plots have obvious fitting errors at low frequencies.
The errors are mainly due to Cbulk. zWarburg is supposed to reduce these errors, but is not convenient for
BMS design.
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The sums of resistances in FPLCACequ are shown in Equations (25)–(28), and their amplitudes
in magnitude bode plots are marked in Figure 13a. Based on contacting resistance, each step is
corresponding to one charge-transfer resistance, and 0.5Rct,nd, 0.5Rct,nc, 0.5Rct,pd and 0.5Rct,pc orderly
add up. The sums of resistances in BHLCACequ are shown in Equations (29)–(30), and Rct,n and Rct,p
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orderly add up. They are also marked in Figure 13b. In magnitude bode plots, the asymptotes which
roughly outline measured and fitting curves are drawn according to poles and zeros points.

R1FP= RCFP + 0.5Rct,nd, (25)

R2FP= RCFP + 0.5Rct,nd + 0.5Rct,nc, (26)

R3FP= RCFP + 0.5Rct,nd + 0.5Rct,nc + 0.5Rct,pd, (27)

R4FP= RCFP + 0.5Rct,nd + 0.5Rct,nc + 0.5Rct,pd + 0.5Rct,pc, (28)

R1BH= RCBH+Rct,n, (29)

R2BH= RCBH+Rct,n+Rct,p, (30)

In experiments, batteries’ capacities are almost full-charging; Therefore, charge-transfer resistances
for discharging (Rct,pd or Rct,nd) are smaller than charge-transfer resistances for charging (Rct,pc or Rct,nc).
Furthermore, if batteries’ SoH is good, Rct,pd or Rct,nd for discharging are less than Rct,pc or Rct,nc for
charging across the broad SoC range; otherwise, when batteries begin to discharge, Rct,pd and Rct,nd
are used to increase significantly, and the batteries’ terminal voltages drop obviously. Extracting the
DC directional charge-transfer resistance from the AC Nyquist curve has engineering significance. In
Figure 14, charge-transfer resistances of both FPLCACequ and BHLCACequ fluctuate during accelerated
aging tests.
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in FPLCACequ; (e) Rct,p; and (f) Rct,n in BHLCACequ.
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However, increasing the decibel value of the sum of internal resistances, including contacting
resistance and charge-transfer resistances, is relatively stable. Each decibel value of each ascending
step in the magnitude bode plot is related to one charge-transfer resistance and one asymptotic line
configured by the pole–zero pair in Figure 13a,b. Bode plots change during accelerated aging tests,
but orders of FPLCACequ and BHLCACequ are fixed. Therefore, the scale ratio of the decibel value of
each ascending step should be stable. Three ratios of decibel value of ascending steps in FPLCACequ,
as Equations (31)–(33), are stable between 0.2 and 2.5 in Figure 15; these three steps are different and
the ratios decrease from DelatdBFP1 to DelatdBFP3. The ratio of decibel value of ascending steps in
BHLCACequ, as Equation (34), is stable between one and two in Figure 15.

DelatdBFP1= 20log10

(
RC + 0.5Rct,nd + 0.5Rct,nc

RC + 0.5Rct,nd

)
, (31)

DelatdBFP2= 20log10

(RC + 0.5Rct,nd + 0.5Rct,nc + 0.5Rct,pd

RC + 0.5Rct,nd + 0.5Rct,nc

)
, (32)

DelatdBFP3= 20log10

(RC + 0.5Rct,nd + 0.5Rct,nc + 0.5Rct,pd + 0.5Rct,pc

RC + 0.5Rct,nd + 0.5Rct,nc + 0.5Rct,pd

)
, (33)

DelatdBBH= 20log10

(
RC+Rct,n+Rct,p

RC+Rct,n

)
, (34)
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In magnitude bode plots of Figure 13, the curves drawing from northwest at low frequency to
southeast at high frequency are roughly straight lines. Assuming there is a four-bit analog-to-digital
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converter for ideal straight-line input, its interpretation steps should be defined as 20: 21: 22: 23. So
does a two-bit analog-to-digital converter, as 20: 21. The scale ratios of adjacent steps are two to
maximize the measurement range. However, the curves in magnitude bode plots are not ideal straight
lines, so the scale ratio of adjacent sums of resistances is not as ideal as two. Figure 15 shows a similar
law, as the numbers of steps are strictly limited by FPLCACequ and BHLCACequ. From this perspective,
expansions and contractions of magnitude bode plots are reflecting on the sum of internal resistances,
and resistances obtained in Nyquist are viable to characterize batteries’ SoH.

In Figure 16, contacting resistances and stray inductances of both FPLCACequ and BHLCACequ are
very close. High frequency zero points, determined by contacting resistances and stray inductances as
Equation (35), are very close in both FPLCACequ and BHLCACequ.

ZeroHighFreq =

(
LS
RC

)−1

(35)
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The FPLCACequ provides DC directional charge-transfer resistances for charging and discharging.
Characteristic charge-transfer resistances on the electrode–electrolyte interface are calculated in [29] by
FPLCACequ. During the first four accelerated aging tests rounds, positive characteristic charge-transfer
resistances of E-02# are always high, and positive characteristic charge-transfer resistances of E-20#
are climbing up in Figure 17a [29]. The positive characteristic charge-transfer resistances of E-52#
reach a maximum at the fifth test round in Figure 17a [29]. The increasing of positive characteristic
charge-transfer resistances represents non-cohesion of active mass of the positive electrode [4]; all these
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changes are early warnings of subsequent capacity degradation in Figure 9a. These early warnings
are not be interpreted in BHLCACequ; the positive/negative behavioral charge-transfer resistances and
contacting resistances of E-20# and E-11# fluctuate close to each other in Figure 14e,f and Figure 16b.
Charge-transfer resistances in FPLCACequ, compared in BHLCACequ, characterize inside physical and
electrochemical changes.Appl. Sci. 2019, 9, x FOR PEER REVIEW 17 of 22 
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3.4. Boundary between First Principle Circuits on Batteries in Field Applications

The steady-state DC static voltage responses appear in experiments in the literature [2,3,20], and the
steady-state DC static voltage response is nearly zero in experiments of this paper. In field applications,
injections of battery terminals are generally constant DC or stable AC currents; engineering separation
between FPLCACequ and FPLCDCequ can mainly be determined by time constants of injection currents.
Time constants of currents are compared with time constants of impedances on electrode–electrolyte
interfaces, especially of positive electrodes. If the time constants of impedances are much larger than
the time constants of currents, FPLCACequ is suitable; if the time constants of impedances are much
smaller than the time constants of currents [20], FPLCDCequ is more suitable.

The practical rule of the boundary is considered in perspective of limit, but not from the perspective
of arbitrary injections. This practical rule of option between these two first principle circuits has not
been mentioned before. Boundaries of separation between FPLCACequ and FPLCDCequ may be gradual
or abrupt, and the boundaries patterns still need further research.

The purpose of this article is to establish a one-to-one relationship between the Nyquist curve and
FPLCDCequ. The steady-state DC static voltage response in Nyquist is zero after software and hardware
filtering. The FPLCACequ satisfies requirements in Section 2.1 and matches experimental results.

3.5. Comparing with Nonlinear Models

Average switch modeling is proposed to obtain FPLCACequ, and circuit orders are increased to
include directional charge-transfer resistances. Average switch modeling can be extended to nonlinear
electrochemical circuits. Nonlinear electrochemical elements, such as the constant phase element and
Warburg element, are totally nondirectional and frequency-dependent [1], and they mainly represent
the electrolyte diffusion process [24]. So, linear charge-transfer resistances for charging/discharging in
nonlinear electrochemical circuits are the same as in FPLCACequ.

Figure 18a is an AC equivalent first principle nonlinear circuit (FPNLCACequ in Equation (36)),
and Figure 18b is an AC equivalent behavioral nonlinear circuit (BHNLCACequ in Equation (37)) on
batteries. The Nyquist of the EIS from the same 500 Ah battery (model GFM-500R and number E-8#), is
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plotted with diagonal cross points in Figure 19; in Figure 19, the fitting curve of FPNLCACequ is plotted
with cross points, and the fitting curve of BHNLCACequ is plotted with dot points.Appl. Sci. 2019, 9, x FOR PEER REVIEW 18 of 22 
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Figure 19. Experimental Nyquist curve is fitted by FPNLCACequ and BHNLCACequ.

The Nyquist is fitted by FPNLCACequ and BHNLCACequ through software Zview, and element
values in circuits are compared in Table 3. In Figure 19, both nonlinear circuits have obvious fitting
errors at low frequencies. The errors are mainly due to zCPE, and zWarburg is supposed to reduce these
errors, but this is not mainly a concern in this paper.
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Table 3. Values of elements in Figure 18.

Elements in First
Principle Circuit Values Error Error% Elements in

Behavioral Circuit Values Error Error%

RCFP 613.2 µΩ 6.7 µΩ 1.1 RCBH 668.5 µΩ 13.5 µΩ 2.0
LSFP 184.9 nH 3.7 nH 2.0 LSBH 179.3 nH 9.5 nH 5.3
TCPE 2.9 × 106 4.4 × 105 15.3 TCPE 2.9 × 106 7.9 × 105 27.3

P 2.95 4.8 × 10−2 1.6 P 3.1 6.6 × 10−2 2.1
Rct,nd 283.2 µΩ 54.6 µΩ 19.3 Rct,n 957.0 µΩ 44.8 µΩ 4.7

Rct,nc 748.9 µΩ 65.4 µΩ 8.7 Rct,p
8.5 × 1019

Ω 1 × 1020 Ω 117.6

Rct,pd 1702.2 µΩ 83.0 µΩ 4.9 Cdl,n 258.3 F 21.8 F 8.4

Rct,pc
2.0 × 1020

Ω
2.0 × 1020

Ω
100 Cdl,p 5874.0 F 585.2 F 10.0

Cdl,nd 44.5 F 7.3 F 16.4
Cdl,nc 148.3 F 27.5 F 18.6
Cdl,pd 794.0 F 86.5 F 10.9
Cdl,pc 3884.0 F 235.3 F 6.1

Chi-squared 0.006 Chi-squared 0.047
Weighted sum of

squares 0.57 Weighted sum of
squares 4.42

4. Conclusions

Impedances on electrode–electrolyte interface of FPLCACequ, established by average switch
modeling, have a one-to-one relationship with impedances on the electrode–electrolyte interface
of FPLCDCequ. Therefore, a unique physical bridge from AC Nyquist, fitting by FPLCACequ, to the
directional DC charge-transfer resistance of FPLCDCequ is proposed. Steady-state AC fundamental
responses of FPLCACequ are verified by theoretically derived time domain simulation and experiments
in this paper.

This novel method provides an opportunity to review previous conclusions between BHLCACequ
and SoC/SoH with directional DC charge-transfer resistances, and this is going to be researched further
by authors.
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Appendix A

Table A1. The physical meanings of elements and abbreviations.

Item Elements Physical Meanings

1 EIS electrochemical impedance spectroscopy

2 FPLCDCequ DC equivalent first principle linear circuit

3 SoH state of health

4 FPLCACequ AC equivalent first principle linear circuit

5 BMS battery management system

6 SoC state of charge

7 BHLCACequ AC equivalent behavioral linear circuit

8 RC contacting resistor

9 LS stray inductor

10 Cbulk electrolyte bulk capacitor

11 Rct charge-transfer resistor

12 Cdl double-layer capacitor

13 zeei impedance on electrode–electrolyte interface

14 Rct,pc
charge-transfer resistor for charging on electrode–electrolyte interface of
positive electrode

15 Rct,nc
charge-transfer resistor for charging on electrode–electrolyte interface of
negative electrode

16 Rct,pd
charge-transfer resistor for discharging on electrode–electrolyte interface
of positive electrode

17 Rct,nd
charge-transfer resistor for discharging on electrode–electrolyte interface
of negative electrode

18 Cdl,p
double-layer capacitor for both charging and discharging on
electrode–electrolyte interface of positive electrode

19 Cdl,n
double-layer capacitor for both charging and discharging on
electrode–electrolyte interface of negative electrode

20 Cdl,pc
double-layer capacitor for charging on electrode–electrolyte interface of
positive electrode

21 Cdl,nc
double-layer capacitor for charging on electrode–electrolyte interface of
negative electrode

22 Cdl,pd
double-layer capacitor for discharging on electrode–electrolyte interface
of positive electrode

23 Cdl,nd
double-layer capacitor for discharging on electrode–electrolyte interface
of negative electrode

24 IEISe jθEIS

fixed frequency sinusoidal current, excited from electrochemical
workstation, IEIS is the amplitude and θEIS is the static angle (rad) in
rotating space vector plane

25 ZChae jθCha

linear impedances for charging on electrode–electrolyte interfaces of both
positive and negative electrodes, ZCha is the amplitude and is the static
angle (rad) in rotating space vector plane

26 ZDise jθDis

linear impedances for discharging on electrode–electrolyte interfaces of
both positive and negative electrodes, ZDis is the amplitude and θDis is
the static angle (rad) in rotating space vector plane
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Table A1. Cont.

Item Elements Physical Meanings

27 Zeeie jθeei

equivalent linear impedances on electrode–electrolyte interfaces of both
positive and negative electrodes, Zeei is the amplitude and θeei is the static
angle (rad) in rotating space vector plane

28 VCha
charging voltage vector, steady-state AC fundamental response of linear
impedances ZChae jθCha , in rotating space vector plane

29 VDis
discharging voltage vector, steady-state AC fundamental voltage
response of linear impedances ZDise jθDis , in rotating space vector plane

30 V′Cha
new charging voltage vector, half amplitude of VCha, in rotating space
vector plane

31 V′Dis
new discharging voltage vector, half amplitude of VDis, in rotating space
vector plane

32 Veei
target voltage vector, steady-state AC fundamental response of
impedance Zeeie jθeei , in rotating space vector plane

33 T fixed period of sinusoidal current, excited from electrochemical
workstation

34 vCha
transient voltage responses of impedances for charging on
electrode–electrolyte interfaces of both positive and negative electrodes

35 vDis
transient voltage responses of impedances for discharging on
electrode–electrolyte interfaces of both positive and negative electrodes

36 〈vCha〉

average voltage response of impedances for charging on
electrode–electrolyte interfaces of both positive and negative electrodes
during the period T

37 〈vDis〉

average voltage response of impedances for discharging on
electrode–electrolyte interfaces of both positive and negative electrodes
during the period T

38 s complex variable in transfer function

39 TF f ilter transfer function of band pass filter

40 Q quality factor of band pass filter

41 ω
electrical angular velocity of sinusoidal current, excited from
electrochemical workstation

42 RCe j0

linear contacting resistance, reflecting conductivity of path which currents
flowing along terminals, cell connectors, plate connectors, electrodes, and
electrolyte; RC is the amplitude and 0 is the static angle (rad) in rotating
space vector plane

43 LSe j π2
linear stray inductance, in series with linear contacting resistance; LS is
the amplitude and π

2 is the static angle (rad) in rotating space vector plane

44 Cbulke j(− π2 )
linear electrolyte bulk capacitance, reflecting capacity characteristics of
bulk electrolyte; Cbulk is the amplitude and

(
−
π
2

)
is the static angle (rad) in

rotating space vector plane

45 VC
contacting resistance voltage vector, steady-state AC fundamental
responses on linear contacting resistance RCe j0

46 vC transient voltage responses of linear contacting resistance

47 〈vC〉
average voltage response of linear contacting resistance during the
period T

48 VStrayInd
inductance voltage vector, steady-state AC fundamental responses on
linear stray inductance LSe j π2
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Table A1. Cont.

Item Elements Physical Meanings

49 vStrayInd transient voltage responses of linear stray inductance

50 〈vStrayInd〉 average voltage response of linear stray inductance during the period T

51 VBulkCap
electrolyte bulk capacitance voltage vector, steady-state AC fundamental
responses on linear electrolyte bulk capacitance Cbulke j(− π2 )

52 vBulkCap transient voltage responses of linear electrolyte bulk capacitance

53 〈vBulkCap〉
average voltage response of linear electrolyte bulk capacitance during the
period T

54 zWarburg Warburg impedance

55 TWarburg diffusion constant of Warburg impedance

56 R ohmic constant of Warburg impedance

57 zCPE Constant Phase Element

58 TCPE diffusion constant of Constant Phase Element

59 P constant of power function

60 Rct,p
charge-transfer resistor for both charging and discharging on
electrode–electrolyte interface of positive electrode

61 Rct,n
charge-transfer resistor for both charging and discharging on
electrode–electrolyte interface of negative electrode

62 RCFP linear contacting resistance of FPLCACequ

63 RCBH linear contacting resistance of BHLCACequ

64 LCFP linear stray inductance of FPLCACequ

65 LCBH linear stray inductance of BHLCACequ

66 FPNLCACequ AC equivalent first principle nonlinear circuit

67 BHNLCACequ AC equivalent behavioral nonlinear circuit
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