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Abstract: Computer-aided diagnostic (CAD) systems use machine learning methods that provide a
synergistic effect between the neuroradiologist and the computer, enabling an efficient and rapid
diagnosis of the patient’s condition. As part of the early diagnosis of Alzheimer’s disease (AD), which
is a major public health problem, the CAD system provides a neuropsychological assessment that
helps mitigate its effects. The use of data fusion techniques by CAD systems has proven to be useful,
they allow for the merging of information relating to the brain and its tissues from MRI, with that of
other types of modalities. This multimodal fusion refines the quality of brain images by reducing
redundancy and randomness, which contributes to improving the clinical reliability of the diagnosis
compared to the use of a single modality. The purpose of this article is first to determine the main steps
of the CAD system for brain magnetic resonance imaging (MRI). Then to bring together some research
work related to the diagnosis of brain disorders, emphasizing AD. Thus the most used methods in the
stages of classification and brain regions segmentation are described, highlighting their advantages
and disadvantages. Secondly, on the basis of the raised problem, we propose a solution within the
framework of multimodal fusion. In this context, based on quantitative measurement parameters,
a performance study of multimodal CAD systems is proposed by comparing their effectiveness with
those exploiting a single MRI modality. In this case, advances in information fusion techniques in
medical imagery are accentuated, highlighting their advantages and disadvantages. The contribution
of multimodal fusion and the interest of hybrid models are finally addressed, as well as the main
scientific assertions made, in the field of brain disease diagnosis.

Keywords: neuroimaging; Alzheimer’s disease; computer-aided diagnosis system; structural and
functional imaging; segmentation and classification techniques; multimodal fusion techniques

1. Introduction

In the fields of research in medical imaging and diagnostic radiology, computer-aided diagnosis
(CAD) has had major interest and development during the last two decades [1–9]. The objective of this
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technology is to support radiologists using computer systems in their interpretation of brain images
and in the diagnosis of brain diseases. The CAD system provides a second opinion, it makes it possible
to analyze medical images thanks to its techniques of pattern recognition and machine learning. This
alleviates the fatigue of the radiologist and the burden of the workload, due to the overloaded data.
As a result, this technology has the ability to improve diagnostic consistency and accuracy in order to
decrease the rate of false negatives, including estimating the extent of the disease.

Alzheimer’s disease (AD) is one of the brain disorders that is extremely difficult to identify. It is
linked to structural atrophy, pathological amyloid deposits and metabolic alterations in the brain [10].
This neurodegenerative disease is the cause of 60% to 70% of cases of dementia [11], which generally
begins slowly and worsens over time. It gradually deteriorates cognitive and behavioral capacities and
the causes of this disease remain unknown [1], with the exception of certain hereditary forms. A CAD
system can help to perform an early diagnosis which is crucial for mitigating the effects of AD. In fact,
several diagnostic tools and approaches have been developed in order to provide measures that make
it possible to detect early changes during subclinical periods, clarify the underlying mechanisms and
inform neuro-protective interventions aimed at slowing down the extent of the disease. As a result, the
rising costs are reduced for families and society.

In addition to this, magnetic resonance imaging (MRI) [12] has been used for a long time to
eliminate several sources of brain disorders. This technology provides a detailed description of the
anatomy including brain pathology with spatial resolution and soft tissue contrast. It makes it possible
to study the structural and chemical correlates of a disease, which improves understanding of the
mechanisms involved [13]. In AD, MRI adds a positive predictive value to the diagnosis [5]; solid
experiments have shown that changes in brain structure can be detected with structural MRI in elderly
subjects with mild cognitive impairment (MCI) [14]. In this context, patients with MCI to be converted
to AD are characterized by significant atrophy of the medial temporal lobes, posterior cingula, lateral
and parietal temporal cortex compared to control subjects or stationary MCIs.

However, the benefits of structural MRI are limited and several problems have arisen as a result.
The MRI went from two-dimensional (2D) to three-dimensional (3D) modality, which caused the
neuro-radiologist to rapidly increase the data to be analyzed. Added to this, the resolution and the
signal-to-noise ratio (SNR) have become higher [15]. In this regard, the problem of developing new
CAD tools, such as data fusion techniques, has been widely addressed in recent years in order to
reduce the workload, paying particular attention to the study with a non-invasive way of the existing
connectivity between anatomical and functional imaging. This process of data fusion in a multimodal
environment makes it possible to generate a more informative merged image which helps diagnosis
and forecasting, by combining complementary and redundant information coming from the MRI
and from functional modalities, such as, computerized tomography (CT), single photon emission
tomography (SPECT) and positron emission tomography (PET), which are characterized by different
objectives in radiology. As a result, the resulting fusion image is better suited for visual perception
and image processing and analysis tasks [16,17], providing more condensed and relevant information.
In addition, instead of storing several multi-source images, a single merged image is taken into account,
which reduces memory costs. Additionally, noting that the combination of medical images can often
lead to additional clinical information that does not appear in the separate images.

The objective of this review article is to highlight the interest shown in multimodal fusion by
researchers in neuroimaging for the diagnosis of brain disorders, in particular AD. It consists of
summarizing and examining the main applications, results, perspectives as well as the advantages and
disadvantages of different MRI neuroimaging technologies for the diagnosis of brain disorders, with
emphasis on the application of multimodal fusion, especially for the diagnosis of AD.

Firstly this review study concerns the collection of several works related to CAD systems for
the diagnosis of cerebral dementia, notably AD. We analyze their proposals which were introduced
with the hope of helping the radiologist to properly assess the extent of the disease, by providing him
with a second opinion in the form of a computer output. In order to reduce the rate of false negatives
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and improve the accuracy of the diagnosis, the researchers developed techniques notably in the two
main phases in the CAD system, namely segmentation of the brain regions and classification. In this
context, we inspect these techniques from artificial intelligence by highlighting their advantages and
disadvantages. In addition, we identify the various measurement parameters that have been used to
quantitatively assess the performance of the proposed CAD systems. For the classification process,
several measurements were considered, such as the sensitivity (SE), which represents the true positive
rate; specificity (SP), which estimates the true negative rate; and accuracy (AC), which determines
the proportion of true results in the database, whether true positive or true negative. For the same
purpose, for some work, the area under the ROC curve (AUC) value was estimated, which determines
the diagnostic validity by combining sensitivity and specificity. Likewise, in the segmentation process
various measures have been identified, which in the majority take into account the portions of the
rates of true and false positives as well as true and false negatives, such as the Tanimoto and dice
coefficients, the Jaccard similarity index, etc.

Then, secondly, after identification of the gaps raised by mono-modal MRI CAD systems, we
determine one of the solutions proposed in the literature within the framework of the use of data fusion
techniques which can be applied in a multimodal imaging environment. The effectiveness of this
approach is linked to its power to reconstruct and predict missing information from the MRI. Therefore,
the most used fusion techniques are described, highlighting their advantages and disadvantages.
Likewise, some key works in the literature are described, which have used multimodal fusion to
improve the performance of conventional CAD systems. In addition, a performance evaluation and
comparison with single-modal systems is proposed by applying reliability estimation methods such as
cross-validation. The measurement parameters are also determined for the purpose of quantitatively
evaluating the effectiveness of multimodal CAD systems. Finally, a discussion is tackled which
highlights the interest of combining several techniques in the framework of hybrid models and the
contribution of multimodal fusion and its usefulness in clinical studies.

The rest of the article is organized as follows: In Section 2, first, we describe the foundations of a
CAD system, then we analyze the research work already carried out using the MRI mono modality.
In this regard, the methods used in the different phases of the CAD system, including the classification
and segmentation of brain regions, are described, summarizing their disadvantages and advantages.
We then clarify the problem addressed by the works examined by reporting the solution proposed in the
literature. Consequently, the efforts investigated to find a solution within the framework of multimodal
fusion of brain images are presented in Section 3. We review the aspects of data fusion, with the aim
of providing an overview of the applicability and progress of fusion techniques in medical imaging.
In this regard, several research works using multimodal fusion are examined. A performance study of
the works selected in the context of experimental classification is presented; and the comparison of
the results with those of CAD systems exploiting a single MRI modality is proposed. A discussion is
then suggested, summarizing the disadvantages and advantages of the multimodal fusion methods.
Concluding remarks as well as ideas and directions for future research are presented in Section 4.

2. Cad Systems of Brain Disorders Based on MRI Technology

2.1. CAD System Architecture

The architecture of a CAD system associated with a brain image is illustrated in Figure 1, in which
several processes are carried out. First, the image from MRI is proposed as an input for the CAD
system for which it selects the training samples. Then, a preprocessing and a definition of region(s) of
interest (ROI) (block A in Figure 1) are developed to eliminate samples not relevant for the diagnosis.
An extraction of the characteristic parameters of the voxels (block B) is carried out thereafter. Finally,
segmentation and classification are performed. The segmentation (block C block corresponds to the
Section 2.2) groups the voxels into regions, based on the characteristics of the cerebral image. While the
classification (block D block corresponds to the Section 2.3) allows to classify the images in two classes:
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normal or abnormal. Various machine learning tools have been used successfully in both of these
processes, and many artificial intelligence techniques have been developed in the past two decades.
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Figure 1. Schematic diagram for magnetic resonance imaging (MRI) brain image interpretation (top)
and overall block diagram of the corresponding computer-aided diagnosis (CAD) system (bottom).
(A) Enhancement of brain signal and definition of regions of interests (ROIs). (B) Extraction of voxel
features in a mathematical representation. (C) Reduction of voxel parameters and segmentation in
brain regions. (D) Classification and categorization of patients into normal or abnormal classes.

In the following, we are interested in the brain regions segmentation which represents a key step
in the CAD system, for which good or bad segmentation determines the success or failure of the next
step i.e., the classification process. In this context, there is a large amount of work on neuroimaging
and several studies relating to AD, thus various conventional machine learning tools have been used
with success and numerous artificial intelligence techniques have been developed.

2.2. Segmentation of Brain Regions

Accurate quantification of the volume of brain tissue, particularly cerebrospinal fluid (CSF),
gray matter (GM) and white matter (WM) would aid in the diagnosis and understanding of
certain neurodegenerative diseases such as AD and Parkinson’s syndrome. In this section, which
corresponds to block C in Figure 1, we will detail the advances in research in the context of the brain
regions segmentation.

2.2.1. Related-Work to the Segmentation of Brain Regions

In [18] the authors proposed the adaptive fuzzy C-means algorithm (AFCM) for the segmentation
of multi-spectral MRI images in 2D and 3D. AFCM makes it possible to model the intensity
inhomogeneity as a gain field by gradually varying the intensities in the image space. Performance
comparisons were made with the fuzzy and noise-tolerant adaptive segmentation method (FANTASM),
in a noisy environment. Misclassification rate and mean-squared error are used as evaluation
measuring parameters.

In [19], a modified FCM (MFCM) algorithm is proposed which incorporates both the local
spatial context and the non-local information by using a new dissimilarity index instead of the usual
distance metric. The efficiency of the algorithm is demonstrated by segmentation experiments and by
comparison with other advanced algorithms, namely: standard FCM, spatial FCM (FCMS), FCM with
spatial information (FCMSI) and fast generalized FCM (FGFCM). The measurement parameters used to
quantitatively assess the performance are: Similarity index, false positive ratio and false negative ratio.
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In [20], the authors proposed a method which makes it possible to divide the brain into
homogeneous regions for the detection of tumors. The process was split into two stages:
Pre-segmentation and segmentation and several techniques have been exploited such as anisotropic
filtering and the stochastic model Markov random field (MRF). The maximum posterior criterion
(MAP) was used to estimate the MRF achievement taking into account the observed dependent data.

In [21] the authors applied the discriminant random fields (DRF) models for the segmentation of
brain tumors. A comparison was made with the MRF models using the Jaccard similarity coefficient.

In [22], the authors presented a method for the segmentation of WM tissue lesions (WML).
Support vector machines (SVM) were used to integrate characteristics of 4 MRI acquisition protocols to
distinguish WML from normal tissue. A visual assessment was performed using two experienced
neuro-radiologists. A quantitative validation was also carried out with Pearson correlation, Spearman
correlation, coefficient of variation and reliability coefficient.

In [23], the authors proposed the adaptive mean shift (AMS) method to classify voxels in one
of the GM, WM and CSF tissues. A comparison was made with the adaptive MAP (AMAP) and
maximum posterior marginal-MAP (MPM-MAP) methods. Tanimoto coefficient was applied as an
evaluation criterion.

In [24], the authors used sets of contours of multiple sclerosis lesions (MS) taken from MRI
segmented images, and united their 3D surfaces by spherical harmonics. The objective was the 3D
reconstructions of MS lesions and calculates their volumes. A comparison was made with the slice
stacking technique by applying quantitative measurement parameters such as misclassification rate,
mean-squared error.

In [25], the authors proposed a multi-context wavelet-based thresholding (MCWT) method to
classify pixels with GM, WM and CSF tissues. A comparison was made with the wavelet and multigrid
wavelet transforms.

In [26], the authors proposed an algorithm based on the transformation into spherical wavelets.
The algorithm is applied to the caudate nucleus and the hippocampus for the study of schizophrenia.
The validation performed using the Average max error, average min error evaluation criteria showed
efficiency from the calculation point of view and compared to the active shape model algorithm by
capturing finer shape details.

In [27], the authors introduced a threshold-based scheme that uses level set (LS) for 3D segmentation
of the brain tumor. Two threshold update systems have been developed, based on research and
adaptation. The experimental results by applying the following evaluation criteria— Jaccard measure,
Hausdorff distance and mean absolute surface distance—demonstrated the effectiveness of the method
and its performance compared to the method based on competition by region.

In [28], the authors proposed a method based on neighborhood hypergraph partitioning. The
experiments have demonstrated the proper functioning of the method and its performance compared
to the normalized cut Ncut) algorithm.

In [29], the authors used the adaptive graph cut method optimized in an iterative mode for the
automatic segmentation of MRI brain images. A comparison with conventional graph cut and the
MRF model was performed using the classification rate evaluation criterion.

In [30], the authors used the FCM algorithm to combine the average filter with the local median
filter in order to perform local segmentation of brain MRI volumes. Tagging is achieved by tagging by
region using genetic algorithms (GAs), followed by an amendment in terms of voxel using the growth
of parallel regions. The fuzzy model is used both to design the fitness function of GAs and to guide the
growing region. Several measurement parameters were applied such as mean, standard deviation,
false positive ratio, false negative ratio, similarity index and Kappa statistic.

In [31], the authors proposed a brain tissue segmentation method which aims to calculate the
fuzzy membership of each voxel to indicate the degree of partial volume using fuzzy Markov random
segmentation. The average error rate was used to assess the performance of the segmentation.
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In [32], the authors proposed an adaptive mean-shift algorithm for tissue segmentation in WM,
GM and CSF. The Bayesian model was applied to estimate the bandwidth of the adaptive nucleus and
to study its impact on the precision of tissue segmentation. A comparison was completed with the
hybrid k-NN/AMS model using the Dice and Tanimoto coefficients as an evaluation criterion.

In our previous work, hybrid model based brain tissue segmentation was proposed, for images
from patients with AD. The approach mainly uses clustering techniques from fuzzy logic in particular,
the possibility theory. In [33], the possibilistic C-means algorithm (PCM) was applied to derive fuzzy
maps of the volume of WM, GM and CSF tissues, based on an initial partition of tissue centers provided
using the FCM.

To make PCM based tissue quantification more robust to noise and artifacts, the FCM algorithm
was replaced in [34] by the bias correction FCM (BCFCM) algorithm. Whereas in [35] the FCM partition
was optimized, by a genetic process that uses GA.

To ensure the robustness against noise, for the segmentation process based on the hybrid
possibilistic-fuzzy-genetic model, intensive experiments were proposed in [36] applied in real and
synthetic images, with high additive noise levels which reached 20%.

For the purpose of improving performance and reducing noise sensitivity, experiments were
carried out by applying the fuzzy possibilistic C-means (FPCM) algorithm in [37] and the possibilistic
fuzzy C-means algorithm (PFCM) in [17] to derive the fuzzy tissue maps. Comparisons were made
with FPCM, PCM, FCM and many hybrid clustering algorithms, by applying the Tanimoto coefficient,
Jaccard similarity index, specificity and sensitivity.

Table 1 summarizes certain works that have used segmentation techniques from artificial
intelligence and applied to brain images.
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Table 1. Related work to the MRI brain regions segmentation using some techniques described in the literature: The efficiency of the proposed automatic segmentation
algorithm is demonstrated by experiments applying quantitative measurement parameters (last column of the table) for the evaluation, and by comparison with visual
observation of a clinical expert (manual segmentation) or with other state-of-the-art algorithms (penultimate column).

Reference Segmentation Database Comparison Measuring Parameters

Region Approach Based Techniques

[20] MRF Several GD-TI, TI and T2-weighted from
radiology department of the Poitiers’s hospital Clinical expert evaluation Information criterion, MAP

criterion

[18] AFCM Images from Brainweb
http://www.bic.mni.mcgill.ca/brainweb FANTASM Misclassification rate,

mean-squared error

[21] DRF Several T1, T1c, and T2 images from 7 patients. MRF Jaccard similarity index

[22] SVM Several T1, T2, PD and FLAIR-weighted of 45
diabetics.

Two experienced
neuro-radiologists

Pearson correlation, Spearman
correlation, coefficient of
variation, reliability coefficient

[19] MFCM Simulated and real MR images. FCM, FCMS, FCMSI and
FGFCM

Similarity index, false positive
ratio, false negative ratio

[23] AMS Images from Brainweb and IBSR
http://www.cma.mgh.harvard.edu/ibsr/ Adaptive MAP, MPM-MAP Tanimoto coefficient

Form Approach Based Techniques

[25] Multi-context wavelet Several T1-weighted with more than 150 slices
for each Wavelet, multigrid wavelet NA

[26] Spherical wavelet
Coronal SPGR images with 124 slices for each
of 29 left caudate nucleus structures and 25 left
hippocampus structures

Active shape model algorithm
and expert neuroanatomist
evaluation

Average max error, average min
error

[24] Spherical harmonics PD images of multiple sclerosis patients Slice stacking technique Mean error and standard
deviation. ANOVA criterion

[27] Level sets Images of 16 patients from Singapore National
Cancer Center Region-competition

Jaccard measure, Hausdorff
distance, mean absolute surface
distance

Graph Theory Based Techniques

[28] Hypergraph Image with 265 × 256 pixel slices Ncut algorithm NA

[29] Adaptive graph cut Ten images from the Brainweb Adaptive MRF-MAP, graph cut Classification rate

http://www.bic.mni.mcgill.ca/brainweb
http://www.cma.mgh.harvard.edu/ibsr/
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Table 1. Cont.

Reference Segmentation Database Comparison Measuring Parameters

Hybrid Approach Based Segmentation

[30] FCM/GA Several images from Talairach stereotaxic atlas Manually labeled images

Mean, standard deviation, false
positive ration, false negative
ration, similarity index and
Kappa statistic

[31] Fuzzy/MRF Images from Brainweb and T1-weighted SPGR Clinical experts evaluation Average error rate

[32] Bayesian/AMS Images IBSR and Brainweb k-NN/AMS Dice and Tanimoto coefficients

[33] PCM/FCM PET and T1-weighted from ADNI
(http://adni.loni.usc.edu/) PCM, FCM Tanimoto coefficient, specificity

and sensitivity

[34] PCM/BCFCM T1-weighted, PET and SPECT scans from
Gabriel Mont pied Hospital, France

PCM, FCM and hybrid
PCM/FCM

Tanimoto coefficient, specificity
and sensitivity

[35] PCM/FCM/GA PET and T1-weighted from ADNI PCM, FCM and hybrid
PCM/FCM

Tanimoto coefficient, specificity
and sensitivity

[36] PCM/FCM/GA
20% of noise

T1-weighted, PET and SPECT scans from
Gabriel Mont Pied Hospital, France and ADNI PCM, FCM Tanimoto coefficient, specificity

and sensitivity

[37] FPCM/FCM/GA
20% of noise

SPECT, PET and T1-weighted from Gabriel
Mont Pied Hospital and ADNI

PCM, FCM and hybrid
PCM/FCM

Tanimoto coefficient, specificity
and sensitivity

[17] PFCM/BCFCM/GA 20% of
noise

PET and T1-weighted from Gabriel Mont Pied
Hospital and ADNI

FPCM, PCM, FCM and many
hybrid clustering algorithms

Tanimoto coefficient, Jaccard
similarity index

MRF: Markov random field, SVM: Support vector machines, FCM: Fuzzy C-means, AFCM: Adaptive FCM, MFCM: Modified FCM, FCMS: FCM spatial, FCMSI: FCM with spatial
information, FGFCM: Fast generalized FCM, AMS: Adaptive mean-shift, MAP: Maximum a posteriori probability, MPM: Maximum posterior marginal, FANTASM: Fuzzy and noise-tolerant
adaptive segmentation method, DRFs: Discriminative random fields, GA: Genetic algorithm, k-NN: k-nearest neighbor, PCM: Possibilistic c-means, BCFCM: Bias-corrected FCM, FPCM:
Fuzzy PCM, Gd-TI: Gadolinium-titanium, PD: Proton density, FLAIR: Fluid attenuation inversion recovery, T1c: T1 after injecting contrast agent, SPGR: Spoiled gradient recall, NA:
Not available.

http://adni.loni.usc.edu/
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The techniques most used in the literature are summarized below.

2.2.2. Segmentation Techniques Proposed in Literature: Description, Advantages and Disadvantages

Despite decades of research, there is no standard method that could be considered effective for
all types of medical images. However, a set of ad hoc methods have received a certain degree of
popularity presented in Figure 2.
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Figure 2. Classification of the various MR brain image segmentation methods described in the literature.
In this work, the methods were classified in five categories based on the approaches (in green color):
Form, structural approaches, graph theory, region and contour. FCM: Fuzzy C-means, AFCM: Adaptive
FCM, MFCM: Modified FCM, FCMS: FCM spatial, FCMSI: FCM with spatial information, FGFCM:
Fast generalized FCM, FANTASM: Fuzzy and noise tolerant adaptive segmentation method, PCM:
Possibilistic C-means, BCFCM: Bias-corrected FCM, FPCM: Fuzzy PCM, GA: Genetic algorithm,
PSO: Particle swarm optimization, MRF: Markov random field, DRFs: Discriminative random fields,
HMM: Hidden Markov models, GMM: Gaussian mixture model, DNN: Deep neural network, CNN:
Convolutional neural network, MLP: Multi-layer perceptron.
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The Region Approach

It is designed to partition images into several classes.

• Artificial neural networks: ANNs used in several works related to neuroimaging [38–46] are a
supervised deterministic method, represented by an interconnected group of artificial neurons
using a mathematical model to process information. It performs well in complex and multivariate
nonlinear domains, such as tumor segmentation where it becomes difficult to use decision trees
or rule-based systems. It also works a little better for noisy data. Data allocation is not required
as in the case of statistical modeling. Its learning process consumes enough time, usually with
gradient-type methods. The representation of knowledge is not explicit, in the form of rules or
other easily interpretable. Initialization may affect the result which may cause overtraining.

• Genetic algorithms: GAs exploited in many neuroimaging studies [47–52] are a supervised
deterministic method of optimizing research that exploits the concepts of natural selection.
It differs from traditional optimization methods in four points: (1) It is a parallel search approach
in a population of points, thus having the possibility of avoiding being trapped in a local optimal
solution. (2) Its selection rules are probabilistic. (3) She works on the chromosome, a coded version
of the potential solutions of the parameters, rather than the parameters themselves. (4) It uses the
fitness score, obtained from objective functions, without any other derived or auxiliary information.
However, its optimization process depends on the fitness function. It is hard to create good
heuristics that really reflect our goal. It is difficult to select the initial parameters (the number of
generations, the size of the population, etc.).

• k-means: k-means [53–57] are a deterministic method based on unsupervised learning which
makes it possible to divide a set of data into k clusters. It is widely used for brain segmentation
with mainly satisfactory results, to overcome the isolated distribution of pixels inside the image
segments. Its execution is simple to implement, fast in real time and in calculation even with a large
number of variables. Unfortunately, the unstable quality of the results prevents its application in
the case of automatic segmentation. Generally, a degradation of the quality of the segmentation
is observed in the case of an automatic segmentation, or when the weight of the pixels in the
neighboring local regions is added. Difficulty predicting the k value. Different initial partitions
can result in different final clusters. The algorithm only works well when spherical clusters are
naturally available in the original data.

• Fuzzy C-means: FCM [19,53,58–64] is an unsupervised deterministic method which represents the
advanced version of k-means. It is based on the theory of fuzzy subsets giving rise to the concept
of partial adhesion based on the membership functions. It is widely used in the segmentation and
diagnosis of medical images. It provides better results for overlapping data. Unlike k-means where
data must systematically belong to a single cluster, FCM assigns a fuzzy degree of belonging to
each cluster for each data, which allows it to belong to several clusters. However, the computation
time is considerable. It does not often provide standard results due to the randomness of the
initial membership values. In addition, MRI images often contain a significant amount of noise,
resulting in serious inaccuracies in segmentation. It only takes into account the intensity of the
image, which causes unsatisfactory results for noisy images. The counterintuitive form of class
membership functions limits its use.

• Mean shift: it’s an unsupervised deterministic method [62,65–67], which makes it possible to
locate the maxima—the modes—of a density function, from discrete data sampled through this
function. It is based on a non-parametric algorithm which does not take any predefined form on
the clusters and assumes no constraint on the number of clusters. Robust with outliers and able to
manage arbitrary function spaces. However, it is sensitive to the selection of the window h which
is not trivial. An inappropriate window size may result in the merging of modes or the generation
of additional “shallow” modes. Costly from a calculation point of view and does not adapt well
to the size of the function space.
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• Threshold-based techniques: the easiest way is to convert a grayscale image to a binary using a
threshold value [68]. Pixels lighter than the threshold are white pixels in the resulting image and
darker pixels are black pixels. Several improvements have been reported in which the threshold is
selected automatically. They are very useful for the linearization of images, an essential task for
any type of segmentation. They work well for fairly noisy images. Do not require prior image
information. They are useful if the brightness of objects differs significantly from the brightness of
the background. Their speed of execution is quite fast with minimum IT complexity. However, do
not work properly for all types of MRI brain images, due to the large variation between foreground
intensities and background image intensities. The reason why, selecting the appropriate threshold
value is a tedious task. In addition, their performance degrades for images without apparent
peaks or with a wide and flat valley [69].

• Region growing method: it allows to group pixels together in a homogeneous region, including
growing, dividing and merging regions. It correctly separates the regions with the same
characteristics already defined, especially when the criteria for region homogeneity are easy to
define [69–73]. However, it is very sensitive to noise. Costly in memory and sequential from the
calculation point of view. In addition, it requires manually selecting an origin point and requires
deleting all the pixels connected to the preliminary source by applying a predefined condition.

• Mixture of laws (Gaussian mixture models): parametric probabilistic method which allows
each observation to be assigned to the most probable class. The classes follow a probability
distribution (law), normal in the case of Gaussian mixture models (GMM). GMMs [74–78] require
few parameters estimated by a simple likelihood function. These parameters can be estimated
by adopting the EM algorithm in order to maximize the likelihood function of the log. However,
GMM assume that each pixel is independent of its neighbors; this does not take into account the
spatial relationships between neighboring pixels [79]. Also, the previous distribution does not
depend on the pixel index.

• Markov Random field: non parametric probabilistic method, which allows modeling the
interactions between a voxel and its neighborhood. In the Markov random field (MRF), the local
conditional probabilities are calculated by the Hammersley—Clifford theorem, which allows
to pass from a probabilistic representation to the energy representation via the Gibbs field.
MRF [80–83] is characterized by their statistical properties; non-directed graphs can succinctly
express certain dependencies that Bayesian networks cannot easily describe. It is effectively
applied for the segmentation of MRI images, for which there is no natural directionality associated
with variable dependencies. In MRF, the computation of the normalization constant Z requires
a sum over a number of potentially exponential assignments generally; it is an NP-difficult.
In addition, many non-directed models are difficult to interpret or intractable which require
approximation techniques.

• Hidden Markov models: similar to the MRF, it’s non parametric probabilistic method. It is
possible to express a posterior probability of a label field from an observation in hidden Markov
models (HMM), thanks to the Bayes theorem. HMMs [84–88] make it possible to model arbitrary
characteristics of observations, making it possible to inject knowledge specific to the problem
encountered into the model, in order to produce an ever finer resolution of spectral, spatial and
temporal data. In the case of HMMs, the types of previous distributions that can be placed on
masked states are severely limited; it is not possible to predict the probability of seeing an arbitrary
observation. In practice, this limitation is often not a problem, as many common uses of HMMs
do not require such probabilities.

• Support vector machines: SVMs [21,89–92] are a non-parametric probabilistic method whose
objective is to find an optimal decision border (hyperplane) which separates the data into groups.
The formation process depends on various factors such as the penalty parameter C or the kernel
used, such as the linear, polynomial kernel, the radial-based function (RBF) and in its particular
case the Gaussian kernel. The generalization performance of this method is high, especially
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when the dimension of the function space is very large. It makes it possible to train non-linearly
generalizable classifiers in large spaces using a small learning set. It minimizes the number of
classification errors for any set of samples. However, it requires a high learning time and memory
space for data storage. Moreover, the optimality of the solution can depend on the kernel used
unfortunately, there is no theory allowing to determine a priori which will be the best kernel for
a concrete task. Also, SVMs assume that the data is distributed independently and identically,
which is not appropriate for the segmentation of noisy medical images.

The Contour Approach

The primitives to be extracted are lines of contrast between regions of different gray levels and
relatively homogeneous. We could cite the derived models and the scale-space models.

• Gaussian Scale-Space representation: this concept [93–96] makes it possible to manage image
structures at different scales by generally smoothing. This representation is obtained by solving
a linear diffusion equation. Its transparent and natural way of handling scales at the data level
makes this concept popular. However, it is sensitive to signal noise since smoothing is applied
without an average filter. In addition, parasitic characteristics are to be considered because of the
high-frequency noises which introduce local extrema into the signal.

• Derived models: they make it possible to model image zones (contours) assuming that the digital
image comes from a sample of a scalar function developed with a narrow and differentiable
support. In this case, the variations in intensity of the image are characterized by a 3D variable
which represents the light intensity corresponding to the illuminations (shadows), changes in
orientation or distance, changes in surface reflectance, changes in absorption of rays, etc.

The Structural Approach

It takes into account the structural and contextual information of the image.

• Morphological gradient: it’s the difference between the operators of the gradient of expansion
and erosion of an image [97,98]. In this case, the value of a pixel corresponds to the intensity of the
contrast in the nearest neighbor. Generally, the extensive and anti-extensive operators exploited by
gradient masks are effective in determining the intensity transitions of gray levels in the borders
of objects. However, this technique suffers from the problem of the edge detail smearing. In
addition, its sensitivity in particular to white Gaussian noise condensed on the high-frequency
part of the signal.

• Watershed line: it interprets an image as a height profile, flooded from regional minima so that,
the lines where the flooded areas touch represent the watersheds [99,100]. It makes it possible to
use the a priori knowledge of the clinician and his intervention, which facilitates visual evaluation
in the higher level. However, it is difficult to implement and slow from a calculation point of view.
In addition, the over-segmentation of images is generally frequent.

The Form-Based Approach

It searches for areas that derive from a given form a priori.

• Deformable models: generate curves or surfaces (from a simple image), or hyper-surfaces (in the
case of larger images). They use internal and external forces to delimit the limits of objects and
thus distort images. We could distinguish parametric models (active contours or snake) [101–105]
and geometric models [106]. They are robust to noise and parasitic edges thank to their ability to
generate closed parametric surfaces or curves. Simple to implement on the continuum and achieve
less than pixel accuracy, a property highly desirable for medical imaging applications. Ease of
integrating border elements into a coherent mathematical description. They are able to enlarge
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or contract over time, within an image [52,107]. However, they risk producing shapes whose
topology is inconsistent with the real object, when applied to noisy images with ill-defined borders.

• Atlas: allows an image segmented by an automated algorithm to correspond to a reference
image (atlas) [108,109]. These techniques take into account a priori knowledge of brain
structures and manage segmentation as a recording problem. They are used in clinical practice,
for computer-assisted diagnosis and offer a standard system for detecting properties and
morphological differences between patients. They allow segmentation even if there is not
a well-defined relationship between the intensities of the pixels and associated regions. However,
building an atlas takes time. Difficult to produce objective validation, because segmentation is
used when the information from the gray level intensities is not sufficient.

• Wavelets: automatically extracts the histogram threshold from the image by wavelet transform.
The threshold segmentation is carried out by exploiting multi-scale characteristics of the wavelet
transformation [25,56,110–112]. It preserves the sharpness of the contours and provides frequency
information located on a function of a signal, which is beneficial for segmentation. However,
the overall threshold value is not constant, which leads to a sensitivity of the transformation to
the shift. A transformation of dimension greater than 1 suffers from a bad direction when the
transformation coefficients reveal only a few orientations of characteristics, in the spatial domain.
In addition, there is no information available on the phase of a signal or vector with complex
values; it is calculated by applying real and imaginary projections.

• Spherical harmonics: It offers solutions of the Laplace equation expressed in a spherical coordinate
system [24,113–115]. A base of orthogonal functions is created, which ensures the uniqueness of
the decomposition of a form on the unit sphere. So that any finite energy and differentiable function
defined on the sphere can be approximated by a linear combination of spherical harmonics. The
estimation of the harmonic coefficients makes it possible to model the form with a level of detail
relatively linked to the level of the decomposition whose calculation is fast. However, certain
continuity constraints should be included when estimating the coefficients. In addition, the results
of the shape reconstruction from the decomposition into harmonics are poor when the missing
data are concentrated in one area [116].

• Level set: consists of representing the segmentation of the contour by the zero level set of a
smoothing [108,117–121]. There are two types of methods: geometric and geodesic. Its strong
points are the ease of following forms that change topology. Best results for weak and variable
signal-to-noise ratios and for non-uniform intensities. Allow to manage any cavity, concavity,
convolution, split or fusion. Allow numerical calculations involving curves and surfaces to be
performed on a fixed Cartesian grid without having to configure objects. However, the boundaries
of the object are not clearly defined by strong image gradients or significant changes in the intensity
distribution, this is common in several medical applications, for which image data often suffer
from low contrast or fabric noise. In addition, for large images, the execution speed could be very
slow and requires manual adjustment of the parameters to obtain optimal results. Possibility
of being trapped by an undesirable local minimum which requires additional regularization to
obtain the desired minimum.

• Edge detection techniques: try to locate points with more or less abrupt changes in gray level [122].
His reasoning is close to human perception and works well for images with good contrast between
them [123]. However, its performance degrades in the case of poorly demarcated edges or
many edges.

The Theory of Graphs

Mathematical structure allowing to model the relations in pairs between the objects of a set.

• Hypergraph: enlargement of the graph, due to its hyper-edges linked with three or more vertices,
which is advantageous for processing large data [124,125]. The concept of cross family (intersection
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of hyper-edges) derived suits the problem of segmentation on several levels and gives good results.
In addition, it provides more meaningful and more robust edge maps. However, its algorithms
are quite complex [126].

• Graph cut: the image is considered as an undirected graph whose pixels represent the nodes
and where the distance between the neighboring pixels forms an edge. A weight is assigned
to each edge so that the weight vectors characterize the segmentation parameters [29,127–131].
No initialization is required for this method which guarantees optimal global solutions. Easy to
execute and delivers precise results. Ability to integrate constraints and approximate continuous
cutting metrics with arbitrary precision. It is applicable for highly textured, noisy, colored images,
complex backgrounds, etc. However, it is limited to binary segmentation, and to a special class of
functional energy.

In Table 2, some visual segmentation results are reported.
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Table 2. Visual illustration of the MRI brain segmentation using some techniques described in the literature: The examples illustrate the results obtained with
the techniques classified in the five categories, namely: (A) Region approach, (B) form approach, (C) graph theory approach, (D) structural approach and (E)
contour approach.
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2.2.3. Overview of Software Toolkits for Segmentation of Brain Images

Due to the increasing volumes of medical images, more efficient segmentation software toolkits
have been developed and several free, and powerful cross-platform library for brain image informatics,
image analysis (processing, registration, segmentation, . . . ) and three-dimensional visualization are
available in open access to physicians, researchers and application development. Below is an overview
of some of these tools.

FMRIB Software Library

The FSL (www.fmrib.ox.ac.uk\T1\guilsinglrightfsl) [137] offers statistical tools to analyze the
brain imaging data of structural MRI, functional MRI (fMRI) and diffusion tensor imaging (DTI). The
majority of these tools are functional via GUI. We could cite FAST which allows automatic segmentation
into different types of tissue and corrects the bias field; FLIRT allows linear registration inter- and
intra-modal; MIST for multimodal image segmentation; SUSAN to attenuate non-linear noise and
BET/BET2 to extract brain from non-brain and to model the surfaces of the skull and scalp.

Insight segmentation and registration ToolKit

The ITK (www.itk.org) is an open-source, cross-platform library for processing, segmentation
and registration of medical images. It contains algorithms programmed in C++ and wrapped for
Python. The implementation is achieved by applying generic programming through the C++ templates.
Moreover, CMake generation environment is used to manage the configuration process. It contains
scripts for image processing like Gradient image subjected to a Gaussian filter, for the development of
segmentation methods such as the region growing method.

ITK-SNAP

The ITK-SNAP (http://www.itksnap.org/) is a software application that offers semi-automatic
segmentation of medical images in structures and in three dimensions. It applied active contour
approach and allows different tasks namely: seamless three-dimensional image navigation, manual
delineation in three orthogonal planes simultaneously of anatomical regions of interest; multiple 3D
image formats are considered including NIfTI and DICOM; takes into account the simultaneous linked
display, and segmentation of several images; takes into account color, multi-channel images which
vary over time and much more...

FreeSurfer

The FreeSurfer (https://surfer.nmr.mgh.harvard.edu/) is an open source software package
developed for processing, visualizing and analyzing structural and functional neuroimaging data
from cross-sectional or longitudinal studies. Some of the main tasks include: Skullstripping, image
registration, subcortical and cortical segmentation, cortical surface reconstruction, cortical thickness
estimation, longitudinal processing, fMRI analysis, tractography, freeview visualization GUI and
much more... Among these registration tools, we could cite: mri_robust_register, mri_ca_register
mri_robust_template, bbregister, mri_cvs_register, mri_em_register, and others.

Analysis of Functional NeuroImages

The AFNI (https://afni.nimh.nih.gov/) is free, open source software for research purposes,
developed through support from the National institute of mental health. Its algorithms are programmed
with C, Python, R languages and shell scripts. It allows processing, analyzing, and displaying anatomical
and functional MRI data. It runs on Unix systems with X11 and Motif displays.

www.fmrib.ox.ac.uk\T1\guilsinglright fsl
www.itk.org
http://www.itksnap.org/
https://surfer.nmr.mgh.harvard.edu/
https://afni.nimh.nih.gov/
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3D Slicer

The 3D Slicer (https://www.slicer.org/) is an open source software platform which applied medical
image informatics and allows image processing and three-dimensional visualization. The SlicerDMRI
is an extension of 3D Slicer which provides an enhancement diffusion magnetic resonance imaging
(dMRI) software. It allows different tasks namely: Load DICOM and nrrd/nhdr dMRI medical image
data; load and save tractography in new DICOM format; visualization and registration of multimodal
data exploiting the tools of 3D Slicer; and much more . . .

2.2.4. Critical Discussion about Segmentation Techniques

Segmentation is a key step that determines the success or failure of the classification process in
the CAD system. However, it represents an arduous process, due to the complexity of the medical
data, the diversity of the artefacts in particular, the low signal/noise ratio, the uncertain limits of the
images, the great variability of the tissues within the same population and the artifacts due to patient
movement or little time for data acquisition.

Despite decades of intensive research in the area of brain region segmentation, there is no reliable
general theory for all types of images. That said, no standard method is established or considered
effective. Therefore, a set of ad hoc methods has been devised by researchers that have received a
certain degree of popularity. We can split these segmentation techniques into five categories: those
based on shape, contour, region, graph theory and on the structural approach.

Certain conclusions could be drawn concerning these methods. The neural model suffers
from complexity from the point of view of the desired topology, it’s appropriate learning and the
generalization of the network. It would only be chosen if no prior distribution is required and no
very high-quality object information is required. The MRF has been widely exploited due to its use
of spectral, spatial, textural, contextual and earlier image properties. However, its implementation
is very complex and it does not allow integration of form. The watershed model could however be
applied to the segmentation of medical images, however, intensive research is needed to understand
its mechanism. By making several models evolve simultaneously, the use of GA makes it possible
to remedy the problem of local minima observed in deformable models, the estimation of the pose
as well as the initialization of the model. The strong point of the clustering methods based on the
theory of fuzzy subsets lies in the resolution of the ambiguities of the borders of the regions. In the
framework of hybrid models they combine with neural networks, the MRF model and histogram
thresholding method.

The segmentation performance also depends on the homogeneity measures which must be taken
into account in the analysis of complex regions. Several have been used in literature, spectral, spatial,
texture, shape, scale, size, compactness and contextual, temporal and prior knowledge. Spectral
measurement was the most primitive. However it is unable to process high-resolution imagery. Texture
measurement was also widely used since it simultaneously benefits from spectral and spatial properties.
However it often does not provide perfect segmentation. Therefore, to properly estimate the threshold
of homogeneity or heterogeneity of the brain regions, it is beneficial to combine all or most of the
measures for better segmentation results [138–141]. For example, the interest of integrating prior
knowledge and contextual information has opened up good tracks of research in the segmentation of
medical images [47,142].

In addition to this, the required information scale which is important for better segmentation
performance unfortunately, it is selected manually in most existing works. In addition, it would be
relevant to propose a quantitative analysis to the methods for assessing segmentation.

Moreover, we noticed that some studies have proven the interest of applying hybrid models
which integrate the advantages of several intelligent methods derived from soft computing in order to
solve certain problems encountered in the brain regions segmentation, in particular the combination of
fuzzy logic clustering algorithms, neural networks, stochastic models and bio-inspired optimization

https://www.slicer.org/
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algorithms. The interest of this hybridization is revealed in the context where medical images are
susceptible to different artifacts and noises which cause disconnected and indistinct limits.

In the following, an effort to bring together most of the advantages and disadvantages of the
techniques proposed for the classification of brain images (bloc D in Figure 1) is summarized below.
Thus the reported existing works in the literature, on the diagnosis of brain diseases including AD
are summarized.

2.3. Classification of Brain Images

Several CAD systems have been proposed to distinguish patients affected by cerebral dementias
in particular, those used to predict AD and to distinguish it reliably from normal aging. In this
section which corresponds to block D in Figure 1, we will detail the advances in research in the
context of the brain images classification. Table 3 explores certain AD related works [7,143–156]
described in the literature which have applied classification approaches from artificial intelligence and
pattern recognition.

2.3.1. Classification Techniques Proposed in Literature: Description, Advantages and Disadvantages

Below is an effort to bring together most of the classification techniques (see Figure 3) used for the
diagnosis of AD, emphasizing their advantages and disadvantages.
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Figure 3. MRI brain images classification methods described in the literature: In this work, the
classification methods have been grouped into two categories (green color) according to the type
of learning, namely: supervised and unsupervised learning. DNN: Deep neural network, CNN:
Convolutional neural network, MLP: multi-layer perceptron, BPNN: Back propagation neural network,
PCNN: Pulse-coupled neural network, SVM: Support vector machines, SVDD: Support vector data
description, GMM: Gaussian mixture model, HMM: Hidden Markov models.
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Table 3. Some works described in the literature related to the computer aided-diagnosis systems of Alzheimer’s disease through MRI. These CAD systems used
classification methods based on supervised or unsupervised training. The efficiency of the proposed CAD system is demonstrated by estimating the percentage of the
following performance measures (last column): Sensitivity (SE) which represents the true positive rate, specificity (SP) which estimates the true negative rate and
accuracy (AC) that determines the proportion of true results in the database, whether true positive or true negative. In [143], the reported learning time was around a
week, while in [148] the computation time reported was 0.0451 s per image.

Reference Classification Techniques Database
Performance Measures (%)

AC SE SP

[143] Classification: SVM (linear basis kernel) with
supervised learning

Group 1: 20 AD and 20 HC, samples from the Rochester
community, Minnesota, USA.
Group 2: 14AD and 14 HC from the Dementia Research
Centre, Univ. College London, UK.
Group 3: 33 probable mild AD and 57 HC sample in
Rochester, Minnesota, USA.
Group 4: 19 subjects with pathologically confirmed FTLD

AD: 96
PMAD: 89
FTLD: 89

NA NA

[144] Segmentation: hierarchical networks
Classification: SVM with supervised learning

ADNI: 100 P-MCI and 125 HC subjects
http://adni.loni.usc.edu/

MCI: 84.35 NA NA

[145] Classification: SVM with leave-1-out CV and
3-fold CV and supervised learning 19 AD and 20 HC subjects AD: 80 NA NA

[146]
Segmentation: SPM5 software from department of
Imaging Neuroscience, London, UK and using
Student t tests

25 AD subjects (11 men, 14 women), 24 MCI subjects (10
men, 14 women) and 25 HC (13 men, 12 women) subjects

AD: 84
MCI: 73

84
75

84
70

[147]

Feature extraction: Wavelet coefficients
Classification: SOM neural network with
unsupervised learning
SVM (linear, Polynomial, RBF basis kernel) with
supervised learning

AANLIB of Harvard Medical School: 46 AD and 6 HC
subjects.
http://med.harvard.edu/AANLIB/

AD-SOM: 94
AD-SVM: 98 NA NA

[148]
Feature extraction: Wavelet transform
Segmentation: PCA
Classification: BPNN with supervised learning

48 AD, glioma, meningioma, visual agnosia, Pick’s disease,
sarcoma, and Huntington’s disease and 18 HC subjects 100 NA NA

[149] Classification: SVM (bootstrap method) with
supervised learning 16 AD and 22 HC subjects AD: 94.5 91.5 96.6

http://adni.loni.usc.edu/
http://med.harvard.edu/AANLIB/
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Table 3. Cont.

Reference Classification Techniques Database
Performance Measures (%)

AC SE SP

[150]
Feature extraction: Random forest
Classification: SVM (bootstrap estimation and
20-fold CV) with supervised learning

144 AD and 189 HC subjects AD: 0.97 89 94

[151] Classification: SVM (leave-one-out CV) with
supervised learning 37 AD and 40 HC subjects. AD:96.1 NA NA

[152] Classification: SVM, Bayes statistics, VFI with
supervised learning 32 AD, 24 MCI and 18 HC subjects AD: 92

MCI-c: 75 NA NA

[153]
Feature selection: Pearson’s correlation
Classification: SVM (linear basis kernel and
leave-one-out CV) with supervised learning

20 AD and 25 HC subjects from Hospital de Santiago
Apostol, Mexico. AD: 100 NA NA

[154]
Features extraction: MBL
Classification: LDA, SVM with supervised
learning

ADNI: 198 AD, 238 S-MCI, 167 progresses MCI and 231
HC subjects

AD-SVM: 86
AD-LDA: NA

94
93

78
85

[155]

Feature extraction: SIFT
Segmentation: k-means
Classification: SVM (leave-one-out CV) with
supervised learning

100 AD and 98 HC subjects. AD: 86 NA NA

[156]
Feature extraction: fractal analysis
Classification: SVM (quadratic kernel) with
supervised learning

13 AD and 10 HC subjects. AD: 100 NA NA

[7]
Segmentation: Hybrid FCM/PCM
Classification: SVM (RBF kernel and
leave-one-out CV) with supervised learning

45 AD and 50 HC subjects from ADNI phantom with
noisiest images and spatial intensity inhomogeneity

AD-MRI: 75
AD-PET: 73

84.87
86.36

81.58
82.67

PMAD: p-mild AD, SVM: Support vector machines, FTLD: frontotemporal lobar degeneration, HC: Healthy control, AD: Alzheimer’s disease, ADNI: Alzheimer disease neuroimaging,
P-MCI: Probable mild cognitive impairment, S-MCI: Stable MCI, CV: Cross-validation, SPM: Statistical Parametric Mapping, SOM: Self-organizing maps, RBF: Radial basis function, VFI:
voting feature intervals, PCA: Principal component analysis, BPNN: Back propagation neural network, AUC: Area under curve, MBL: Manifold-based learning, LDA: Linear discriminant
analysis, SIFT: Scale-invariant feature transforms, FCM: Fuzzy C-means, PCM: Possibilistic C-means algorithm.
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Techniques based on Supervised Learning

• Artificial neural networks: ANNs are used in many works related to neuroimaging as classification
method [15,157–163] have been widely applied as a classifier to distinguish new test data. They
are universal functional approximations allowing to approximate any function with arbitrary
precision. They are flexible nonlinear models for modeling complex real-world applications. They
are self-adapting adaptable to data, without explicit specification of the functional or distributional
form with the underlying model. They are able to estimate the later probabilities, necessary to
establish classification rules and statistical analyzes. However, the learning time is high for large
ANNs and the adjustment of the parameters to be minimized requires a lot of calculation.

• k-nearest neighbors: the k-NNs proposed in many neuroimaging studies [164–167] allow a test
sample to be classified in the class most frequently represented among the k closest training
samples. In the case of two or more classes, it will be classified to the class with a minimum average
distance. This classifier is powerful and simple to implement. It provides precise distance and
weighted average information about the pixels. However, its efficiency degrades for large-scale
and large-scale data due to its “lazy” learning algorithm. The choice of k affects classification
performance which is slow and the memory cost is high.

• Gaussian mixing model: GMM suggested by many neuroimaging researchers [76,168–172] is
easy to implement. Effective and robust due to its probabilistic basis. It does not require a lot of
time, for large data sets. However, this classifier does not exclude exponential functions, and its
ability to follow trends over time is slow.

• Support vector machines: SVMs used in several works [6,159,173–176] have high generalization
performance, especially when the dimension of the function space is very large. These machines
offer the possibility of training generalizable nonlinear classifiers in large spaces using a small
learning set. They minimize the number of classification errors for any set of samples. However,
learning SVM is slow and requires computation time for implementation. High cost of memory
space to store data. No method is approved to determine a priori the best kernel for a concrete
task. So the optimality of the solution can depend on the chosen kernel.

Techniques based on Unsupervised Learning

• Self-organizing map: SOM [112,176,177] is a type of ANN that produces a discrete,
low-dimensional representation of the input space for learning samples. This classifier is
simple to implement and easy to understand. Capable of handling various classification issues
while providing a useful, interactive and intelligible summary of the data. However, despite the
ease of viewing the distribution of input vectors on the map, it is difficult to properly assess the
distances and similarities between them. In addition, if the output dimension and the learning
algorithms are selected incorrectly, similar input vectors may not always be close to each other
and the formed network may converge to local optima.

• Fuzzy C-means: FCMs [177–181] make it possible to determine a degree of data belonging to each
class. However, it is necessary to set a priori certain parameters, such as the initial partition, the
number of classes and their centroids.

2.3.2. Critical Discussion about Classification Techniques

Existing work reported in the literature has shown that the classification of brain images is
possible via supervised techniques such as ANN, Bayesian networks, k-NN, GMM, HMM, decision
tree induction, rule-based classification, PCA and SVM [88,166,182], and via unsupervised techniques
such as SOM and FCM. In reality, unsupervised classification, which does not require training data,
has not been widely used in CAD systems, due to the specificity of the brain images in which the
CAD system should be trained according to the truth field or clinical evidence. On the other hand,
the supervised classification was the best adopted because, before the clinical test, the CAD system
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introduced characteristic values for the data chosen for learning by doing, teaching the classifier to
know the labels of the target class by assigning values binaries (one for the target class and zero for
the second class). In this case, in order to improve robustness, the system should be trained with a
sufficient amount of training data in order to remedy the problem of overtraining.

Several researchers have been interested in the application of hybrid models which aim to combine
the advantages of different intelligent techniques of “soft computing” within the same system, or to
combine the relative strengths of different classifiers and apply them in a sequence of so that the overall
accuracy is maximized, which allows greater flexibility in modeling dynamic phenomena. However,
the cost of computing these systems is sophisticated and high.

Unfortunately, the single-modality MRI-based CAD systems and using these classification
techniques have limited performance and cannot provide comprehensive and accurate information
especially in real applications where noise and artifacts are condensed. In neuroimaging, the other
modalities could provide additional information, whose use is generally necessary for a relevant
diagnosis of cerebral dementia. This information is combined using fusion techniques from artificial
intelligence that provide for human visual perception a fusion image providing additional and useful
clinical information that does not appear in the separate images.

Thus the efforts investigated to find a solution within the framework of multimodal fusion are
presented in the following section. We summarize some works related to multimodal fusion, with
an experimental performance study and a comparison with systems using a single MRI modality
for diagnosis. We also provide an overview of the applicability and progress of information fusion
techniques in medical imaging, highlighting the disadvantages and advantages of the methods
suggested by researchers in the context of multimodal fusion.

3. CAD Systems of Brain Disorders Based on Multimodal Fusion

3.1. Motivation for the Application of Multimodal Fusion

Given its clinical accessibility, magnetic resonance imaging technology has been widely used as
a non-invasive tool for diagnosing brain diseases because it does not use ionizing radiation, which
makes it safe. However, MRI is sensitive to movement, which limits its effectiveness especially in the
diagnosis of mobile organs. To overcome this problem and in order to obtain better performance from
the CAD system, several researchers have attempted to combine MRI with other modalities using
multimodal fusion. With this technology, one could predict and reconstruct missing information that is
not available in the MRI. We could also extract additional characteristics, not visible in the MRI images.

Citing, for example, the multimodal CT/MRI fusion, whereby, thanks to the CT image, dense
structures (bones and implants) are visualized with less distortion; however, physiological changes are
not localized. While the MRI image detects normal and pathological information on the soft tissue,
while information relating to the bones is not considered [183]. In addition, the MRI-T1/MRI-T2 fusion,
whereby, thanks to the T1-weighted MRI, details on the anatomical structures are provided, while
the T2-weighted MRI detects a greater contrast between normal and abnormal tissues. Added to all
of this is the MRI/PET merger, whose functional information is extracted using the PET image. This
information locates the metabolic changes caused by the growth of abnormal cells before an anatomical
abnormality. While the MRI image, thanks to its high-resolution, provides anatomical information
about the regions (or tissues) affected by the disease.

The MRI/PET fusion was widely used for the diagnosis of AD. Recent studies [184–188] have
shown that this fusion effectively contributes to accurately interpreting the location and extent of
AD with combined information. In fact, the MRI measures the early structural changes in the
medial temporal lobe, in particular the entorhinal cortex and the hippocampus. Then, PET—FDG
(FluoroDeoxyGlucose) [189] makes it possible to observe, in AD patients, the reduction of glucose
metabolism in the parietal, posterior cingulate and temporal regions of the brain [190].
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Table 4 reports some work related to brain disease diagnostic systems [183,191–202], while Table 5
summarizes some CAD systems related to AD [10,16,17,184–188,203–211], with a comparative study
with systems using only MRI for the purpose of exploring the efficiency of multimodal fusion. In this
context, the researchers proposed techniques for merging data from artificial intelligence, and applied
in a multimodal imaging environment, in order to create an improved fusion image more suited
to image processing tasks such as than segmentation and diagnosis. The most widely used fusion
techniques in the literature are summarized below.

3.2. Multimodal Fusion Techniques Proposed in Literature: Description, Advantages and Disadvantages

Data fusion techniques (see Figure 4) [212–215] can be classified into three categories, depending
on the level of the desired fusion: pixel or imaging sensor level, level of functional parameters and
level of decision.
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Figure 4. Multimodal fusion techniques in spatial and frequency domains for brain images. In this
work, image fusion methods have been classified into two categories (green color) according to the
domain from which the image is transferred, namely spatial and frequency domains.
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Table 4. Some works described in the literature related to the computer aided-diagnosis systems of brain diseases through multimodal fusion: The efficiency of the
proposed CAD system is demonstrated by experiments applying quantitative measurement parameters (penultimate column of the table) for the evaluation, and by
estimating computation time in seconds for some reported works (last column).

Reference Fusion Approach Modalities Performance Criteria Computation Time (in Sec.)

[191] Hybrid NSCT/PCNN
QMI QS QAB/F

MRI-T1 + MRI-T2 3.9161 0.6561 0.6841 2.2198

MRI + CT 1.8028 0.4651 0.6652 2.2220

[192]
QMI QS QAB/F

NSCT MRI-T1 + MRI-T2 3.9133 0.6892 0.6961 2.2189

NSCT MRI + CT 1.8499 0.4703 0.6814 2.2245

[183]

QMI QS QAB/F

NSCT MRI-T1 + MRI-T2 3.9493 0.6950 0.6990 2.2194

NSCT MRI + CT 1.8503 0.4725 0.6772 2.2198

PCA MRI-T1 + MRI-T2 3.6627 0.6760 0.6645 0.0333

PCA MRI + CT 2.6001 0.5133 0.6092 0.0328

[193]
QMI QS QAB/F

Contourlet MRI-T1 + MRI-T2 3.8314 0.6674 0.6816 1.9522

Contourlet MRI + CT 1.6025 0.4277 0.6485 1.9682

[194]
QMI QS QAB/F

Wavelet MRI-T1 + MRI-T2 3.0773 0.6585 0.6176 0.0759

Wavelet MRI + CT 1.5420 0.4187 0.5175 0.0780

[195]

RMSE

Hybrid Surface/Voxel MRI + PET 0.047796 24.2

Surface MRI + PET 1.69186 3.4

Voxel MRI + PET 0.050478 639.18
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Table 4. Cont.

Reference Fusion Approach Modalities Performance Criteria Computation Time (in Sec.)

[196]

PSNR

Wavelet MRI + CT 72.1172 NA

Pyramid MRI + CT 70.1061 NA

Weighted average MRI + CT 68.4456 NA

[197]

Mean Var Entropy Cros-Ent

Weighted average/WT MRI + CT 59.6862 59.6871 6.7599 0.5632 NA

Wavelet MRI + CT 32.0674 32.0678 5.8570 0.8999 NA

Weighted average/WT MRI + PET 45.3537 45.3543 5.6779 0.7714 NA

Wavelet MRI + PET 30.1334 30.1339 5.3272 0.9629 NA

[198]

MI

Level set MRI-T1 + MRI-T2 1.7176 NA

Pixel-based MRI-T1 + MRI-T2 1.5540 NA

Edge detection MRI-T1 + MRI-T2 1.6726 NA

[199]

DC

Bayesian multi-sequence
Markov model with

adaptive weighted EM

MRI-T1 + MRI-T2
+ MRI-Flair

12 (+8)
(9% SNR) NA

[200] EFA EFLA EFSA

SP-MMI algorithm MRI + SPECT 0.001 0.003 0.007 NA

[201] EFA EFLA EFSA

FCM/MMI algorithm MRI + SPECT 0.06 0.16 0.04 NA

[202]

DR

Regional growing
approach MRI-T2 + DTI

Edema: 2.96

NATumor solid: 8.07

Tumor: 11.03

QMI: Information theory-based metrics, QS: Image structural similarity-based metrics, QAB/F: Image feature-based metrics, NSCT: Non-subsampled contourlet transform, PCNN:
Pulse-coupled neural network, PCA: Principal component analysis, RMSE: Root-mean-square-error, PSNR: Peak-to-peak signal-to-noise ratio, sd: Standard deviation, SP-MMI:
Surface-projection maximization mutual information, EFA: Error function of area, EFLA: Error function of long-axis, EFSA: Error function of short-axis, FCM: Fuzzy C-means, MI: Mutual
information, WT: Wavelet, DC: Dice similarity coefficients, AC: Correct tumor diagnoses accuracy, DR: WM fiber pixel distribution ratio.
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Table 5. Some works described in the literature related to the CAD systems of Alzheimer disease through multimodal fusion with comparison of performance of
single-modal and multimodal classification methods using 10-fold cross-validation. The efficiency of the proposed multimodal CAD system is demonstrated by
estimating the percentage of the following performance measures: Sensitivity (SE), which represents the true positive rate; specificity (SP), which estimates the true
negative rate; and accuracy (AC), which determines the proportion of true results in the database, whether true positive or true negative. For the same purpose, for
some work, the area under ROC curve (AUC) value was estimated which determines the diagnostic validity by combining sensitivity and specificity.

Reference Multimodal Classifier ADNI Subjects Modalities
Performance Criteria (%)

AD Vs. HC MCI Vs. HC

AC SE SP AUC AC SE SP AUC

[16] HIS NA MRI + PET 80-90 NA NA NA NA NA NA NA

[10] MKL 51AD + 99MCI +
52HC

MRI
CSF
PET

MRI + FDG−PET
MRI + FDG−PET + CSF

86.2
82.1
86.5
90.6
93.2

86.0
81.9
86.3
91.4
NA

86.3
82.3
86.6
91.6
NA

NA
NA
NA
NA
NA

72.0
71.4
74.5
76.4
NA

78.5
78.0
81.8
80.4
NA

59.6
58.8
66.0
63.3
NA

NA
NA
NA
NA
NA

[203] MKL 77AD +
82HC

MRI
FDG−PET

MRI + FDG−PET

75.27
79.36
81.0

63.06
78.61
78.52

81.86
78.94
81.76

82.48
83.9
88.5

NA
NA
NA

NA
NA
NA

NA
NA
NA

NA
NA
NA

[204] MKL 48AD + 66HC
48AD + 66HC

MRI + FDG−PET
MRI + FDG−PET + CSF +
ApoE + Cognitive scores

87.6
92.4

NA
NA

NA
NA

NA
NA

NA
NA

NA
NA

NA
NA

NA
NA

[205] SCLDA model 49AD + 67HC MRI + FDG−PET 94.3 NA NA NA NA NA NA NA

[206] M3T 45AD + 91MCI +
50HC

MRI
FDG−PET

CSF
MRI + FDG−PET + CSF

84.8
84.5
80.5
93.3

NA
NA
NA
NA

NA
NA
NA
NA

NA
NA
NA
NA

73.9
79.7
53.6
83.2

NA
NA
NA
NA

NA
NA
NA
NA

NA
NA
NA
NA

[207] Multivariate analysis of
OPLS

96AD + 162MCI
+ 111HC

MRI
CSF

MRI + CSF

87.0
81.6
91.8

83.3
84.4
88.5

90.1
79.3
94.6

0.930
0.861
0.958

71.8
70.3
77.6

66.7
66.7
72.8

79.3
75.7
84.7

78.26
77.06
87.6

[185] Random forest 37AD + 75MCI +
35HC

MRI
FDG−PET

CSF
Genetic

MRI + PET + CSF + Genet

82.5
86.4
76.1
72.6
89.0

88.6
85.8
72.8
71.3
87.9

75.6
87.1
79.8
74.1
90.0

NA
NA
NA
NA
NA

67.3
53.5
61.7
73.8
74.6

64.3
42.3
61.6
94.7
77.5

73.9
78.0
61.8
26.6
67.9

NA
NA
NA
NA
NA
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Table 5. Cont.

Reference Multimodal Classifier ADNI Subjects Modalities
Performance Criteria (%)

AD Vs. HC MCI Vs. HC

AC SE SP AUC AC SE SP AUC

[208] Multitask feature selection
method + MKL

51AD + 99MCI +
52HC

MRI
FDG−PET

MRI + FDG−PET

91.10
91.02
94.37

91.57
89.02
94.71

92.88
90.58
94.04

96.55
95.84
97.24

73.54
72.08
78.80

81.01
75.56
84.85

65.38
59.23
67.06

78.26
77.06
82.84

[188] Multivariate modeling +
SVM 50 MCI

MRI
FDG−PET
PIB−PET

MRI + PIB−PET
MRI + FDG−PET

NA
NA
NA
NA
NA

NA
NA
NA
NA
NA

NA
NA
NA
NA
NA

NA
NA
NA
NA
NA

67
62
45
76
37

37
10
45
53
37

87
97
80
90
90

NA
NA
NA
NA
NA

[184] Multimodal biomarker
classifier + SVM

95AD + 182MCI
+ 111HC

MRI
CSF

MRI + CSF
MRI + CSF + ApoE

73
82
84
85

NA
NA
NA
NA

NA
NA
NA
NA

78
85
90
88

70
74
77
79

NA
NA
NA
NA

NA
NA
NA
NA

68
77
78
79

[187] M2TFS + MKL 51AD + 99MCI +
52HC

MRI
FDG−PET

CSF
MRI + FDG−PET

MRI + FDG−PET + CSF

88.68
84.42
82.26
95.00
95.40

84.51
83.53
82.55
94.90
94.71

92.50
84.81
81.54
95.00
95.77

94
91
87
97
98

73.12
67.11
70.72
79.27
82.99

78.28
75.96
71.62
85.86
89.39

63.65
50.19
69.04
66.54
70.77

79
72
75
82
84

[186] MKL with multitask
feature learning

51AD + 99MCI +
52HC

MRI
FDG−PET

MRI + FDG−PET

92.25
91.65
95.95

92.16
92.94
95.10

92.12
90.19
96.54

96
96
97

73.84
74.34
80.26

77.27
85.35
84.95

66.92
53.46
70.77

77
78
81

[209] M3 16AD + 22HC MRI + PET 89.47 87.5 90.91 NA NA NA NA NA

[210] DNN

180AD + 160
MCI + 204HC

85AD + 67MCI +
77 HC

MRI
MRI + FDG−PET

82.59
91.40

86.83
92.32

77.78
90.42

NA
NA

71.98
82.10

49.52
60.00

84.31
92.32

NA
NA

[211] CNN 93 AD + 100 HC MRI + PET 89.64 87.1 92 94.45 NA NA NA NA

[17] SVDD 77 AD + 82 HC
MRI

FDG−PET
MRI + FDG−PET

88.15
85.16
93.65

89.02
86.84
90.08

90.18
84.14
92.75

95.00
92.04
97.30

NA
NA
NA

NA
NA
NA

NA
NA
NA

NA
NA
NA

FDG: fluorodeoxyglucose, CSF: Cerebrospinal fluid, PIB: Pittsburgh compound B, ApoE: apolipoprotein E54 allel, HIS: Hue-intensity-saturation, MKL: Multi- kernel learning, SCLDA:
Sparse composite linear discriminant analysis, M3T: Multimodal multitask, OPLS: Orthogonal partial least squares, M2TFS: Manifold regularized multitask feature learning, M3:
Multimodal imaging and multi-level characteristics with multi-classifier, DNN: Deep neural network, CNN: Convolutional neural network, SVDD: Support vector data description.
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3.2.1. Spatial Domain Techniques

• Principal components analysis: PCA used in many works [216–223] makes it possible to carry
out a linear orthogonal transformation of a multivariate set of data which contains variables
correlated with N dimensions in other containing new variables not correlated to M smaller
size dimensions. The transformation parameters sought are obtained by minimizing the error
covariance introduced by neglecting N-M of the transformed components. This technique is very
simple and effective. It benefits from faster processing time with high spatial quality. It selects
the optimal weighting coefficients according to the content of the information; it removes the
redundancy present in the input image. It compresses a large amount of input data without
much loss of information. However, a strong correlation between the input images and the
merged image is necessary. In addition, the merged image quality is generally poor with spectral
degradation and color distortion.

• Hue-intensity-saturation: HIS used in many works [224–228] converts a color image of the RGB
space (red, green and blue) into an HIS color space. The intensity band (I) in the HIS space is
replaced by a high-resolution panoramic image, then reconverted in the original RGB space at the
same time as the previous hue band (H) and the saturation band (S), which creates an HIS fusion
image. It is very simple, efficient in calculation and the processing time is faster. It provides high
spatial quality and better visual effect. The change in intensity has little effect on the spectral
information and is easy to manage. However, it suffers from artifact and noise which tend to
weaken the contrast. It only processes multi-spectral bands and results in color distortion.

• Brovery transformation: It is a combination of arithmetic operations which normalize the spectral
bands before they are multiplied by the panoramic image. It retains the corresponding spectral
characteristic of each pixel and transforms all the luminance information into a high-resolution
panoramic image. This technique proposed by many works [229–231] is very simple, effective
on the computer level and has a faster processing time. It produces RGB images with a high
degree of contrast. Good for multi-sensory images and provides a superior, high-resolution visual
image. Generally the Bovery fusion image is used as a reference for comparison with other fusion
techniques. However, it ignores the requirement for high-quality synthesis of spectral information
and causes spectral distortion, which results in color distortion and high-contrast pixel values in
the input image. It does not guarantee to have clear objects of all the images.

• Guided filtering: This technique [232–235] is based on a local linear model which takes into
account the statistics of a region in the corresponding spatial neighborhood in the guide image
while calculating the value of the output pixel. The process first uses a median filter to obtain
the two-scale representations. Then the base and detail layers are merged using a weighted
average method. It is very simple, in terms of computation and adaptable to real applications
whose computational complexity is independent of the size of the filtering kernel. It has good
smoothing properties preserving the edges and does not suffer from the gradient reversal artifacts
observed when using a bilateral filter. It does not blur strong edges in the decomposition process.
Despite the simplicity and effectiveness of this technique; however, the principal problem with
the majority of guided filters is associated with ignorance of the structural inconsistency between
the ground truth and target images such as color [234]. Moreover, the halos could represent an
obstacle [235].

Several spatial domain techniques represent a simple means to obtain a fusion image but, due to
degrading performance and weak or ineffective results, they have not been sufficiently applied,
especially in real-time applications. Some of these methods are mentioned below.

• Simple average: The pixel value of each image is added. The sum is then divided by 2 to obtain
the average. The average value is assigned to the corresponding pixel of the output image. The
principle is repeated for all pixel values. This technique [217,236] is a simple way to obtain a fusion
image with focusing of all the regions of the original images. However, the quality of the output
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image is reduced by incorporating noise into the merged image, which results in undesirable
effects, such as reduced contrast. In addition, the possibility of having clear objects from all of the
images is not guaranteed.

• Weighted average: It calculates the sum of the pixels affected by coefficients, divided by the
number of pixels. The weighted average value is assigned to each pixel of the input image
to obtain the value of the corresponding pixel in the output image. This technique used in
some works [217,231,237–239] improves the reliability of detection. However, there is a risk of
increasing noise.

• Simple block replacement: In this technique [223,240], for each pixel, its neighboring pixels are
added and a block average is calculated. The pixel of the merged image is obtained by taking the
pixel with a maximum block average among all the corresponding pixels in the input image.

• Max and Min pixel values: These techniques are used in many works [217,236,240], they choose
the focused regions of each input image by choosing the highest value (or the lowest in the case of
the min pixel value technique) for each pixel. This value is assigned to the corresponding pixel in
the merge image.

• Max-Min: For this technique [240], in the merged image, the output pixels are obtained by
averaging the smallest and largest values of the corresponding pixels in all of the input images.

The last four techniques are easy to implement and provide several rules for merging images,
most of which are very simple. However, they produce a fuzzy output that affects the contrast of the
image, which limits their potential for real-time applications.

3.2.2. Frequency Domain Techniques

Discrete Transform

In signal processing, the discrete transformations represent in most cases linear transformations
of signals between discrete domains, such as between discrete time and discrete frequency. In the case
of medical signal processing, it provides a sparse representation of smooth images in pieces. The most
used techniques based on this type of transformation are discrete cosine transform (DCT), curvelet
transformation (CT) and wavelet transform.

• Discrete Cosine Transform: The DCT described in many works [241–246] makes it possible to
perform a discrete transformation which provides a division into N × N pixel blocks by operating
on each block. As a result, it generates N coefficients which are quantified to reduce their
magnitude. It reduces complexity by breaking down images into series of waveforms. It can be
used for real applications. However, the merged image is not of good quality if the block size is
less than 8 × 8 or equivalent to the size of the image itself.

• Curvelet Transform: The CT used in many works [247–252] is a means of characterizing curved
shapes in images. The concept is to segment the complete image into small overlapping tiles, then
the ridgelet transformation is performed on each tile. The curvelet transform provides fairly clear
edges because the curvelets are very anisotropic. They are also adjustable to properly represent or
improve the edges on several scales. However curvelet do not have time invariance.

• Wavelet Transform: In wavelet-based fusion, used in different studies [217,220,253–258], once
the image is decomposed by wavelet transformation, a multi-scale composite representation is
constructed by selecting the salient wavelet coefficients. The most applied techniques based on
wavelet transform are discrete wavelet transform (DWT), stationary wavelet transform (SWT)
and Kekre’s Wavelet transform (KWT).

- Discrete wavelet transform: DWT [217,258] allows a discrete transformation for which the
wavelets are discretely sampled. The key advantage of DWT is that it provides temporal
resolution, in the sense that it captures frequency and location information. However DWT



Appl. Sci. 2020, 10, 1894 32 of 52

requires a large storage space, the lack of directional selectivity and causes the loss of
information on the edges due to the down-sampling process, effect of blurring, etc.

- Stationary wavelet transform: SWT [250,259], allowing a discrete transformation, begins
by providing from the original image, information relating to the edges of levels 1 and 2.
Then, a measurement of spatial frequency is used to merge the two contour images, and
in order to obtain a complete contour image. From level 2 of the decomposition, the SWT
offers satisfactory results. Its stationary property guarantees temporal invariance, which is
obtained by suppressing the process of subsampling, but SWT is more complex in terms of
computation and processing, which consume time. Moreover, although it performs better
at separate discontinuities, its effectiveness degrades at the edges and textured locals.

- Kekre’s wavelet transform: The KWT [260], which allows a discrete transformation to be
carried out, is applicable for images of different sizes. Its results are generally good. In
addition, different variations of KWT are simply generable, only by changing the size of the
basic Kekre’s transformation. However, this type of transformation is not explored enough.
Intensive research is; therefore, desired to bring out its weaknesses.

• Hybrid Approach-Based Fusion: To achieve a merger, some researchers have used hybrid
methods which allow two or more methods to be combined in a single scheme. Below some of
them are presented.

- Hybrid SWT and curvelet transform: With the hybrid SWT/CT technique [261] we first
decompose the input images by applying the SWT in order to obtain the high- and
low-frequency components. Thereafter, a curvelet transform is applied to merge the
low-frequency components. The principle is based on the segmentation of the whole image
into small superimposed mosaics, then for each mosaic, we apply the transformation into
crest. Components with high frequencies are merged according to the largest coefficients
of absolute value. The final fusion image is finally obtained using the inverse SWT
transformation. This hybrid method makes it possible to avoid the drawbacks of the two
combined methods, namely the block effects of the fusion algorithm applied by the wavelet
transformation, as well as the performance defects of the details of the image in the curvelet
transformation. It retains image details and profile information such as contours. It adapts
to real applications. However, a lot of time is consumed.

- Discrete wavelet with Haar-based fusion: In the DWT with Haar-based fusion [262], once
the image is decomposed by wavelet transformation; a multi-scale composite representation
is constructed by selecting the salient wavelet coefficients. The selection can be based on
the choice of the maximum of the absolute values or of a maximum energy based on the
surface. The final step is a transformation into inverse discrete wavelets on the composite
wavelet representation. It provides a good quality merged image and better signal-to-noise
ratio. It also minimizes spectral distortion. Different rules are applied to the low- and
high-frequency parts of the signal. However, pixel-by-pixel analysis is not possible and
it is not possible to merge images of different sizes. The final merged image has a lower
spatial resolution.

- Kekre’s hybrid wavelet transform: This fusion technique [263] allowing a discrete
transformation to be carried out, exploits various hybrid transformations to decompose the
input images. Quoting the hybridization Kekre/Hadamard, Kekre/DCT, DCT/Hadamard,
etc. Then the average is applied to merge the decomposed images, and to obtain its
transformation components. The latter are subsequently converted to an output image by
applying a reverse transformation. Like its similar KWT, its advantage is that it is applicable
for images that are not only a whole power of 2.

- Hybrid DWT/PCA: The DWT/PCA fusion [220] allows for a discrete transformation.
It provides multi-level merging where the image is double-merged, which provides an
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improved output image containing both high spatial resolution and high-quality spectral
content. However, this kind of merger is quite complex to achieve.

Pyramid Decomposition

An image pyramid consists of a set of low-pass or band-pass copies of an image, each copy
representing pattern information of a different scale. In a picture pyramid, each level corresponds to a
factor two smaller than its predecessor, and the highest levels will focus on the low-spatial frequencies.
An image pyramid contains all the information necessary to reconstruct the original image. Among the
techniques based on pyramidal decomposition, we could cite the Laplacian technique [250,264–270],
Gaussian technique [269] gradient pyramid [270], low-pass ratio pyramid [271], contrast [272] and the
morphological technique [273]. Pyramid techniques provide good visual quality for a multi-focus image.
However, all pyramid decomposition techniques produce more or less similar results. In addition, the
number of decomposition levels affects the result of the merge.

3.3. Critical Discussion about Multimodal Fusion Techniques

Various multimodal fusion techniques have been exploited by several works related to brain
imaging. We could break these techniques down into two types: Those that can be used in the frequency
domain where the Fourier transform of the input image is first calculated, then the inverse Fourier
transform is determined to provide the output image. Other fusion methods are of the spatial domain
which are interested in the pixels of the input images whose modifications are made on the values of
the pixels to provide the desired output image.

In general, researchers have preferred to use pixel level fusion methods that have provided
the best results such as IHS, PCA, independent component analysis. (ICA), guided filtering and
Brovey transformation, etc. However, these techniques suffer from spectral degradation. Techniques
using traditional fusion rules have also been used such as weighted average, absolute maximum, etc.
Unfortunately, they provide a poor quality output image because the information from the low- and
high-frequency coefficients is overlooked or used inefficiently. Since medical images are sensitive to
the human visual system which exists on different scales, this type of technique is undesirable for
performing the fusion.

Pyramidal decomposition [250,264–274] and multi-resolution [275,276] techniques have solved
this problem, citing fusion by the gradient pyramid, the Laplacian pyramid, the contrast pyramid,
etc. On the other hand, the output image suffers from a reduced contrast with pyramidal fusion and
slightly less with multi-resolution techniques. In addition, these techniques produce blocking effects,
because in their decomposition process, no spatial orientation selectivity is taken into account.

With the progression of multi-resolution fusion, wavelet (WT) transformation was widely
used [205,217,220,250,253,254,256–258] to merge medical images, particularly DWT, since it maintains
spectral information. However, the spatial characteristics are poorly expressed. Added to this, the
isotropic WT is devoid of shift invariance and multi-directionality. It also does not provide optimal
expression of highly anisotropic edges and contours in brain images [183]. In the output image, it is
difficult to surely preserve all of the salient features of the input images. This eventually causes an
inconsistency in the results of the merger, and introduces artifacts. In addition, WT offers efficient
fusion only for isolated discontinuities. Unfortunately, its performance deteriorates on edges and
textured regions. On the other hand, it reserves limited directional information along the vertical,
horizontal and diagonal directions [183].

Multi-scale geometric analysis (MSGA) [193] has overcome these limitations, thanks to its
proposed techniques which allow multi-scale decomposition for high dimensional signals. Citing
the ridgelet, curvelet, bandlet, brushlet and contourlet techniques [247–252,276]. The contourlet
technique [193,250,276] is a lean 2D representation for 2D signals. It allows better capture of 2D
geometric structures in visual information than traditional multiscale methods. In addition, the
extended version, the non-subsampled contourlet transform (NSCT) [183,191,192,276–280], inherits all
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the advantages of contourlet transformation by adding the characteristic of invariant decomposition
by offset, which effectively suppresses pseudo-Gibbs phenomena. This increases performance thanks
to the use of directive contrast which takes advantage of contrast and visibility. It also improves
the quality of the output image, especially around the edges [183], by producing a more noticeable
and more natural merged image. Some works have attempted to propose new approaches which go
beyond the conventional context of fusion such as neural networks with pulse-coupled neural network
(PCNN) [191,281], fuzzy logic [282], genetic algorithms (GA) [283] and independent component
analysis (ICA) [284].

Recent trends to apply hybrid fusion techniques like hybridization weighted average/Brovery [231],
HIS/PCA [285,286], Laplacian/maximum likelihood [265], IHS/WT [287], contourlet/PCA [288],
Laplacian/DCT [266], Bloc replacement/PCA [223], NSCT/PCNN [191], WT/PCNN [281], Laplacian/

histogram equalization [267], GA/WT [289], DTW/PCA [290], etc. The objective is to increase the
performance of conventional medical image fusion systems, and to meet the needs of real medical
applications. For example image fusion using the IHS/WT hybrid transform [287] improves the
synthetic quality of the merged image. The fusion by IHS improves the textural characteristics in the
merged image, and the spatial details of the multi-spectral image. However, the spectral distortion is
severe in the output image. WT could remedy this problem as it provides high-quality spectral content.
In addition, hybridizing DWT with PCA [290] or other space domain methods improves performance
compared to using the techniques separately.

In conclusion, traditional fusion techniques [291] suffer from several drawbacks and do not meet
the requirements of current medical applications. The reason why, researchers have started a new
research by focusing on different tracks in order to increase the performance of CAD systems. Among
the addressed tracks, the tendency to apply hybrid models which combine the advantages of several
conventional fusion techniques. These models could be the future trend for neuroimaging research.

3.4. Critical Discussion about the Multimodal Diagnosis of AD

Several CAD systems [7,14,144,150–153,156] have been implemented over the past decade for the
diagnosis of AD or its early-stage MCI. To distinguish patients with AD from those in normal aging, the
researchers used machine learning methods such as SVM, ANN and naive Bayes classifier. However,
it should be noted that these techniques have been used for single-modal images (MRI or PET) in the
majority of the work. Unfortunately, few works have exploited multimodality for the diagnosis of AD
like [10,17,46,154,184,186,187,206,207], which seems to be better achieved by serving the advantages of
several types of images, each measuring a different type of structural or functional characteristic. In
reality, the various imaging environments and modalities offer complementary information that is
useful when used in conjunction. This improves the performance of the diagnostic system compared
to the system using a single modality.

In this context, some research groups have adapted machine learning algorithms to several types
of modalities (or to additional clinical/cognitive data), by concatenating the structural and functional
characteristics of each subject into a single vector of characteristics. However, this type of approach
causes strong growth in the distribution dimension. In addition, the principle prompts us to find
the right standardization for each modality in order to preserve its informational content and avoid
overwhelming the characteristics derived from one or the other type of image. The difficulty in this
case is in the evaluation of the relevance of the content of each modality, which allows the optimization
of the classifier.

To remedy this problem, several researchers [186,187,203,204,208] have exploited the idea of
carrying out multi-kernel learning (MKL) based on the combination of several kernels. This learning
applied to MRI/PET multimodal images is more flexible, thanks to the use of different weights on the
modality biomarkers. In addition, it provides a unified means for combining heterogeneous data when
a different data type cannot be directly concatenated. However, despite its performance in terms of
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cross-validation, this feature selection method requires having the same number of features calculated
for each modality.

In addition to the use of MRI/PET multimodal neuroimaging data, studies have attempted to
integrate other types of data from other biomarkers and test these prognostic capacities such as CSF,
Pittsburgh compound B (PIB)-PET, apolipoprotein E (ApoE) and genetic data. The advantage of these
measures developed for the diagnosis of AD is that the number of its characteristics is different, and
that they often contain relevant and complementary pathological information which can help in the
future diagnosis of AD and increase the performance of the classification [292].

For example, researchers, as in [10,206], proposed a kernel-based combination to integrate the
CSF with the FDG-PET and MRI modalities. They have shown that the morphometric changes in
AD and MCI are linked to the CSF, which offers additional information [293]. Additionally, the [11C]
PIB-PET biomarker has been used by several longitudinal studies and therapeutic interventions to
estimate the evolution of AD. The PET imaging tracer, PIB, was developed to identify the cerebral
amyloid. However, quantitative analysis of PIB [11C] data requires the definition of regional interest
volumes. In this context, to define the regions for a PIB-PET analysis, researchers as in [188,294] have
shown that the integration of MRI or PET offers similar results. This avoids the need for an MRI that
takes time and increases costs. Therefore, MRI analysis remains more appropriate for clinical research,
while the application of a PET model to [11C] PIB is adequate for clinical diagnosis. Studies have been
interested in the application of the ApoE4 genotype that has been integrated into the MRI and CSF in
several works [184,185], which have tested the performance of the classification after stratification of
ApoE4. This biomarker was commonly applied as a stratification factor or covariate that contributes to
the adjustment of heterogeneity in sporadic AD, since non-e4 status in EOAD patients is correlated
with typicity.

Biological or genetic biomarkers [184,185] have also been developed for the diagnosis of AD or its
early-stage MCI. Studies by genetic endophenotype by imaging would make it possible to develop the
link between genetics and the topography of AD by focusing on the areas of the brain most associated
with pathological genotypes. However, the use of these biomarkers differs from one research center to
another and is subject to various factors, such as the cost of local availability and historical patterns of
use [207]. In general, several deductions have been noted by researchers from these centers, namely:
(1) The increase in total tubulin-associated unit (t-tau) proteins and hyperphosphorylated tau at the
level of threonine 181 (p-tau) in the CSF is associated with the pathology of neurofibrillary tangling;
(2) the decrease in the amyloid β (Aβ42) is indicative of the pathology of the amyloid plaque; and
(3) the presence of the ε4 allele of APOE can predict cognitive decline or conversion to AD [184].
However, the change in the proteins t-tau and p-tau in the CSF does not really express the extent of
the tau pathology in the Alzheimer’s brain. These CSF biomarkers are only peripheral substitutes
for the current pathology of the tau protein. Recently, several ligands of the tau protein are being
developed. Such technology offers a much more precise measure of the pathology of the tau protein,
which significantly promotes better understanding and classification of the early and presymptomatic
stages of AD.

It should be added that most large-scale works have exploited multimodal techniques which target
the exploration of the relationship between various modalities for the same participants, neglecting the
useful relationship between the different participants. In another sense, the techniques for selecting the
multitasking functionalities are used only to jointly select the common functionalities through different
modalities, ignoring the information relating to the distribution of the data in each of these modalities,
which is important for a later classification. Some researchers as in [186,187] have tried to tackle this
problem, by proposing a method for learning multiple regularized multitasking functionalities, which
makes it possible to preserve both the inherent relationship between the data of the different modalities
and the information relating to the distribution of data in each modality.

However, we can generally suggest a few remarks found in most of the works cited in the
literature:
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- All the classification models performed very well, distinguishing participants with normal aging
from the patients with AD. The performance was worse for MCI vs. AD determination, which
proved more difficult, probably due to the MCI biomarker scheme which is quite similar to that
observed in AD. However, multimodal classification had better diagnostic and forecasting power
than single-modal classification.

- The majority of clinical studies in recognized biomedical laboratories have focused on binary
classification problems (i.e., AD vs. HC and MCI vs. HC), neglecting to test the power of the
models proposed for multi-class classification of AD, MCI and normal controls. It is true that the
latter type of classification is more difficult to verify than the binary classification, but it is crucial
to diagnose the different stages of dementia. In addition, longitudinal data may contain essential
information for classification, while the proposed studies can only deal with basic data.

- Few studies have used two or more biomarkers simultaneously among MRI, PET and CSF for the
diagnosis of AD, using images from synthetic bases such as Alzheimer’s Disease Neuroimaging
Initiative (ADNI) [293] and Open Access Series of Imaging Studies (OASIS) [295] to combine
MRI with other modalities applying image fusion methods. The ADNI database, launched in
2003 by various institutes, companies and non-profit organizations, represents one of the largest
databases to date; however, the limit of the ADNI data set is that it is not neuropathologically
confirmed, which is like even a fairly delicate task to perform in practice.

4. Conclusions and General Requirements

Many advanced countries with a long life expectancy, such as Canada, Japan and the United
States, are moving toward an aging society, and thus the number of patients with brain diseases,
including some dementia disorders, will increase as AD with the rise in average life expectancy.
Neuroradiologists expect that the CAD systems can assist them in diagnosing brain diseases by
providing useful information. Therefore, the CAD systems for brain diseases, especially for AD which
is the most common form of dementia, will become more essential for neuroradiologists in clinical
practice in the near future. Moreover, because MR neuroimaging used in practice is one of the most
widely used imaging modalities to establish trusted clinical settings in brain medical studies in this
regard, this review provides a preliminary summary and reported some studies of researchers which
attempt to develop very useful magnetic resonance CAD systems for brain disorders and AD in
particular. In this context, the various machine learning techniques that have been explored for in vivo
classification, and particularly segmentation phase in the CAD MR brain system, have been described
and criticized, specifying the disadvantages and advantages of each of them. We are interested in
machine learning methodologies because they are highly flexible to the inclusion of expert knowledge
and have been demonstrated in numerous applications to perform accurately and robustly.

In the context of the brain regions segmentation, despite intensive research in this area, there is
currently no reliable method for all types of images. Nevertheless, a set of ad hoc methods that has
received a certain degree of popularity and that we have divided into five categories are: Techniques
based on the shape approach, based on the contour approach, based on the region approach, based on
theory graphs and those based on the structural approach.

In the context of the classification process, existing work reported in the literature has shown
that the classification of brain images is possible via techniques based on supervised or unsupervised
learning. However, due to the specificity of the brain images in which the CAD system must be formed,
based on the field of truth or clinical evidence, the researchers preferred to apply methods based
on supervised learning and rejected unsupervised classification, which does not take into account
training data.

However, because of the drawbacks raised by the classification and segmentation methods, it has
been found that different researchers have turned to new tracks to maximize the accuracy of CAD
systems. Among these tracks, the hybrid models which make it possible to combine the advantages of
various techniques derived from “soft computing”.



Appl. Sci. 2020, 10, 1894 37 of 52

MRI provides high-resolution images with anatomical information. On the other hand, functional
images, such as PET, SPECT, etc., provide low-spatial resolution images with functional information.
Therefore, a single modality of medical images cannot provide comprehensive and accurate information.
As a result, combining anatomical and functional medical images to provide much more useful
information through image fusion, has become the focus of imaging research and processing. Different
biomarkers provide complementary information, which have been shown in the literature to be useful
in neuroimaging and AD diagnoses when used together. Thus we showed in this survey paper that
the combination of MRI and other modalities using data mining methods, as a tool, more accurately
classifies brains disorder patients as AD subjects at the baseline compared to using either biomarker
separately. For this purpose, some results of related-work were reported, and the most used image
fusion methods were summarized by specifying the disadvantages and the advantages of each one.

Several multimodal fusion methods have been devised by the researchers. We divided them
into two types: Those which can be exploited in the frequency domain and others used in the spatial
domain where the pixels of the input images undergo improvements. In reality, the latter type of
technique was preferred in many studies.

However, the conventional methods applied for multimodal fusion suffer from several drawbacks
and do not meet the requirements of current medical applications. In this context too, hybrid models
combining the advantages of conventional techniques have been applied for the purpose of improving
the performance of CAD systems based on multimodal fusion.

We noticed that the efficiency of the CAD systems proposed by researchers is demonstrated by
estimating the percentage of several performance measures, such as sensitivity (SE), which represents
the true positive rate; specificity (SP), which estimates the true negative rate; and precision (AC), which
determines the proportion of true results in the database, whether true positive or true negative.

The authors tried to prove that the proposed methods performed fairly well compared to a
selection of other methods. Indeed, we have observed that certain techniques have obvious advantages
over others, based on the speed of processing time, or on the lesser complexity or even on the lower
memory requirements. However, it is not possible to draw absolute conclusions about what is best or
worst without first performing in-depth tests on all the proposed methods.

Furthermore, a potential limitation of combining biomarkers is limited by the practical clinical
implications as imposed by the medical experts based on the requirements of specific medical studies. In
addition to medical reasons, there exists technical challenges in image fusion resulting from image noise,
resolution difference between images, inter-image variability between the images, lack of sufficient
number of images per modality, high cost of imaging and increased computational complexity with
increasing image space and time resolution. Many of these challenges remain open and the problem
is much more significant in developing fusion image algorithms for real-time medical applications
such as robotic-guided surgery. Nonetheless, even under these challenging situations, the fused
images provide the human observers improved viewing and interpretation of medical images; and the
image fusion in multimodal medical imaging environment has proved to be useful and the trust in its
techniques is on the rise.

It is expected that the innovation and practical advancements would continue to grow in the
upcoming years. In this context, some general requirements on the application of multimodality fusion
that emerge from this survey, especially for fusion algorithms, could be suggested as follows: (1) The
algorithm should be able to extract and integrate complimentary features from the input images; (2) it
must not introduce artifacts or inconsistencies according to the human visual system; (3) it should be
robust and reliable. Generally, these can be evaluated subjectively or objectively. The former relies
on human visual characteristics and the specialized knowledge of the observer, hence are vague and
time-consuming but typically accurate if performed correctly. The other one is relatively formal and is
easily realized by the computer algorithms, which generally evaluate the similarity between the fused
and source images. However, selecting a consistent criterion with the subjective assessment of the
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image quality is rigorous. Hence, there is a need to establish an evaluation system and an evaluation
index system is set up to evaluate the proposed fusion algorithm.
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