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Abstract: Image magnification can be reduced to construct an approximation surface with data points
in the image while keeping image details and edge features. In this paper, a new image magnification
method is proposed by constructing piecewise bicubic polynomial surfaces constrained by edge
features. The main innovation includes three parts. First, on the small adjacent area of each pixel,
the new method constructs a quadratic polynomial sampling patch to approximate pixels on the
small neighborhood with edge features as constraints. All quadric polynomial sampling patches are
weighted to generate piecewise whole bicubic polynomial sampling surface. Second, a technique
for calculating the error image is proposed: the error image is used to construct a correction surface
to improve the accuracy and visual effect of the magnified image. Finally, in order to improve the
accuracy of the approximation surface, a technology of balancing polynomial coefficients is put
forward. Experimental results show that, compared with other methods, the proposed method makes
better use of the local feature information of the image, which not only improves the PSNR/SSIM
numerical accuracy of the magnified image but also improves the visual effect of the magnified image.

Keywords: image magnification; medical image aided diagnosis; edge feature constraints; quadratic
polynomial surface

1. Introduction

Image magnification is one of the important issues in the fields of image processing, computational
medicine, computer graphics, computer vision, and virtual reality. It has a wide range of applications
in medical image-aided diagnosis, product defect inspection, and visualization. The purpose of image
magnification is to increase the number of pixels in the image so as to increase the details of the image
and to make its features clearer, helping doctors better understand the details of the lesions. Image
magnification methods can be divided into three categories: fitting-based methods, learning-based
methods, and other methods.

In a fitting-based method, a surface is constructed from a low-resolution image. Then, more
sampling points are obtained by the surface to generate a high-resolution image. Early fitting methods
include bilinear interpolation [1] and bicubic interpolation [2,3]. In these methods, the magnified
images produced by bicubic interpolation have higher accuracy, while the least square [4] is similar
to the two types of interpolation methods. Sometimes, there are obvious sawtooth and ringing,
and serious distortion in the magnified image [1–4]. The common feature of the magnified images
by these methods is that the effect is better in flat areas, but it is not ideal in non-flat area (edge and
texture). In order to reduce the sawtooth and blur in the magnified image, Zhang et al. proposed a soft
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decision estimation method [5]. Compared with other interpolation methods, this method calculates
the pixel values of a group of high-resolution images at one time, but the generated high resolution of
image has no significant improvement in visual effect. In [6,7], an image magnification method based
on gradient direction was proposed. The gradient direction of the high-resolution image is estimated
by the gradient direction of the low-resolution image. In [8], images are magnified by optimizing the
second-order directional derivative of the edge direction. However, in most cases, the effect of the
image magnification is not ideal. Zhang et al. proposed a method for fitting an image using a bicubic
polynomial surface generated by combining quadratic polynomial surfaces [9,10]. The magnified
image has quadratic polynomial precision in the following sense. That is, if a given image is obtained
by sampling from a quadratic polynomial function, a quadratic polynomial function is reconstructed
by a bicubic polynomial surface, which is generated by combining the quadratic polynomial surfaces.
The images by References [9,10] can reduce the distortion phenomena such as sawtooth and ringing,
but the accuracy and visual quality of the magnified image are not ideal.

The methods of image amplification based on learning can learn the missing high-frequency
information from the training set of HR and LR image pairs. These methods can be roughly divided
into two categories: the first category relies on an external dictionary constructed by a group of
external training images, and the second category uses LR image itself to replace the external training
set. For the former, LR image generates an HR image with the help of a training pair. Common
methods include regression-based methods [11], sparse expression-based methods [12,13], and so
on. These methods using the external data sets usually perform well for certain categories of images,
but the amplification effect of some images is not ideal. In [14], for each LR patch, a linear function
needs to be learned to map it to its HR version. However, it is inevitable to generate errors by searching
for magnified image block to find LR–HR patch pairs. Reference [15] proposed a high-resolution
image generation method based on self-similarity (SelfExSR). The method expands the internal patch
searching space through geometric changes and improves the visual effect. However, if the LR image
does not contain enough similar patterns, these methods will produce sharp edges. In addition,
Dong et al. [16,17] proposed the image super-resolution using deep convolutional networks (SRCNN),
which directly learned the end-to-end mapping between HR and LR images. The method improved
the quality of magnified images and the amplification speed. Ding et al. [18] achieved remarkable
results by establishing a lightweight database and learning adaptive linear regression to map LR
image blocks directly into HR blocks. However, there are some problems with these methods. First,
the reconstructing effect of these algorithms depends on a trained image library, which limits the
application of them. Second, the algorithm requires a lot of time to train the model. Third, the acquired
model can only be used for magnification of a fixed multiple; however, the model needs to be retrained
to magnify different multiple.

In other types of image magnification methods, fractal is an effective tool for describing image
texture. Therefore, it is widely used for texture description and classification. In [19], a texture
descriptor was proposed, which implicitly combines information from space and frequency domain.
Reference [20] proposed a depth upsampling method based on joint bureau partial analysis and
boundary consistency analysis. In [21], an image magnification method using a special type of
orthogonal fractal coding method is proposed. It can produce better details, but it cannot restore
sharper edges. In [22], a texture enhancement method was proposed. Using local fractal analysis
to improve image magnification performance, the method can effectively enhance image details.
However, it does not provide satisfactory results in random texture regions. Reference [23] proposed a
fractal interpolation method applying the fractal analysis method to image interpolation, which can
better preserve the edge structure of the image. Firstly, according to image features, the image is
divided into textured regions and non-textured regions. Secondly, a rational fractal interpolation
model is used in the texture region, and a rational interpolation model is used in the non-texture
region. Finally, the HR image is obtained through pixel mapping. This method can recover more
satisfactory details than other interpolation methods. Unlike the learning-based method relying on
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the source of the training patch, this method obtains competitive performance by using LR image
patch information. Based on error minimization, iterative back projection can significantly improve
the quality of the image. Reference [24] proposed an image restoration and amplification method
combining nonlocal self-similarity and global structure sparsity. A group of similar image blocks
is reconstructed by adaptive regularization techniques based on weighted kernel norms, and a new
strategy is used to maintain the global structure. The strategy decomposes the image into smooth
components and sparse residuals. The latter uses L1 norm to regularization, which provides a new
method for image restoration and magnification. Irani and Peleg [25] continue to degrade the high
resolution, to calculate errors, and to optimize the error until the error is less than a certain threshold.
The quality of the reconstructed image is significantly enhanced, but there are obvious sawtooth
and ringing in the edge area. In [26,27], a nonlocal iterative back projection method was proposed.
By searching for similar blocks in a certain area, the average image of the magnified image is filtered
and the sawtooth and ringing phenomena can be corrected to improve the correctness of the error
image. This method improves the shortcomings of the method [25] and improves the image quality
to a certain extent. If the features of an image can be extracted first and the different edges of the
image are segmented [28,29], then the surface is fitted based on the features and the edge structure;
the accuracy and the visual effect of the magnified image can be significantly improved.

As the image data points are complex, this paper uses a piecewise polynomial surface to fit the
given image. A sampling quadratic polynomial patch is constructed on a small adjacent area of each
pixel. All the sampling quadratic polynomial patches are weighted averagely to generate the whole
sampling surface of the magnified image. In order to improve the quality of the magnified image, this
paper generates a magnified image by the whole surface with the correcting surface. The correction
surface is constructed by the error image, which is computed by the magnified image. To make the
magnified image with higher quality, the constructed quadratic polynomial sampling surface patch
is required to satisfy two conditions: high precision and the shape described by the corresponding
image block. For satisfying the two conditions, the quadratic polynomial patch is constructed with
the edge feature as constraints and it has quadratic polynomial approximation accuracy. A model
describing constraint based on the edge feature is proposed. It is inevitable that there are errors in the
approximation by the quadratic polynomial patches, especially the approximation effect is not ideal at
the complex edge. The correcting surface is constructed to reduce the errors in the magnified image.
A method for calculating the error image is proposed. The image magnified twice is compressed
twice to obtain a compressed image, and the error image is calculated from the difference between
the compressed image and the given image, which provides a new technique for constructing the
correcting surface.

The following content of this paper is arranged as follows. The second section is the basic idea
and description of the method. The third and fourth sections describe the construction process of
our image magnification method. The fifth section compares the results of the magnified image by
different methods. The sixth section is the summary of the method and the future work.

2. Basic Idea and Description of the Method

For a given image P, composed of n× n pixels Pi,j, i, j = 1, 2, 3 · · · , n (shown by black dots in
Figure 1), it is obtained by sampling from an original scene [17,18] according to the image generation
principle. These pixels Pi,j, i, j = 1, 2, 3 · · · , n can be regarded as the points (x, y, P) in a 3D coordinate
system with coordinates (i, j, Pi,j). For the convenience of the following description, the points (i, j, Pi,j),
i, j = 1, 2, 3 · · · , n are regarded as being sampled from a surface P(x, y); then, the sampling formula
Ps(x, y) of P(x, y) can be written as follows:

Ps(x, y) =
1

4h2

∫ x+h

x−h

∫ y+h

y−h
P(x, y)dydx. (1)

where 2h is the side length of the sampling square area.
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Without loss of generality, the side length of the sampling square region of a given pixel Pi,j can
be taken as 1, so h = 0.5. Then, there is

Pi,j = Ps(i, j) =
∫ i+0.5

i−0.5

∫ j+0.5

j−0.5
P(x, y)dydx. (2)

The essence of image magnification is that more points on the surface P(x, y) are obtained. If the
surface P(x, y) can be reconstructed, the image magnification becomes a problem of calculating the
point on the surface P(x, y). Because of the complexity of the scene and sampling mechanism, it is
impossible to reconstruct P(x, y) accurately. Therefore, only an approximating surface representing
P(x, y) can be constructed. That is, the approximating surface is inevitably subject to errors or noise.

Figure 1. A 3× 3 neighborhood of pixels.

Because the original scene is usually complex, the corresponding surface P(x, y) is complex.
Construction of a whole polynomial surface to fit P(x, y) will not only produce large errors but also
generate a large amount of calculation. According to approximation theory, if any given complex
function is piecewise continuous and differentiable, it can be approximated with arbitrary precision by
piecewise surfaces. Therefore, we construct a sampling patch in a small neighborhood of each pixel,
and all patches are weighted to form a whole approximation surface F(x, y). F(x, y) approximates the
sampling surface Ps(x, y) of P(x, y). Because polynomials has a good mathematical basis, is simple,
and is easy to calculate, the polynomial function is widely used in numerical fitting. This paper uses
polynomial surfaces to construct surface patches. Based on the above discussion, the process of image
magnification in this paper can be described as the following three parts:

(a) For each pixel Pi,j, i, j = 1, 2, 3 · · · , n, its coordinate in 3D coordinate system is (i, j, Pi,j). In order
to simplify the complexity of the problem and to reduce the amount of calculation, the approximate
surface patch corresponding to Pi,j is constructed with a quadratic polynomial patch on the small area
where the pixel Pi,j is located. Another reason for constructing approximate patches using quadratic
polynomials is that, although biquadratic polynomials can be constructed uniquely from Pi,j and the
8 adjacent points, our computation results show that the biquadratic polynomials surface interpolating
9 pixels are often difficult to have the shape represented by the 9 data points. The approximate
quadratic polynomial surface patch Pi,j(x, y) of the original scene corresponding to Pi,j can be written
as follows:

Pij(x, y) = a0u2 + a1uv + a2v2 + a3u + a4v + a5. (3)

where u = x− i, v = y− j. a0, a1, a2, a3, a4, and a5 are the undetermined coefficients.
(b) Note that the sampling surface patch of Pi,j(x, y) on the square area with side length 2h is

approximated by a quadratic polynomial patch fi,j(x, y), i, j = 1, 2, 3 · · · , n. The whole sampling
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surface F(x, y) is generated by the weighted average of fi,j(x, y). Since F(x, y) has an approximation
error, correcting surface patches ei,j(x, y), i, j = 1, 2, 3 · · · , n are constructed by the approximation
errors. The sampling surface patch fi,j(x, y) is corrected by ei,j(x, y) so as to improve the accuracy and
shape of F(x, y).

(c) The magnified image is obtained by calculating the sampling points of F(x, y).
The discussion above showed that the accuracy and shape of the whole sampling surface F(x, y)

is determined by the quadratic polynomial patch fi,j(x, y), i, j = 1, 2, 3 · · · , n; hence, the key point is
to construct fi,j(x, y), i, j = 1, 2, 3 · · · , n. Following, we will discuss how to construct the quadratic
polynomial sampling patches fi,j(x, y), i, j = 1, 2, 3 · · · , n.

3. Constructing Quadratic Sampling Patches

Firstly, we construct a quadratic polynomial sampling patch fi,j(x, y) to approximate the pixels on
the small neighborhood with the edge features as constraints. Considering the symmetry, we construct
Pi,j(x, y) (Equation (3)) with Pi,j and 8 pixel points adjacent to Pi,j (as shown in Figure 1, where Pi,j is
the center of 9 points) for fi,j(x, y). That is, fi,j(x, y) is determined by 9 pixels Pi+l,j+k, l, k = −1, 0, 1.
The constructed fi,j(x, y) should have the quadratic polynomial precision and the shape described by 9
pixels. Ideally, fi,j(x, y) passes Pi,j and 8 adjacent points, i.e., passes (i + l, j + k, Pi+l,j+k), l, k = −1, 0, 1.
Replace P(x, y) in Equation (1) with Pi,j(x, y) in Equation (3) and integrate to get the sampling surface
patch fi,j(x, y) on the square area with side length 2h as follows:

fi,j(x, y) = a0(u2 + h2/3) + a1uv + a2(v2 + h2/3) + a3u + a4v + a5. (4)

where u = x− i, v = y− j and where a0, a1, a2, a3, a4, and a5 are the undetermined coefficients.
In Equation (4), taking h = 0.5 and (x, y, fi,j(x, y)) = (i + l, j + k, Pi+l,j+k), l, k = −1, 0, 1 gets the

following 9 equations:

Pi+l,j+k = a0(l2 + 1/12) + a1lk + a2(k2 + 1/12) + a3l + a4k + a5, l, k = −1, 0, 1. (5)

Equation (5) is the integral of Equation (2) over the 9 unit squares as shown in Figure 1.
The accuracy and shape of the sampling surface F(x, y) is completely determined by the sampling

patch fi,j(x, y), i, j = 1, 2, 3, · · · , n (4). In order to improve the accuracy of F(x, y), the technology
of balancing polynomial coefficients is put forward. Next, we will discuss how to calculate the
6 undetermined coefficients a0, a1, a2, a3, a4, and a5 using the 9 equations in Eqauation (5).

In Equation (5), there are 9 equations and 6 unknowns. The common method is to determine
6 unknowns by the least square method. Because 9 points in the neighborhood of Pi,j may belong
to different surfaces in the original scene, the role of 9 points should be different in the construction
of fi,j(x, y). To make fi,j(x, y) closer to 9 pixels, we use the weighted least squares to determine 6
unknowns. Different weights are used to make each pixel have different effects on determining 6
unknowns. In order to determine the 6 unknowns better, we first analyze the coefficient influence
of fi,j(x, y) on the shape of the surface. Because fi,j(x, y), i, j = 1, 2, 3 · · · , n are local surface patches,
they form a whole sampling surface F(x, y) by the weighted average. fi,j(x, y) only plays a large
role on the F(x, y) in its adjacent area. According to the characteristics of Taylor expansion, in the
local area, the influence of constant term, line term, and quadratic term of fi,j(x, y) on the shape of
F(x, y) decrease in turn. Therefore, we will use different strategies to determine these unknowns.
The six coefficients are divided into three groups according to the constant term, the first term, and the
quadratic term. The calculation of the three groups of coefficients will be discussed below.

Let us firstly discuss the calculation of the coefficients a3 and a4; then discuss the calculation of
a0, a1, and a2; and finally calculate a5. The process of calculating a0, a1, a2, a3, a4, and a5 is divided into
three steps, which not only reduces the amount of calculation but also improves the accuracy of the
patches. The following discusses how to calculate the coefficients a3 and a4.
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3.1. Calculating the Coefficients of First Term

Based on Equation (5), the following four equations can be obtained [18]:

a3 = e1, a3 + a4 = e2, a4 = e3, a3 − a4 = e4. (6)

where,

e1 = (Pi,j+1 − Pi,j−1)/2, e2 = (Pi+1,j+1 − Pi−1,j−1)/2
e3 = (Pi+1,j − Pi−1,j)/2, e4 = (Pi+1,j−1 − Pi−1,j+1)/2

Equation (6) has four equations with two unknowns a3 and a4. Using the weighted least squares
method, a3 and a4 are determined by minimizing the objective function G(a3, a4) defined by

G(a3, a4) = w1(a3 − e1)
2 + w2(a3 + a4 − e2)

2 + w3(a4 − e3)
2 + w4(a3 − a4 − e4)

2. (7)

where wk, k = 1, 2, 3, 4 is the weight function.
Let us consider how to define the weight function in Equation (7). If 9 pixels Pi+l,j+k, l, k = −1, 0, 1

are sampling points on the same object, we could set w1 = w3 = 1, w2 = w4 = 1/
√

2, considering
the relative positions of the other 8 pixels and Pi,j. w2 and w4 take smaller weights because their
corresponding first-order differences e2 and e4 are on the diagonal (as shown in Figure 1). The points
relatively far away from Pi,j should be assigned a smaller weight. If the 9 pixels are sampling points
on the different objects, there are edges in the 9 pixels; that is, at least three pixels are on an edge.
To simplify the complexity of the problem, we assume that there are up to four edges in a block
of 9 pixels, which are on the horizontal, vertical, and diagonal lines of Figure 1. For ensuring the
edge features of the magnified image, the pixels on an edge should play a relatively large role
in the determination of a3 and a4, which is equivalent to assigning a relatively large value to the
corresponding weight in Equation (7). For example, if Pi−1,j−1, Pi,j, and Pi+1,j+1 are on the diagonal
edge, w2 should give a relatively large weight. Note δk, k = 1, 2, 3, 4 is a second-order difference along
four directions.

δ1 = Pi+1,j − 2Pi,j + Pi−1,j
δ2 = Pi+1,j+1 − 2Pi,j + Pi−1,j−1
δ3 = Pi,j+1 − 2Pi,j + Pi,j−1
δ4 = Pi+1,j−1 − 2Pi,j + Pi−1,j+1.

(8)

The feature of Pi−1,j−1, Pi,j, and Pi+1,j+1 on the edge is that |δ2| in Equation (8) has a relatively
small value. Therefore, assigning a relatively large weight to w2 is equivalent to w2 being inversely
proportional to |δ2|. If Pi−1,j−1, Pi,j, and Pi+1,j+1 are on the edge, the corresponding |δ4| in Equation (8)
of the edge’s normal direction is usually relatively large, and then, giving a relatively large weight to w2

is equivalent to w2 being proportional to |δ4|. Based on the above discussion, the weight wk, k = 1, 2, 3, 4
can be defined as follows:

w1 = 1+βδ3
1+αδ2

1
, w2 =

√
2(1+βδ4)

2(1+αδ2
2)

,

w3 = 1+βδ1
1+αδ2

3
, w4 =

√
2(1+βδ2)

2(1+αδ2
4)

.
(9)

where δk, k = 1, 2, 3, 4 are defined in Equation (8). Experimental results show that β = 0.2, α = 0.5 is
preferable in Equation (9).

3.2. Calculating the Coefficients of Quadratic Term

Since a3 and a4 are computed, there are 9 equations with four unknowns in Equation (5): a0, a1,
a2, and a5. The third group of coefficients for a0, a1, and a2 can be determined based on 9 equations.
In order to improve the accuracy of interpolation, two sets of values of a0, a1, and a2 are determined.
The final values of a0, a1, and a2 are calculated using the weighted averages of the two sets of values.
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The following discusses how to determine the first set of values for a0, a1, and a2. Using the
9 equations in Equation (5), we have the following 8 difference equations:

Pi+l,j+k − Pi,j = a0l2 + a1lk + a2k2 + a3l + a4k, l, k = −1, 0, 1, |l|+ |k| ≥ 1.

In these 8 equations, there are 3 unknowns: a0, a1, and a2. Using the weighted least squares
method, the 3 unknowns are determined by minimizing the objective function G(a0, a1, a2) defined by
the following:

G(a0, a1, a2) =
1
∑

l=−1

1
∑

k=−1
wi,k(a0l2 + a1lk + a2k2 − σi+l,j+k)

2, |l|+ |k| ≥ 1 (10)

where σi+l,j+k = Pi+l,j+k − Pi,j − a3l − a4k, l, k = −1, 0, 1, wl,k is the weight function.
How to determine the weight function in Equation (10) is discussed below. Edge features and

distance play an important role in determining a3 and a4 and should also play an important role in
determining a0, a1, a2, and a5. Therefore, based on the discussion of Equation (9), the weight function
can be defined as follows:

w0,−1 = w0,1 = w1,
w−1,0 = w1,0 = w3,
w−1,−1 = w1,1 = w2,
w−1,1 = w1,−1 = w4.

(11)

where wi, i = 1, 2, 3, 4 are defined by Equation (9).
The 9 pixels shown in Figure 1 are in horizontal, vertical, and two diagonal directions. For each

pixel, it is unreasonable to simply assign the same weight to the two pixels on an edge in the same
direction. For example, for horizontal Pi−1,j, Pi,j, and Pi+1,j, if Pi−1,j and Pi,j are sampling points on
the same object and Pi+1,j is sampling point on another object, it is reasonable to assign relatively
large weights to Pi−1,j and Pi,j and to assign a relatively small weight to Pi+1,j, while according to
Equation (11), Pi−1,j and Pi+1,j are assigned the same weight. For this reason, the new weights are
defined as follows:

wl,k = wl,k/(1 + 0.5|Pi,j − Pi+l,j+k|), l, k = −1, 0, 1. (12)

where wl,k, l, k = −1, 0, 1 on the right side of Equation (12) is defined by Equation (11).
For the convenience of the following discussion, the first set of values for a0, a1, and a2 computed

by Equations (10)–(12) are denoted as aA
0 , aA

1 , and aA
2 .

In the following, we discuss how to determine the second set of values for a0, a1, and a2.
From Equation (5), one gets the following three equations:

Pi+1,j − Pi,j = a0 + a3

Pi+1,j+1 − Pi,j = a0 + a1 + a2 + a3 + a4

Pi,j+1 − Pi,j = a2 + a4.
(13)

These three equations correspond to the four pixels, Pi,j, Pi+1,j, Pi,j+1, and Pi+1,j+1, which form
a square in Figure 1. When a3 and a4 are determined, a0, a1, a2 can be calculated from Equation (13)
and denoted as a0

0, a0
1, a0

2. Similarly, the other three sets of values for a0, a1, and a2 can be calculated
from the pixels forming the other three square in Figure 1, which are denoted as a1

0, a1
1, a1

2; a2
0, a2

1, a2
2;

and a3
0, a3

1, a3
2, respectively.

Let us consider how to determine the second set of values for a0, a1, a2 by ak
0, ak

1, ak
2, k = 0, 1, 2, 3.

In order to make the quadratic polynomial as simple as possible, |a0|, |a1|, and |a2| should be as small
as possible. According to the approximation theory, the interpolation function should be as simple
as possible on the premise of satisfying the approximation accuracy. Therefore, a0 is determined
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by weighted average of ak
0, k = 0, 1, 2, 3, and the weight corresponding to ak

0 should be inversely
proportional to |ak

0|. Now, the second set of values for a0, a1, a2, denoted as aB
0 , aB

1 , and aB
2 , is defined by

aB
0 = w0,0a0

0 + w0,1a1
0 + w0,2a2

0 + w0,3a3
0

aB
1 = w1,0a0

1 + w1,1a1
1 + w1,2a2

1 + w1,3a3
1

aB
2 = w2,0a0

2 + w2,1a1
2 + w2,2a2

2 + w2,3a3
2.

(14)

where wl,k = 1/(|ak
l |+ λ), l, k = 0, 1, 2 are weight functions, λ is a very small positive value.

We do not simply use Equation (15) to compute the second set of values for a0, a1, a2. Equation (15)
is a simple weighted average. The experiment results and the following discussion also showed that
the magnified image is not good using Equation (15) to compute the second set of values for a0, a1,
and a2.

a4
0 = (a0

0 + a1
0 + a2

0 + a3
0)/4

a4
1 = (a0

1 + a1
1 + a2

1 + a3
1)/4

a4
2 = (a0

2 + a1
2 + a2

2 + a3
2)/4.

(15)

Experimental results also show that the quadratic polynomial defined by Equation (14) does
integrate the advantages of the four quadratic polynomials, and its surface shape is closer to the
shape represented by the 9 pixels in Figure 1. From ak

0, ak
1, and ak

2, k = 0, 1, 2, 3, 4 and Equation (14),
we can define 6 patches, respectively, denoted as fk(x, y), k = 0, 1, 2, 3, 4 and f5(x, y), which are all
approximation to the 9 pixels in Figure 1. The approximation errors of six patches to 9 pixels are denoted
as Ek

i,j, k = 0, 1, 2, 3, 4, 5, i, j = 2, 3 · · · , n− 1, respectively, and hence, 6 error images Ek, k = 0, 1, 2, 3, 4, 5

can be obtained by Ek
i,j, k = 0, 1, 2, 3, 4, 5, i, j = 2, 3 · · · , n− 1. Using Baboon and Kod in the 12 typical

images in Section 5, two error images can be generated with the 6 patches. Figure 2 is a histogram of
two error images, where the top-down histograms correspond to Baboon and Kod images, respectively.
In Figure 2, ek(n) denotes the number of pixels with value n in the error image Ek, k = 0, 1, 2, 3, 4, 5.
For the sake of clarity, each histogram is divided into two parts. Since the number of pixels with value
0 is too small compared with the number of pixels with value 1, the former is not displayed to make
the histogram visually clear. In Figure 2, the left figures are the histograms of pixels with error values
of 1–20 and the right figures are the histograms of the rest error pixels. It is obvious from the curve
e5(n) in Figure 2 that, in the error image E5 generated using a0, a1, a2 by Equation (14), the pixels with
small error value are the most and the pixels with large error value are the least, while it is also obvious
from the curve e4(n) that, compared with the error images E5, the pixels with large error value in the
error image E4 generated using a0, a1, a2 by Equation (15) are relatively larger and the pixels with small
error value are small.

From Equations (10) and (12), the first set of values aA
0 , aA

1 , and aA
2 are computed. From

Equations (13) and (14), the second set of values aB
0 , aB

1 , and aB
2 are computed. The final values of

a0, a1, and a2, are computed by the weighted average of the two sets of values aA
0 , aA

1 ,aA
2 , and aB

0 , aB
1 ,aB

2 .
Similar to the discussion of Equation (14), the coefficient with small absolute value is assigned a large
weight. That is, the coefficients a0, a1, and a2 are defined by

a0 = w0,AaA
0 + (1− w0,A)aB

0
a1 = w1,AaA

1 + (1− w1,A)aB
1

a2 = w2,AaA
2 + (1− w2,A)aB

2 .
(16)

where wl,A = (aB
l + λ)/(|aA

l | + |a
B
l | + 2λ) is weight function, l = 0, 1, 2, λ is a very small

positive value.
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Figure 2. The error image histograms of two groups.

3.3. Calculating the Constant Term

Now, how to compute a5 is discussed. a0, a1, a2, a3, and a4 are obtained above, so that only one
unknown a5 is left in Equation (5). a5 is determined by the weighted least squares method from the
9 equations in Equation (5). That is, a5 is determined by minimizing the objective function G(a5)

defined by

G(a5) =
1

∑
l=−1

1

∑
k=−1

wi,k(a5 + g(l, k)− Pi+l,j+k)
2. (17)

where

g(l, k) = a0(l2 + 1/12) + a1lk + a2(k2 + 1/12) + a3l + a4k.

The weight wi,k, l, k = −1, 0, 1, |l|+ |k| ≥ 1 is defined by Equation (11). Since the pixel Pi,j is located
at the center of a pixel block consisting of 9 pixels, the corresponding weight w0,0 should be given a
larger value. w0,0 is defined as follows:

w0,0 = 2 max (w0,1, w1,0, w1,1, w−1,1).

4. Constructing the Whole Sampling Surface

In this section, we first discuss the construction of the initial whole sampling surface F(x, y) and
then discuss how to construct a correcting surface to improve the accuracy of F(x, y). Finally, we
perform an error analysis on F(x, y).
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4.1. Constructing the Initial Whole Sampling Surface

In Section 3, a patch fi,j(x, y), i, j = 2, 3, 4, · · · , n− 1 is constructed on each of the neighborhoods
centered on Pi,j. For pixels on the boundary, Pj,1, Pj,n, P1,j and Pn,j, j = 1, 2, 3, · · · , n, the corresponding
patches f j,1(x, y), f j,n(x, y), f1,j(x, y) and fn,j(x, y), j = 2, 3, 4, · · · , n− 1 are defined as follows:

f1,j(x, y) = f2,j(x, y), fn,j(x, y) = fn−1,j(x, y),
f j,1(x, y) = f j,2(x, y), f j,n(x, y) = f j,n−1(x, y),
f1,1(x, y) = f2,2(x, y), fn,n(x, y) = fn−1,n−1(x, y),
fn,1(x, y) = fn−1,2(x, y), f1,n(x, y) = f2,n−1(x, y).

(18)

On each unit square area [i, i + 1]× [j, j + 1], i, j = 1, 2, 3, · · · , n− 1, a bicubic sampling surface patch
Fi,j(x, y), i, j = 1, 2, 3 · · · , n− 1 can be generated from the weighted combination of fi,j(x, y), fi+1,j(x, y),
fi+1,j+1(x, y), and fi,j+1(x, y). All Fi,j(x, y) are put together to form an initial whole sampling surface
F(x, y). The definition of Fi,j(x, y) is as follows:

Fi,j(x, y) = fi,j(u, v)wi,j(u, v) + fi,j+1(u, v)wi,j+1(u, v)+

fi+1,j+1(u, v)wi+1,j+1(u, v) + fi+1,j(u, v)wi+1,j(u, v).
(19)

where u = x− i, v = y− j, and wi+k,j+l(u, v), k, l = 0, 1 are the weight functions.
In general, the weight functions can be defined by the following bilinear basis functions:

wi,j(u, v) = (1− u)(1− v), wi,j+1(u, v) = (1− u)v,

wi+1,j+1(u, v) = uv, wi+1,j(u, v) = u(1− v)

In the unit square area [i, i + 1] × [j, j + 1], if the approximation accuracy of the four patches,
fi,j(x, y), fi+1,j(x, y), fi+1,j+1(x, y), and fi,j+1(x, y) is about the same, the ideal result can be obtained
with the weight function defined by the above equation. If the approximation accuracy of the four
patches is significantly different, it is more reasonable to define the weight functions with the following
rational functions.

wi,j(u, v) = α0,0(1− u)(1− v)/w,
wi,j+1(u, v) = α0,1(1− u)v/w,
wi+1,j+1(u, v) = α1,1uv/w,
wi+1,j(u, v) = α1,0u(1− v)/w,
w = α0,0(1− u)(1− v) + α0,1(1− u)v + α1,1uv + α1,0u(1− v).

(20)

where αl,k, l, k = 0, 1 is the parameter, which determines the importance of the corresponding weight
wi+l,j+k(u, v).

If the approximation accuracy of fi,j(x, y) is better than the approximation accuracy of
fi+1,j(x, y), fi+1,j+1(x, y), and fi,j+1(x, y), α0,0 in wi,j(u, v) (Equation (20)) should be given a maximum
value and similarly for the others. The average value of the four surface patches is

s(u, v) = ( fi,j(u, v) + fi,j+1(u, v) + fi+1,j+1(u, v) + fi+1,j(u, v))/4,

Then, α0,0, α0,1, α1,1, and α1,0 in Equation (20) are defined as follows:

αl,k = 1/(1 +
√

3e2
l,k), l, k = 0, 1

el,k = fi+l,j+k(u, v)− s(u, v).
(21)

Equation (21) shows that the definition principle of α0,0, α0,1, α1,1, and α1,0 is that
fi+k,j+l(x, y), l, k = 0, 1 with a large deviation from s(u, v) corresponds to small αk,l .
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4.2. Constructing Correcting Surface

The magnified image obtained from the initial whole sampling surface F(x, y) (Equation (19)) is
inevitably subject to errors. This section discusses constructing a correcting surface to improve the
accuracy of F(x, y) (Equation (19)). Firstly, the error image is computed, and the correcting surface is
constructed by the error image.

The error image is calculated as follows. First, the initial whole sampling surface F(x, y) is
sampled to obtain the doubled image p, and the pixels in p are denoted as pi,j, i, j = 1, 2, 3 · · · , 2n. Let

Pi,j = (p2i−1,2j−1 + p2i−1,2j + p2i,2j−1 + p2i,2j)/4.

Ideally, for a given pixels Pi,j, i, j = 1, 2, 3, · · · , n, Pi,j and given pixels Pi,j should satisfy the relationship
Pi,j = Pi,j. Therefore, the error pixels are defined by the difference between Pi,j and Pi,j as follows:

Ei,j = Pi,j − Pi,j, i, j = 1, 2, 3, · · · , n. (22)

From the error image Ei,j, i, j = 1, 2, 3, · · · , n, a quadratic correcting sampling patch ei,j(x, y) similar to
Equation (4) can be constructed in the neighborhood of each pixel Pi,j, i, j = 2, 3, 4, · · · , n− 1, using the
method in Section 3 above:

ei,j(x, y) = e0(u2 + h2/3) + e1uv + e2(v2 + h2/3) + e3u + e4v + e5. (23)

Then, the two quadratic polynomials defined by Equations (4) and (23), respectively, are merged; that
is, ak + ek → ak, k = 0, 1, 2, 3, 4, 5. The new quadric sampling surface is still denoted as Equation (4).
We still denote the new whole sampling surface as F(x, y). The new error image can be obtained by
sampling the new F(x, y), and a new correcting surface patch of the form in Equation (23) can be
obtained. Then, Equations (4) and (23) are merged to get a new F(x, y) again. In this way, the surface
F(x, y) (Equation (19)) includes bicubic sampling surface patches and correcting surface patches.
Experimental results show that, if Equation (4) corrects more than four times, the correction effect will
not be improved much and the amount of calculation will be increased. Therefore, we only correct the
quadratic polynomial in Equation (4) four times under comprehensive consideration.

4.3. Error Analysis

The Taylor polynomial expansion function is an effective tool for analyzing the approximation
error. In this paper, the Taylor polynomial expansion is used for error analysis. For the error of the
method in this paper, we have the following theorem.

Theorem 1. The bicubic surface F(x, y) defined by Equation (19) has quadratic polynomial precision.

Proof: If n× n pixels Pi,j, i, j = 1, 2, 3, · · · , n of the image are points on the quadratic polynomial
surface, fi,j(x, y) (Equation (4)) determined by Equations (4)–(23) has quadratic polynomial precision
due to the uniqueness of the constructing result. Since all fi,j(x, y), i, j = 1, 2, 3, · · · , n have quadratic
polynomial precision, the surface patches Fi,j(x, y) by their weighted average of fi,j(x, y) also have
quadratic polynomial precision. Thus, the bicubic surface F(x, y) formed by the combination of the
surface patches Fi,j(x, y) also has quadratic polynomial precision. This completes the proof.

5. Experimental Results

The experiment consists of three parts: numerical accuracy (PSNR (Peak Signal-to-Noise Ratio),
the most common and widely used image objective evaluation index based on error-sensitive
image-quality evaluation, and SSIM (Structural Similarity), a measure of the similarity of two
images measuring image similarity from three aspects: brightness, contrast, and structure), visual
effects, and runtime. The low-resolution image (LR) is obtained by averaging downsampling of
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the high-resolution image (HR), and the magnified images of the LR images are compared with the
HR images. The images used for comparison are 12 typical images, BSD200, Urban100, and the
aliasing image set (AIS) [30]. These 12 typical images are commonly used in the experiment of image
magnification. In order, they are Barbara, Baboon, Boat, Chest, Couple, Crowd, Dollar, Goldhill, Kod,
Lake, Lenna, and Peppers, as shown in Figure 3. The size of each typical image is 512× 512 pixels
(HR). BSD200 uses only 100 images for learning, denoted as BSD100. AIS is from the website with
http://www.cgl.uwaterloo.ca/csk/projects/alias/. The 8 methods used for comparison are bicubic,
DCCI [7], ICBI [8], SelfxSR [15], NARM [13], SISRRFI [23], LPRGSS [24], and the method (New).

Figure 3. Twelve typical images, from left to right, from top to bottom: Barbara, Baboon, Boat, Chest,
Couple, Crowd, Dollar, Goldhill, Kod, Lake, Lenna, and Peppers.

5.1. Numerical Accuracy (PSNR and SSIM)

First, PSNR and SSIM are used as criteria to compare the magnified images. The 8 methods
are used to magnify LR images twice, and the PSNR and SSIM values of the magnified images are
calculated using HR images. The PSNR and SSIM values of the magnified images of 12 typical images
are shown in Table 1, and the average PSNR and SSIM values of the images in BSD100, UrBan100, and
AIS are shown in Table 2, where the boldface indicates the maximum PSNR and SSIM values.

Table 1. Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM) values of 12 magnified
images by 8 methods.

Image Bicubic DCCI ICBI SelfExSR NARM SISRRFI LPRGSS New

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Baboon 23.99 0.731 22.76 0.659 22.73 0.666 23.70 0.763 22.87 0.663 23.67 0.731 24.28 0.767 24.32 0.772

Barbara 25.43 0.794 24.10 0.742 23.94 0.743 24.42 0.806 24.12 0.744 24.78 0.787 25.66 0.819 25.15 0.812

Boat 32.28 0.917 29.42 0.879 29.42 0.882 32.66 0.928 29.52 0.879 32.95 0.903 32.72 0.926 33.13 0.930

Chest 29.56 0.920 26.23 0.861 26.23 0.876 31.53 0.940 26.32 0.786 30.33 0.928 30.38 0.936 31.57 0.941

Couple 29.66 0.860 27.50 0.807 27.47 0.810 29.94 0.872 27.61 0.805 28.82 0.843 30.04 0.876 30.33 0.880

Crowd 32.82 0.945 28.64 0.896 28.77 0.902 34.03 0.957 28.74 0.894 32.39 0.928 33.51 0.954 34.35 0.960

Dollar 20.42 0.670 19.41 0.623 19.30 0.622 20.31 0.694 19.51 0.629 20.61 0.675 20.62 0.698 20.69 0.701

Goldhill 31.34 0.860 29.20 0.810 29.25 0.815 31.28 0.869 29.24 0.804 30.96 0.858 31.68 0.875 31.82 0.878

Kod 26.51 0.861 24.73 0.822 24.49 0.822 26.90 0.881 24.88 0.826 26.86 0.855 26.91 0.879 27.22 0.884

Lake 30.62 0.872 27.54 0.825 27.76 0.834 31.05 0.880 27.78 0.826 30.41 0.867 31.10 0.884 31.39 0.886

Lenna 32.25 0.942 29.16 0.903 29.16 0.908 33.21 0.950 29.24 0.900 31.95 0.940 32.79 0.951 33.56 0.955

Peppers 33.76 0.890 30.73 0.863 30.73 0.865 34.74 0.893 30.79 0.859 32.76 0.888 34.18 0.898 34.69 0.899

Average 29.05 0.855 26.62 0.807 26.61 0.812 29.48 0.869 26.72 0.801 28.87 0.850 29.49 0.872 29.85 0.875

The last row in Table 1 is the average of the PSNR and SSIM values for each method. When PSNR
is used to measure image quality, the larger the PSNR value, the better the image quality, while when
the image quality is measured in terms of SSIM, the larger the SSIM value, the higher the similarity

http://www.cgl.uwaterloo.ca/csk/projects/alias/
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between the magnified image and the HR image. The results in Table 1 show that, in the 12 magnified
images, except for Barbara, the PSNR and SSIM values of the new method are the largest and the
average PSNR and SSIM value of the new method is also the largest. The results in Table 2 show that,
for BSD100, UrBan100, and AIS image sets, the average PSNR and SSIM values of the new method are
the largest except for the SSIM value for AIS. Therefore, for the four sets of comparison data, the image
quality and similarity of the magnified images by the new method are the best among the 8 methods
used for comparison.

Table 2. Average PSNR and SSIM values for 8 methods for BSD100, Urban100, and aliasing image
set (AIS).

Image Bicubic DCCI ICBI SelfExSR NARM SISRRFI LPRGSS New

BSD100 PSNR 29.73 27.71 27.76 30.10 27.84 30.03 30.13 30.48

SSIM 0.853 0.800 0.807 0.871 0.798 0.864 0.871 0.875

UrBan100 PSNR 26.75 24.79 24.72 27.64 25.02 26.86 27.18 27.77

SSIM 0.848 0.795 0.796 0.878 0.803 0.856 0.868 0.880

AIS PSNR 9.07 8.64 8.49 8.70 8.59 8.65 9.12 9.13

SSIM 0.269 0.208 0.206 0.332 0.219 0.195 0.320 0.318

5.2. Visual Effect

Then, we compare the visual effects of the magnified images. Experiment results show that most
of the magnified images by the 8 methods have little difference in visual effects, but there are slight
differences in the partially magnified images. The comparison results of visual effect of the 8 methods
are given in Figures 4–8, where (a) is the HR image and (b), (c), (d), (e), (f), (g), (h), and (i) are magnified
images by bicubic, DCCI, ICBI, SelfxSR, NARM, SISRRFI, LPRGSS, and the new method, respectively.

In order to facilitate the comparison of visual effects, we have marked some visually distorted
parts on the magnified image, as shown in the red box in Figure 4–8. Figures 4 and 5 show the
results of the 8 methods for magnifying the two typical grayscale images. In Figure 4, it can be seen
that the images (f) and (i) obtained by NARM and new method, respectively, are closest to the HR
image (a); the images (c) and (d) obtained by DCCI and ICBI methods are relatively smooth at the
edges and producing obvious distortion of lung tissue information; and the images (b), (g), and (h)
obtained by the BiCubic, SISRRFI, and LPRGSS, respectively, have sawtooth problems at the edge.
In Figure 5, the images (c), (d), and (f) obtained by DCCI, ICBI, and NARM methods, respectively,
are relatively smooth at the edges, resulting in reduced detail information. The images (b), (e), (g),
and (h) obtained by the bicubic, SelfxSR, SISRRFI, and LPRGSS methods, respectively, have different
degrees of sawtooth problems at the edges and the edges are very rough. Overall, the image by the
new method (i) is closest to the HR image (a).

Figures 6 and 7 show the results of 8 methods for magnifying two color images in BSD100. For the
images in Figure 6, there are small differences between these images, the images (c), (d), and (f)
obtained by DCCI, ICBI, and NARM methods, respectively, are relatively smooth, and the texture
details of the branches are missing; the images (b), (e), (g) and (h) obtained by the bicubic, SelfxSR,
SISRRFI, and LPRGSS methods, respectively, are slightly distorted, such as some details of the branches
on the far right side of the tail are missing; and by comparison, the image (i) obtained by the new
method is closest to the HR image (a). In Figure 7, the images (c), (d), and (f) obtained by the DCCI,
ICBI, and NARM methods, respectively, have shallow wrinkles in the corners of the eye of the elderly
and loss of texture on the left side of the eyelids; the image (e) obtained by SelfxSR has the defect of
deepening wrinkles in the elderly and does not look real; and in the images (b), (g) and (h) obtained
by the bicubic, SISRRFI, and LPRGSS methods, respectively, there are severe jagged edges in the ears
and eyelids of the elderly. Overall, the image (i) by the new method is closest to the HR image (a).
Figure 8 shows the results of 8 methods for magnifying one aliasing image in AIS. Experimental results
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show that, for the aliasing images in AIS, the magnified images by the 8 methods have very small
visual differences. In Figure 8, relatively speaking, the images (h) and (i) obtained by LPRGSS and
the new method are closest to the HR image (a); the images (b), (e), (f), and (g) by bicubic, SelfxSR,
NARM, and SISRRFI, respectively, are the second; and the images (c) and (d) by DCCI and ICBI are
third. Obviously, in Figure 8, all eight images have the problem of losing details and distortion. Table 2,
Figure 8 shows that, for the images in AIS, these 8 methods generally can not get good results; one of
the main reasons is that the images obtained by downsampling may destroy the details of the original
aliasing image. For example, Figure 9 is the downsampling of the aliasing image (a) in Figure 8,
and these two images are obviously different.

Figure 4. Chest images magnified by eight methods.
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Figure 5. Leena images magnified by eight methods.

Figure 6. Branch images magnified by eight methods.
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Figure 7. Elderly images magnified by eight methods.
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Figure 8. Aliasing images magnified by eight methods.

Figure 9. Downsampling of the aliasing image (a) in Figure 8.
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5.3. Runtime

We compare the runtime of the 8 methods, and the comparison results are shown in Table 3,
where the time unit is seconds. In Table 3, the runtime of the new method is basically the same as
the bicubic method. The time in Table 3 of the new method is the time used to magnify the image,
but the new method takes 0.207 s to construct the approximation surface. The approximation surface
only needs to be constructed once. After the surface is constructed, the image can be magnified by any
multiple, and the time taken is basically the same as that of the bicubic method.

Table 3. Runtime of 12 images with 8 methods (Unit: seconds).

Image Bicubic DCCI ICBI SelfExSR NARM SISRRFI LPRGSS New

Barbara 0.018 1.849 5.297 183.453 332.389 320.068 176.514 0.020

Baboon 0.018 1.614 5.000 170.285 351.381 318.440 180.015 0.020

Boat 0.018 1.633 3.922 176.946 335.560 317.841 175.639 0.020

Chest 0.018 1.623 5.548 189.318 394.686 317.895 161.575 0.020

Couple 0.018 1.679 5.188 181.168 343.976 318.039 174.233 0.020

Crowd 0.018 1.857 5.389 171.767 463.896 330.901 174.872 0.020

Dollar 0.018 1.621 4.676 185.658 405.255 326.665 178.925 0.020

Goldhill 0.018 1.617 4.391 174.468 405.280 325.677 176.006 0.020

Kod 0.018 1.611 3.410 181.206 401.058 328.210 173.926 0.020

Lake 0.018 1.669 4.490 175.183 392.478 330.892 175.263 0.020

Lenna 0.018 1.578 4.960 173.818 347.464 340.423 173.287 0.020

Peppers 0.018 1.584 4.151 171.785 343.719 334.731 173.759 0.020

Average 0.018 1.849 5.297 183.453 332.389 320.068 174.501 0.020

5.4. Discussion

The results in Tables 1–3 and Figures 4–8 show that, among the 8 methods in the comparison,
(1) overall, the quality of the magnified images by the new method is the best, followed by LPRGSS
method; (2) the bicubic method has the shortest running time, followed by the new method, these two
methods are suitable for real-time image magnification; (3) for areas without edges and textures in the
image, there is little visual difference between the magnified images by the 8 methods, the 9 images in
Figure 6 are examples. In fact, for areas without edges and textures in the image, bicubic method, as the
most classical basic image magnification method, can produce the same PSNR and SSIM values as the
new method, while for areas with edges and textures in the image, bicubic method generally produces
image blocks with poor visual effect. The images (b) in Figures 4, 5, and 7 are examples. The main
reason is that the bicubic method constructs each surface patch by passing 16 image pixels, which
means that, when bicubic method is used, there is no degree of freedom in constructing bicubic surface;
the constructed surface is unique. If the pixels are sampled from different objects, the surface patch
constructed by bicubic method will produce larger oscillations, resulting in jagged or blurred pixels at
the edges of the image. For magnifying the image without edges and textures, the new method has the
advantages of bicubic method. Because the new method uses edge features as constraints to construct
quadratic polynomial surface, for magnifying the image with edges and textures, the new method gets
better magnified images than bicubic method.

We also tested the images in data sets set5 and set14 and database BSD300. The test results were
basically the same as those of the 12 typical images, the images in BSD200, Urban100, and AIS.
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6. Conclusions

It is an effective method to construct a surface to approximate the image and then sampling
the surface to generate the magnified image, especially when magnifying medical images. The key
problem is how to construct the approximation surface. Based on the complexity of image shape, it
is an effective strategy to construct local surfaces and to generate a whole sampling surface by the
weighted combination of the local surfaces. In this paper, the second-order difference quotient is used
to describe the characteristics of the pixels at the edge, which better distinguishes the characteristics
difference between the pixels at the edge and the pixels at the non-edge. In the process of local
surface construction, we use the edge features of the image as constraints to construct a quadratic
polynomial surface patch on the adjacent area of each pixel. Four adjacent quadratic polynomial
patches are weighted to form a bicubic surface. All the bicubic surfaces are put together to form the
whole sampling surface. The constructed bicubic surface has quadratic polynomial precision. It is
inevitable that there are errors in the magnified image obtained from the whole sampling surface. The
correction surface can be formed by the approximation error, so as to correct the errors and to improve
the approximation accuracy of the whole sampling surface. Due to the use of edge feature constraints
to construct local surfaces, each local surface can better maintain the edge features or texture features
near the pixels. Experiment results showed that it is an effective method to magnify the image by
constructing local surface patches with edge feature constraints, especially for medical image.

Although the magnified image keeps information such as the edge texture of the image well,
there is still a lack of edge and texture information. Moreover, the bicubic surface should have
bicubic polynomial precision, but the method in this paper has only quadratic polynomial precision.
Therefore, our future research work is to improve the retention of edge and texture information and the
interpolation accuracy, so that the magnified image has higher image quality and better visual effect.

In addition, Table 2 and Figure 8 show that, for the aliasing images in AIS, the eight methods
are not ideal for enlarging the images. It is necessary to study a new image magnification method
according to the characteristics of the aliasing images. Because in the aliasing images, there are many
edges and the difference of pixel values at the edge is large. One idea to consider is to magnify
the aliasing image by the combination of segmentation and fitting. Firstly, the image is segmented,
and then, the piecewise fitting patches are constructed based on the segmentation results so as to
reduce the oscillation of the patchs as much as possible. This is our second research work we will
do next.
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Abbreviations

The following abbreviations are used in this manuscript:

PSNR Peak Signal to Noise Ratio
SSIM Structural Similarity
HR Hign Resolution
LR Low Resolution
AIS Aliasing Image Set
DCCI Directional Cubic Convolution Interpolation
ICBI Iterative Curvature-Based Interpolation
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NARM Nonlocal Autoregressive Modelin
SISRRFI Single-Image Super-Resolution based on Rational Fractal Interpolation
LPRGSS Low-rank Patch Regularization and Global Structure Sparsity
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