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Abstract: Power law describes a common behavior in which a few factors play decisive roles in
one thing. Most software defects occur in very few instances. In this study, we proposed a novel
approach that adopts power law function characteristics for software defect prediction. The first
step in this approach is to establish the power law function of the majority of metrics in a software
system. Following this, the power law function’s maximal curvature value is applied as the threshold
value for determining higher metric values. Furthermore, the total number of higher metric values
is counted in each instance. Finally, the statistical data are clustered into different categories as
defect-free and defect-prone instances. Case studies and a comparison were conducted based on
twelve public datasets of Promise, SoftLab, and ReLink by using five different algorithms. The results
indicate that the precision, recall, and F-measure values obtained by the proposed approach are the
most optimal among the tested five algorithms, the average values of recall and F-measure were
improved by 14.3% and 6.0%, respectively. Furthermore, the complexity of the proposed approach
based on the power law function is O(2n), which is the lowest among the tested five algorithms.
The proposed approach is thus demonstrated to be feasible and highly efficient at software defect
prediction with unlabeled datasets.
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1. Introduction

Software defects play a crucial role in affecting software system quality [1]. Many studies in the
software research field have focused on predicting software defects with the purpose of improving
software system’s quality [2–19]. Nevertheless, most of these studies have been based on supervised
prediction methods [3–5], which must use supervised learning with labeled datasets to build a
prediction model before performing defect prediction in unlabeled instances. It is not easy or practical
to obtain a large amount of labeled data for defect prediction with a newly developed software system.
Under these circumstances, software defect prediction based on supervised learning is difficult to
perform directly because of an absence of labeled defect information. Another method known as
cross-project defect prediction utilizes labeled datasets from the source project to train the prediction
model without labeled datasets [5–8]. Nevertheless, excessive dependence on source project quality
and extensive attention paid to variations between the source and target projects make prediction
using the cross-project technique relatively cumbersome. Unsupervised prediction technology has the
advantage of predicting software defects without needing labeled datasets and can directly predict
defect instances in newly developed software systems. Therefore, unsupervised prediction approaches,
which do not require labeled datasets, have attracted considerable attention in the software defect
prediction research field because of their high efficiency and low cost.
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Unsupervised defect prediction methods in the literature have been mostly implemented based on
the clustering of metrics. Metrics are one of the factors affecting software defects and can be used to depict
software system features to some extent. Software metrics have been used as software fault-proneness
indicators and to maintain defect predictions [9,10]. Catal et al. [11] proposed a software fault prediction
approach based on metrics thresholds and clustering. Threshold values were determined using expert
assistance and libraries of historical defects, and the method obtained reasonable prediction results
with respect to x-means, c-means, and k-means clustering [12]. Based on the same threshold-deriving
method, Abaei et al. [13], Yang et al. [14], Bishun and Bhattacherjee [15] conducted software defect
predictions using unsupervised learning methods based on self-organizing map, an affinity propagation
clustering algorithm, and k-medoids, respectively. Bishnu and Bhattacherjee [16] utilized a quad
tree-based k-means algorithm to predict program module faults to initiate the cluster center. Zhong
et al. [17] imposed clustering methods (k-means and neural-gas) to cluster instances, and selected
typical instances from each cluster and provided experts with auxiliary statistical information such
as mean, maximum and minimum values, and median number of the metrics. Finally, the clusters
were labeled by experts [17]. In summary, these studies on software defect prediction have all been
based on expert assistance. In contrast, Park et al. [18] solved the problem of determining the optimal
number of clusters using clustering algorithms such as EM (Expectation Maximization) and x-means.
In addition, the CLA (Clustering and labeling Approach) method proposed by Nam et al. [4] sets each
metric’s median value as the threshold value to determine whether the instances were defect-free or
defect-prone. After that, statistical data were utilized to cluster and label instances to perform defect
prediction. The PCLA (Probabilistic Clustering and labeling Approach) method was an extension of
the CLA algorithm [19]. Obviously, the clustering method is widely used in unsupervised software
defect prediction using unlabeled datasets.

The power law is a phenomenon that has been found to be effective in characterizing data in
many scientific fields such as physics, biology, economics, earth science, and computer science [20].
The power law describes a common behavior in which a few factors play decisive roles in one thing,
i.e., a small number of samples holds a large influence. Simultaneously, it is known that in software
defects, a small number of instances are responsible for many faults or defects. Software metrics
showed fat tails in distributions of software defect data, and the skewness and fat tails of these data
were properties of the power law function. Therefore, a correlation between the power law function
and software metrics may exist. However, to the best of our knowledge, few people have considered
the power law function in predicting software defects.

In this study, we propose a novel software defect prediction approach based on power law
functions. Section 2 presents fundamental characteristics with respect to the power law function and
software defects and the details of the proposed software defect prediction approach. In Section 3,
we conduct experimental studies including case studies and comparisons by imposing different
datasets and algorithms. Furthermore, we present a complexity analysis in Section 4. Lastly, research
conclusions and future work are generalized in Section 5.

2. Fundamental Characteristics of Power Law Function and Software Defects

2.1. Correlation and Characteristics

Various power law phenomena can be observed in nature and society, and the study of these
phenomena has continued for more than a century. Even now, the power law phenomenon is still a
research hotspot in many disciplines. Harvard University linguistics expert George Zipf studied the
frequency of English words and found a simple inverse relationship between each word’s frequency
and the constant power of its rank in order from large to small. This distribution, known as Zipf’s law,
shows that only a few words in English are frequently used and that most words are seldom used [21].
Italian economist Vilfredo Pareto studied the statistical distribution of personal income and found
that the income of a few people was much higher than that of the majority. Thus, he put forward the
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famous 80/20 rule, commonly known as Pareto’s law, in which 20% of the population occupied 80% of
the social wealth [22]. Zipf’s law and Pareto’s law are simple power law function patterns. In fact,
power law distribution exists in many fields, such as physics, earth and planetary science, computer
science, biology, ecology, demography and social science, and economy and finance, and has various
manifestations [23–31].

Furthermore, Shatnawiand and Althebyan [32] validated the effects power laws have on
software metrics interpretations and found that many metrics demonstrate a power law behavior.
Furthermore, threshold values with respect to instances were derived from power law function
properties. Additionally, Wheeldon and Counsell [33] found that a power law implied that smaller
values were commonplace, whereas larger values were extremely rare. Meanwhile, Andersson and
Runeson [34] quantitatively analyzed distributions of defects in three different projects and determined
through graphical analysis that a small number of instances (20%) were correlated with 63%–70% of
prerelease defects.

The general formula of the power law function can be written as:

y = cx−γ. (1)

where c and γ are both constants greater than zero.
Logarithms of both sides in Equation (1), ln y and ln x, satisfy a linear relationship. In other words,

in the double logarithmic coordinates, the power law function represents a straight line with a negative
slope of the power exponent. This linear relationship is the basis for judging whether the random
variable in each instance satisfies the power law function [35].

The power law is also a sign of transitioning from steady to chaotic states in the chaotic edge of
self-organized critical systems [36]. The power law can be used to predict phases and phase transitions
for such systems. Most software defect data have unbalanced distribution characteristics [37], i.e.,
defect-free instances are more common than defective instances. Many software system defects are
concentrated in a small part of the instances, which is characteristic of a power law function.

Figure 1 shows the distributions of the NOC (number of children of a given class in an inheritance
tree) and RFC (number of distinct methods invoked by code in a given class) metrics from an example
using the Camel1.6 dataset in the Promise database.
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As seen in Figure 1, metrics values are distributed in the form of a power law function, which has
also been validated by Shatnawi [21]. Therefore, there is a close correlation between the power law
function and software system metrics.

2.2. Power Law Function Curvature

Before using power law distribution function to predict software defects, the concept of curvature
should be introduced. Curvature refers to the bending degree of a curve [38]. It can be described by the
ratio of the angle changed by the curve to the radian changed by the curve. Figure 2 presents a sketch
map of power law function curvature. Let M and M′ be the two points on the curve. If the tangent of
the curve at point M and point M′ and the positive intersection angle of the x-axis are respectively α
and α+ ∆α. Therefore, when the point changes from M along the curve to M′, the angle changes ∆α,

and the distance to change this angle is the arc length ∆s =
_

MM′. Therefore, curvature is defined by a
differential equation to indicate the degree the curve deviates from the straight line. The greater the
curvature, the greater the curve’s bending degree and deviation from the straight line. Expression of
curvature at point M can be stated as follows.

K = lim
∆s→0

∣∣∣∣∣∆α∆s

∣∣∣∣∣. (2)

where ∆s tends to zero. The reciprocal of curvature is curve radius, with a larger curve radius yielding
a smoother arc. The angle and arc length approaching zero at the same time is the standard curvature
definition of a smooth curve with an arbitrary shape.
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_
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replaced by the chord length MM’, and

lim
M′→M

_
MM′

MM′
= 1. (3)

Therefore, in:

∆s
∆x

=

_
MM′

∆x
=

_
MM′

MM′
MM′

∆x
=

_
MM′

MM′

√
(∆x)2 + (∆y)2

∆x
=

_
MM′

MM′

√
1 + (

∆y
∆x

)
2

(4)



Appl. Sci. 2020, 10, 1892 5 of 16

Let ∆x→ 0 , the following expression can be obtained by taking the limit:

ds =
√

1 + y′2dx (5)

Let the curve equation be y = f (x).
Because tgα = y′, so α = arctgy′, making differential calculation on α = arctgy′, we will get:

dα = (arctgy′)′dx =
y′′

1 + y′2
dx (6)

Therefore, the curvature of a curve can thus be expressed as follows.

k(x) =
∣∣∣∣∣dαds

∣∣∣∣∣ =
∣∣∣y′′ ∣∣∣

(1 + y′2)
3
2

(7)

If the metrics power law function is expressed as m(x) = αx−γ, then:
The first-order derivative of m(x) is m′(x) = −αγx−(γ+1);
The second-order derivative of m(x) is m′′(x) = αγ(γ+ 1)x−(γ+2);
By finding the first and second derivatives of m(x) and substituting them into Equation (3), the

curvature function corresponding to m(x) can be obtained as follows.

k(x) =
m′′(x)

[1 + m′2(x)]
3
2

=
αγ(γ+ 1)x−(γ+2)

[1 + α2γ2x−2(γ+1)]
2
3

(8)

As shown in Figure 2, the closer the curve is to the Y axis, the smaller its curvature is, and when the
curve is further away from the Y axis, it becomes increasingly curved and thus its curvature increases.
At a certain point, the curve begins to essentially parallel to the X axis and the curvature then decreases.
This indicates that the power law function curve’s curvature goes from small to large and then from
large to small. Thus, a maximum curvature point exists, which may be the transformation point of the
metrics from defective to defect-free. In other words, the maximum curvature point of a power law
function can be taken as the demarcation point between defective and defect-free instances. Therefore,
if this transition point is calculated, it can be used as a threshold value for estimating whether the
entity in the metric has defects. Consequently, the transformation point divides the metrics into two
parts, defective and non-defective.

A curve’s maximum curvature point should be a point with a first-order derivative of zero for the
curvature function k(x). The first-order derivative of k(x) can be obtained as follows.

k′(x) = −αγ(γ+1)(γ+2)x−(γ+3) [1+α2γ2x−2(γ+1) ]
3
2 +3α3γ3(γ+1)2x−(3γ+5) [1+α2γ2x−2(γ+1) ]

1
2

[1+α2γ2x−2(γ+1) ]
3 (9)

Let k′(x) = 0, when [1 + α2γ2x−2(γ+1)]
3
, 0,we have:

−αγ(γ+ 1)(γ+ 2)x−(γ+3)[1 + α2γ2x−2(γ+1)]
3
2 + 3α3γ3(γ+ 1)2x−(3γ+5)[1 + α2γ2x−2(γ+1)]

1
2 = 0 (10)

when x , 0, dividing both sides by αγ(γ+ 1)x−(γ+3)[1 + α2γ2x−2(γ+1)]
1
2 we will get:

− (γ+ 2)[1 + α2γ2x−2(γ+1)] + 3α2γ2(γ+ 1)x−2(γ+1) = 0 (11)
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Therefore, the derivative of the curvature function of a power law function is obtained and made
to be zero and can be obtained as follows:

x2(γ+1) =
α2γ2(2γ+ 1)

γ+ 2
(12)

That is, the X coordinate of the maximum curvature point of power function is:

_
x =

2(γ+1)

√
α2γ2(2γ+ 1)

γ+ 2
=

[
α2γ2(2γ+ 1)

γ+ 2

] 1
2(γ+1)

(13)

Consequently, the transformation point in the corresponding metrics can be obtained as:

_
m(

_
x ) = α

_
x
−γ

(14)

That is to say, entities within the metrics can be classified into a defective tendency group when
parameter values are greater than

_
m(

_
x ), because for most metrics, software entities containing defects

generally have larger values than those without defects [39–42]. In contrast, other entities are classified
into a defect-free tendency group when parameter values are less than

_
m(

_
x ).

Taking as an example, for the function of y = x−2, the image of this function can be seen in Figure 3.
By Equation (13), it can be calculated that the maximum curvature point of the power function at x-axis
is
_
x = 1.31, the y value can be calculated as 0.5848. Therefore, we can obtain the transformation point

as shown in Figure 3.
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2.3. Approach for Software Defect Prediction Based on Power Law Function

In this section, we present the approach for detecting software defects based on the power law
function. The general algorithm of the proposed model is expressed in Algorithm 1:

Algorithm 1. Software defect prediction based on power-law function

Input
D ← Original unlabeled datasets
Inst. ← Instances in datasets
M ← Each metric in dataset D
MV ← Each value of the metric in dataset D
1 for M in All M do
2 for i = 1 to number of M do
3 Building power-law function for each M
4 According to Equation (14),

compute transformation value in maximal curvature point T
5 if MVi. Insti > T
6 MVi. Insti is higher value, MVi. Insti = 1
7 else
8 MVi. Insti is normal value, MVi. Insti = 0
9 end if
10 end for
11 for each Insti in Inst.
12 Calculate the total number K of each Insti in the D with MVi. Insti = 1
13 Sort values of K, clustering into two groups, a top half and a bottom half.
14 for i = 1 to number of Inst. do
15 compare each K value in Inst.
16 if K values in top half
17 Inst.i is defect-proneness
18 else
19 Inst.i is defect-free tendency
20 end if
21 end for
Output
Dataset with defect label

Figure 4 shows the overall process of this approach. The kernel of our approach is to use the
power law function to describe the metrics distribution and set the transformation value of the maximal
curvature point as the threshold value to label the metrics.
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The process is stated in detail as follows.

1. Establish power law functions for each metric

A power law function is used to establish the linear regression model for each metric by sorting
parameter values from large to small and numbering corresponding software modules from 1 to n (n is
the number of software instances). This is a straight line in the double logarithmic coordinate system.

2. Calculate each metric’s threshold value

The threshold value is the critical value, which can be used to judge whether a software system
fault exists under the metrics. Therefore, Equation (13) is used to calculate the position of the maximum
curvature value of the obtained power law function. The value obtained from Equation (14) at this
position is the approximate boundary between the defective and defect-free metrics.

3. Identify the defective tendency of metrics

Identifying the defective tendency of instances under a certain metric in software defect prediction
is generally based on the assumption that a defective instance’s parameter value tends to be higher than
that of non-defective instances [39–42]. Therefore, entities with parameters larger than the threshold
value are identified as defective and set as 1. In contrast, other entities are identified as defect-free and
set as 0.

4. Calculate the total number of entities in the metrics with a value of 1

5. Label the instances by clustering

Instances are clustered into a top half and a bottom half, with instances in the top half labeled as
defective and others labeled as defect-free.

Based on the proposed approach, we can predict software defects without relying on labeled
datasets. The following case studies and comparisons have been conducted to validate the feasibility
of the new approach.

3. Experimental

3.1. Case Study

To conduct a case study, we selected the public Camel1.6 dataset. The Camel1.6 dataset has 965
instances, of which 188 were defective and 777 were defect-free [43]. Defective instances accounted for
19.48% of the total instances. Each instance had 20 metric parameters and the label of each instance
was removed in advance. Followingly, the power law function was established for each metric and
correlation coefficients were calculated.

The power law function, correlation coefficient, and transformation value in the maximal curvature
point are shown in Table 1.

Boldface indicates that the correlation coefficients were smaller than 0.3, which didn’t exhibit the
characteristics of power law function.

Most of the metric parameters can be described well with power law functions. The correlation
coefficients were mostly larger than 0.7, indicating that the power law function effectively described
the metrics parameters distribution. Although two metrics were not well described by the power law
functions, the ratio was relatively small. Figure 5 shows comparisons between the actual metrics data
scatter and corresponding power law functions. Good consistencies were obtained for different metrics.
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Table 1. Power law function, correlation coefficient, and transformation value in the maximal curvature
point. The metrics and their descriptions can be seen in Appendix A.

Metrics Power Law Function Correlation Coefficient Transformation Value

wmc 1013.8x−0.892 0.8466 41.31
dit 34.841x−0.516 0.7909 13.51
noc 110.68x−1.012 0.9479 10.30
cbo 915.03x−0.83 0.854 45.82
rfc 4273x−0.996 0.7247 66.07

lcom 34730x−1.816 0.8994 58.94
ca 834.42x−1.015 0.9684 27.93
ce 554.53x−0.821 0.7765 35.63

npm 994.19x−0.934 0.8752 36.86
lcom3 19.53x−0.518 0.5518 9.19

loc 129509x−1.355 0.6554 120.88
dam 1.3429x−0.063 0.0434 1.56
moa 23.007x−0.564 0.8905 9.44
mfa 2.327x−0.219 0.2977 2.73
cam 6.9114x−0.473 0.6928 4.91

ic 3.5344x−0.241 0.7184 3.80
cbm 68.343x−0.757 0.9308 12.73
amc 463.68x−0.671 0.8869 47.49

max_cc 108.78x−0.713 0.9187 18.20
avg_cc 11.099x−0.431 0.8648 7.21Appl. Sci. 2020, 2, x FOR REVIEW 9 of 16 
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(b) noc: number of children of a given class in an inheritance tree; (c) cbo: number of classes that are
coupled to a given class; (d) lcom: number of method pairs in a class that do not share access to any
class attributes; (e) ca: afferent coupling, which measures the number of classes that depend on a given
class; (f) npm: number of public methods in a given class.
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Based on the calculated transformation values in each power law function’s maximal curvature
point, each entity with a value larger than the transformation value was identified as defective and set
as 1 and others were identified as defect-free and set as 0. Following this, the total number of defective
entities in each instance was calculated and listed. Finally, instances were labeled by clustering into
two groups, a top half and a bottom half. Therefore, the instances in the top half of the clusters were
labeled as defective and the others were labeled as defect-free. The number of defects predicted by the
proposed approach was 94 and the number of actual defects was 188. Therefore, the precision of the
proposed approach with respect to the Camel1.6 dataset was 0.276.

3.2. Performance Evaluation

Performance evaluations of software defect prediction are based on the confusion matrix, as
shown in Table 2, which includes the measures of precision, recall, and F-measure [44].

Table 2. Confusion matrix.

Actual
Predicted

True False

True TP (true positive) FN (false negative)
False FP (false positive) TN (true negative)

True positive (TP) is the number of defective entities predicted as defective.
False negative (FN) is the number of defective entities predicted as defect-free.
False positive (FP) is the number of defect-free entities predicted as defective.
True negative (TN) is the number of defect-free entities predicted as defect-free.
In this study, predictive performance measures are computed as follows:

Precision = TP
TP+FN

Recall = TP
TP+FP

F−measure = 2×Recall×Precision
Recall+Precision

(15)

Precision represents the proportion of defective entities to all entities correctly predicted
as defective.

Recall represents the proportion of defective entities to all entities that are actually defective.
F-measure is the harmonic average of recall and accuracy, with higher F-measure values

corresponding to better prediction performance.

3.3. Comparative Experiment

To verify the performance of the proposed software defect prediction approach, we selected
four classic algorithms used for defect prediction with unlabeled datasets: k-means [16,17], CLA and
CLAMI (Clustering and labeling Approach based on Matric Instances) [4], and x-means [18]. These
traditional methods are based on classical data clustering method, such as k-means, x-means and so
on. We compared the proposed approach with these algorithms on twelve randomly selected public
datasets [43–45]. These public datasets are produced from real software systems, with different sizes
and types, which can be utilized as a representation for different software systems.

Details of datasets used in the comparative experiment (Section 3.3) are shown in Table 3.
The selected algorithms were common unsupervised software defect prediction algorithms.
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Table 3. Overview of experimental datasets.

Group Dataset
# of instances

# of Metrics
All Buggy (%)

Promise

Camel1.6 965 188 (19.48%)

20

Forrest-0.8 32 2 (6.25%)
Synapse-1.0 157 16 (10.19%)

Berek 43 16 (37.21%)
Intercafe 27 4 (14.81%)

Termo 42 13 (30.95%)
Pbean2 51 10 (19.61%)

SoftLab
ar1 121 9 (7.44%)

29ar4 107 20 (18.69%)
ar5 36 8 (22.22%)

ReLink
Apache 194 98 (50.52%)

26Safe 56 22 (39.29%)

Tables 4–6 show comparisons of precision, recall, and F-measure results between the proposed
approach and other methods in the comparative experiment. The highest values of each dataset are
highlighted in bold.

Table 4. Comparisons of precision results between the proposed approach and other methods.

Datasets
Methods

K-Means CLA CLAMI X-Means Power Law
Function Approach

Camel1.6 0.146 0.247 0.247 0.256 0.276
Forrest-0.8 0.040 0.076 0.070 0.071 0.125

Synapse-1.0 0.033 0.189 0.029 0.034 0.194
Berek 1.000 0.636 0.632 0.385 0.778

Intercafe - 0.230 0.230 0.111 0.231
Termo 0.400 0.467 0.500 0.421 0.571

Pbeans2 0.276 0.375 0.308 0.276 0.364
ar1 0.138 0.115 0.107 0.250 0.119
ar4 0.333 0.340 0.307 0.600 0.333
ar5 0.636 0.470 0.444 0.630 0.444

Apache 0.714 0.726 0.737 0.625 0.737
Safe 0.733 0.640 0.630 0.650 0.607

Average 0.404 0.376 0.353 0.359 0.398

Boldface typeface indicates the highest value of each dataset.

Table 5. Comparisons of recall results between the proposed approach and other methods.

Datasets
Methods

K-Means CLA CLAMI X-Means Power Law
Function Approach

Camel1.6 0.282 0.521 0.622 0.335 0.500
Forrest-0.8 0.500 0.500 0.500 0.500 1.000

Synapse-1.0 0.063 0.438 0.063 0.063 0.875
Berek 0.250 0.875 0.750 0.313 0.875

Intercafe – 0.750 0.750 0.250 0.750
Termo 0.615 0.538 0.692 0.615 0.615

Pbeans2 0.800 0.600 0.400 0.800 0.800
ar1 0.667 0.667 0.667 0.600 0.778
ar4 0.800 0.800 0.800 0.150 0.800
ar5 0.875 1.000 1.000 0.900 1.000

Apache 0.276 0.704 0.714 0.459 0.714
Safe 0.500 0.727 0.773 0.591 0.773

Average 0.512 0.677 0.644 0.465 0.790

Boldface typeface indicates the highest value of each dataset.
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Table 6. Comparisons of F-measure results between the proposed approach and other methods.

Datasets
Methods

K-Means CLA CLAMI X-Means Power law Function Approach

Camel1.6 0.192 0.336 0.353 0.290 0.355
Forrest-0.8 0.074 0.133 0.125 0.125 0.222

Synapse-1.0 0.043 0.264 0.040 0.044 0.318
Berek 0.400 0.737 0.686 0.345 0.824

Intercafe - 0.375 0.353 0.154 0.353
Termo 0.485 0.500 0.581 0.500 0.593

Pbeans2 0.410 0.462 0.348 0.410 0.500
ar1 0.229 0.197 0.185 0.353 0.206
ar4 0.471 0.478 0.444 0.240 0.471
ar5 0.737 0.640 0.615 0.740 0.615

Apache 0.409 0.715 0.725 0.529 0.725
Safe 0.595 0.681 0.694 0.619 0.680

Average 0.385 0.471 0.436 0.369 0.501

Boldface typeface indicates the highest value of each dataset.

The proposed approach was generally superior to other traditional methods in terms of precision,
recall, and the F-measure. Although the average precision value obtained by the proposed approach
was not the best, the proposed approach performed the best in 6 of 12 datasets in terms of precision,
giving it the largest number of optimal results among the tested methods. Furthermore, the average
precision values of the proposed approach and the k-means algorithm were relatively similar.

For the recall value, the proposed approach’s advantage was much more apparent. It performed
the best in 10 of the 12 datasets and had an average value of 0.790, which was the highest among
the tested methods. It was obvious that the proposed approach performed significantly better than
traditional defect prediction models on almost all datasets. At the same time, some researchers have
indicated that prediction models with low precision and high recall were more useful in many industrial
situations [46]. The proposed approach obtained a better recall value than the precision value and thus
would perform better in these areas.

For the F-measure value, the proposed approach performed the best in 7 of the 12 datasets and had
the largest average value of 0.501 among the tested methods. It was clear that the proposed approach
obtained the best F-measure value and thus demonstrated the proposed approach’s effectiveness at
software defect prediction with unlabeled datasets.

Therefore, based on these public datasets, it can be seen that the proposed approach obtains the
best prediction results among the tested five algorithms. Nevertheless, considering the limitation of
data timeliness and scale, these datasets cannot totally represent the real software defects and new
defects. When utilized in real software systems, the proposed approach can be further validated.

4. Complexity Analysis

Authors should discuss the results and how they can be interpreted in perspective of previous
studies and of the working hypotheses. The findings and their implications should be discussed in the
broadest context possible. Future research directions may also be highlighted.

Algorithm complexities of the other algorithms tested in this study are shown in Table 7.
The complexity of k-means, CLA, and CLAMI were obtained from references [4,17]. The proposed
approach has a relatively lower complexity than the other algorithms, indicating a low cost in software
defect predictions. Therefore, from the perspective of algorithm complexity, our proposed approach
possesses some advantages over the other tested algorithms to some extent.

Table 7. Complexity of the tested algorithms.

Method K-Means CLA CLAMI X-means Power-Law Function Approach

Complexity O(nkm) O(2n + n2) O(3n + n2) - O(2n)
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5. Conclusions

In this study, we proposed a novel approach that adopted characteristics of the power law function
for software defect prediction. The kernel of our approach was using the power law function to describe
metrics distributions and set the transformation values in the maximal curvature point of each power
law function curve as the threshold value for labeling metrics. In our empirical studies, we found that
the proposed approach performed significantly better than other commonly used four algorithms
across all evaluated twelve terms. The average values of recall and F-measure were improved by over
14.3% and 6.0%, respectively. Furthermore, the proposed approach had a complexity of O(2n), which
was the lowest among the tested five algorithms. Therefore, we demonstrated that our proposed
approach is feasible and highly efficient at defect prediction with unlabeled datasets.

In summary, the proposed approach offers a viable choice for software defect prediction on
unlabeled datasets. However, similar to any other method, there are some issues to handle in future
work. The precision of the prediction should be analyzed in-depth and improved in the future. At the
same time, future work should attempt to use the proposed approach to rank predictions.

Author Contributions: Conceptualization, methodology, writing—original draft preparation and software, J.R.
Project administration, funding acquisition, F.L. All authors have read and agreed to the published version of
the manuscript.
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Appendix A

The metrics and their descriptions for dataset Camel1.6 utilized in case study.

Metrics Description

wmc Weighted methods per class
dit The maximum distance from a given class to the root of an inheritance tree
noc Number of children of a given class in an inheritance tree
cbo Number of classes that are coupled to a given class
rfc Number of distinct methods invoked by code in a given class

lcom
Number of method pairs in a class that do not share

access to any class attributes

ca
Afferent coupling, which measures the number of classes

that depend on a given class

ce
Efferent coupling, which measures the number of classes

that a given class depends on
npm Number of public methods in a given class

lcom3
Another type of the lcom metric proposed by

Henderson–Sellers
loc Number of lines of code in a given class

dam
The ratio of the number of private/protected attributes

to the total number of attributes in a given class

moa
Number of attributes in a given class that are of

user-defined types

mfa
Number of methods inherited by a given class divided
by the total number of methods that can be accessed by

the member methods of the given class

cam

The ratio of the sum of the number of different parameter
types of every method in a given class to the product of

the number of methods in the given class and the number
of different method parameter types in the whole class

ic Number of parent classes that a given class is coupled to

cbm
Total number of new or overwritten methods that all

inherited methods in a given class are coupled to
amc The average size of methods in a given class

max_cc
The maximum McCabe’s cyclomatic complexity (CC)

score of methods in a given class
avg_cc The arithmetic mean of McCabe’s cyclomatic complexity (CC) scores of methods in a given class
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