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Abstract: The principle of image super-resolution reconstruction (SR) is to pass one or more low-resolution
(LR) images through information processing technology to obtain the final high-resolution (HR) image.
Convolutional neural networks (CNN) have achieved better results than traditional methods in the
process of an image super-resolution reconstruction. However, if the number of neural network
layers is increased blindly, it will cause a significant increase in the amount of calculation, increase
the difficulty of training the network, and cause the loss of image details. Therefore, in this paper,
we use a novel and effective image super-resolution reconstruction technique via fast global and
local residual learning model (FGRLR). The principle is to directly train a low-resolution small image
on a neural network without enlarging it. This will effectively reduce the amount of calculation.
In addition, the stacked local residual block (LRB) structure is used for non-linear mapping, which can
effectively overcome the problem of image degradation. After extracting features, use 1 X 1 convolution
to perform dimensional compression, and expand the dimensions after non-linear mapping, which can
reduce the calculation amount of the model. In the reconstruction layer, deconvolution is used to enlarge
the image to the required size. This also reduces the number of parameters. We use skip connections
to use low-resolution information for reconstructing high-resolution images. Experimental results
show that the algorithm can effectively shorten the running time without affecting the quality of
image restoration.

Keywords: super-resolution; convolutional neural network; fast global local residual learning
network; local residual block; skip-connection; deconvolution

1. Introduction

In recent years, with the impact of the Internet boom and the rapid development of information
technology, people’s requirements for signal and information processing have gradually increased,
and image processing is an important part of information processing. Additionally, image super-resolution
(SR) technology is particularly important in image processing. The principle is to pass one or more
low-resolution (LR) images to the final high-resolution (HR) image through information processing
technology. The traditional method is to enlarge the LR small image to the required size by interpolation,
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and then use the reconstruction algorithm to obtain an HR image. The super-resolution reconstructed
image has clear details and contains plenty of information, so it can be widely used [1,2]. For example,
in the crime scene video, HR images provide more favorable evidence for the public security organs’
investigation. In satellite imaging applications such as remote sensing and resource detection, HR images
can easily distinguish between two or more similar objects. In medicine, HR images can provide doctors
with a more accurate basis for diagnosis, and, thereby, greatly improves diagnostic accuracy. Therefore,
an image super-resolution algorithm has great research value.

At present, there are many algorithms for super-resolution (SR). In the research of interpolation-based
image super-resolution reconstruction algorithms, the input LR image is mainly denoised, deblurred,
and up-sampled to improve the image resolution. Among them, the more classic interpolation
algorithms include: the nearest neighbor interpolation, the linear interpolation, the bicubic interpolation,
and the spline interpolation [3]. The most classic dictionary-based sr algorithm is sparse encoding [4],
which seeks a sparse representation of LR input image blocks and then uses the coefficients of this
sparse representation to generate HR output. The LapSRN [5] model based on the pyramid algorithm
was proposed by Wei ShengLai et al. It is special in that it introduces a hierarchical network. Each
level only doubles the original image and adds the residuals to get a result. The learning-based image
super-resolution algorithm mainly learns the similarity between high-resolution and low-resolution
image blocks, and generates low-resolution image blocks to be processed into corresponding
high-resolution image blocks. It is mainly learned through convolutional neural networks. First,
ChaoDong et al. applied a convolutional neural network to image super-resolution reconstruction, which
is called a super-resolution convolutional neural network (SRCNN) [6]. The network well implements
end-to-end image reconstruction. The hidden layer of the convolutional neural network (CNN)
completes all feature extraction and aggregation, but SRCNN does not consider any self-similarities.
Since then, more people have proposed image super-resolution algorithms based on CNN. For example,
another algorithm a Accelerating the Super-Resolution Convolutional Neural Network (FSRCNN)
proposed by ChaoDong et al. [7]. Compared with SRCNN, this algorithm does not need to use
interpolation to enlarge the original LR images, but process these directly. Its advantage is to shorten
the training time by reducing the picture size. In addition, Wenzhe Shi et al. proposed the Real-Time
Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
(ESPCN) [8] model. This model is based on small images for training. The experimental results of
super-resolution processing of real-time video are very ideal. The Accurate Image Super-Resolution
Using Very Deep Convolutional Networks(VDSR) [9] model was proposed by Jiwon Kim et al. Its input
is divided into two parts. One part is to take the entire original images as input, and the other part is to
train the residuals and get input. We add the two parts together to get HR images, which greatly speeds
up the training and converges better. Afterward, Jiwon Kim proposed Deeply-Recursive Convolutional
Network for Image Super-Resolution(DRCN) [10]. This network consists of three parts. However,
at the layer of non-linear mapping, it uses a recursive network. The data can loop through the layer
multiple times. Unrolling this loop is equivalent to multiple convolutional layers in series using the
same set of parameters. Ying Tai et al. proposed the Image Super-Resolution via Deep Recursive
Residual Network (DRRN) [11] model. In this model, you can see the shadow of DRCN and VDSR.
It uses a deeper network structure to improve performance. There are many picture enhancement
layers. It can be understood that a blurry image passes through multiple enhancement layers, which
becomes clearer one by one, and obtains a HR image. Tong Tong et al. proposed SRDenseNet [12],
which introduced a Desent Block structure. The feature values trained by the upper layer of the network
will be passed to the next layer of the network. All features will be connected in series. The benefits of
this structure are to reduce the problem of gradient disappearance and reduce parameters. This paper
mainly uses an image super-resolution reconstruction technique via a fast global and local residual
learning mode (FGLRL). The purpose is to increase the resolution of the image by increasing the width
of the network and increase the speed of the algorithm.
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This article is divided into five chapters. The first chapter mainly describes the introduction, which
introduces several existing methods of image SR. The second chapter mainly describes the structure
and ideas of multiple papers related to this paper. The details of the algorithm in this paper are
described in Section 3. The fourth section shows the experimental results. The last chapter summarizes
the full text.

2. Related Work

2.1. SRCNN((Super-Resolution Convolutional Neural Network)

The SRCNN [6] is a pioneering work of applying CNN to image super-resolution reconstruction.
It mainly implements end-to-end mapping of LR images to HR images.
The specific algorithm principle is as follows.

(1) Feature extraction:

The main purpose of feature extraction is to extract image blocks from low-resolution images.
At this time, the dimensions of feature vectors are still in low-dimensional space. This is the process of
the first convolution. The specific formula is as follows.

F1(Y) = f(w1*Y + By), 1)

In the formula, Y is a low-resolution input image. w; is a convolution kernel, and B; is a bias,
where the number of convolution kernels is n11. The size is ¢ X f; X f1, and c is the number of channels,
which is set to 1. f is the activation function. The activation function used in this case is Rectified
Linear Unit (ReLU), that is f(x) = max(0, x).

(2) Non-linear mapping;:

The purpose of non-linear mapping is to map the extracted low-dimensional features to
high-dimensional features. This process is a second convolution. The specific formula is as follows.

F3(Y) = f(w2*F1(Y) + B), 2)

Based on the formula, the non-linear mapping is performed on the basis of feature extraction,
and w; is the convolution kernel of the non-linear mapping. Since the number of convolution kernels
represents the feature vector dimension,n; > 11, and B, represents the bias.

(3) Image reconstruction:

The image reconstruction process is equivalent to convolution using the mean convolution kernel.
This is the third layer of convolution. The specific formula is as follows.

F(Y) = w3*F2(Y) + B3, 3)

F(Y) is the final reconstructed image, w3 is the convolution kernel used in the reconstruction
process, and the size is f3 X f3 X 112, and Bj is the bias.

Experiments show that SRCNN has a better reconstruction effect than other traditional methods.
However, it is still not ideal for restoration of details.

2.2. FSRCNN

The original SRCNN [6] and SRCNN-Ex [13] need to interpolate low-resolution images to
high-resolution pictures. If the model parameters are not changed, the larger the multiple of the over
score is, the larger the input resolution is, the larger the calculation amount of the model is, and the
higher the time is. This paper is mainly from the perspective of super-resolution real-time. There
are three major improvements. First, it introduces a deconvolution layer at the end of the network.
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Then the mapping is learned directly from the original low-resolution image (without interpolation)
to the high-resolution one. Second, it reformulates the mapping layer by shrinking the input feature
dimension before mapping and expanding afterward. Third, it adopts smaller filter sizes but more
mapping layers. The Parametric Rectified Linear Unit (PReLU) used by the non-linear activation
function in the middle of the model is used to avoid the dead zone problem of ReLU [14] during
training. The loss function is still mean-square error (MSE).

2.3. DRCN

DRCN [10] uses a recursive convolutional network. Increasing the depth of the network will add
more parameters, which will lead to two problems. One problem is that it is easy to overfit, and the
other issue is that the model is too large to be stored and reproduced. Therefore, a recurrent neural
network is used.

The structure of DRCN is similar to SRCNN [6], and it is also divided into three layers. The first
layer is the embedding network. The function of this layer is the same as the first convolution layer of
SRCNN. Itis the feature extraction layer. The second layer is the inference network. Non-linear mapping
is implemented. The third layer is the reconstruction network, which is the image reconstruction layer.
In the non-linear mapping part, it is formed by d convolutional layers, and each convolutional layer
shares parameters. This layer is equivalent to the network being cyclic. In the reconstruction layer
part, the input is the output result of each convolutional layer. Therefore, d reconstructed images can
be obtained. Then the reconstructed images are weighted and averaged to obtain the final output
image Hj. It also uses a skip-connection to add the LR feature map and the output of H; to obtain
high-frequency information of the image. Although this algorithm optimizes the SRCNN algorithm,
it is easy to cause network degradation.

2.4. DRRN

Based on ResNet [15], VDSR [9], and DRCN, Ying Tai et al. proposed the DRRN [11] algorithm.
In order to improve the performance of reconstructed images, the algorithm uses a deeper network
structure. Each residual unit in DRRN has the same input, which is the output of the first convolutional
layer in the recursive block. Each of these residual units has two convolutional layers. In a recursive
block, the parameters of the corresponding convolutional layers at the same position in each residual
unit are shared. The DRRN algorithm is implemented through a combination of local residual learning,
global residual learning, and multi-weight recursive learning in a multi-path mode. By comparing
the number of different recursive blocks and residual units, this paper chooses a recursive block and
25 residual units with a depth of 52 layers. In short, DRRN improves the results by adjusting existing
structures such as ResNet and adopting deeper network structures.

2.5. GLRL

In a Image Super-Resolution Reconstruction Method Based on Global and Local Residual Learning
(GLRL) algorithm [16], by combining global residual learning and local residual learning to effectively
learn image details, this method can reduce the difficulty of training convolutional neural networks.
In addition, using the stacked local residual block (LRB) structure for non-linear mapping can effectively
overcome the problem of image degradation. Since there is a high correlation between low-resolution
images and high-resolution images output by the network, the algorithm uses a skip-connection
method to use most of the low-resolution information for high-resolution image reconstruction.

Figure 1a is a structure of SRCNN. Figure 1b is the simplified structure of FSRCNN and Figure 1c
represents the structure of DRCN. The yellow box is the recursive layer, which is composed of multiple
convolution layers (with a gray color) that share weights. Figure 1d represents the simplified structure
of DRRN. The red box selects a recursive block containing two residual units. In the recursive block,
the corresponding convolutional layers in the residual units (with green or yellow color) share the
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same weights. Figure le represents the network structure of GLRL, where LRB [14] represents the local
residual block. @ is the element-wise addition.

= P S - -

Conv Conv
|

Shrinking

l Conv
* Colnv } Conv
Col
Conv Conv lnv +/
| i Conv
Conv Lo ! +
l Conv

|

onv andin - Conv I
cl Expldg o] \+/ \me
= N 1
|
outmt Output. —_—
(a) (b) (0) (d) (e)

Figure 1. (a) Super-Resolution Convolutional Neural Network (SRCNN). (b) Accelerating the
Super-Resolution Convolutional Neural Network (FSRCNN). (c¢) Deeply-Recursive Convolutional
Network for Image Super-Resolution (DRCN). (d) Image Super-Resolution via Deep Recursive Residual
Network (DRRN). (e) Image Super-Resolution Reconstruction Method Based on Global and Local
Residual Learning (GLRL).

3. Method

In this paper, we use a fast global and local residual learning for image super-resolution
reconstruction (FGLRL). In the image reconstruction, the basic model mentioned by FSRCNN [7] is
used, and the global residual learning and local residual learning methods are combined. The network
structure is inspired by the five above algorithms. This network structure directly convolves the
original low-resolution small image, reconstructs it with a deconvolution layer, and adds a shrinking
and expanding layer to achieve high operating speed without loss of recovery quality. It is shown in
Figure 2. The method is explained in detail below.
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Figure 2. The proposed super-resolution image reconstruction framework.
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3.1. Feature Extraction

The extraction and representation of image blocks is similar to the first part of SRCNN with the
difference being two points. The first is that SRCNN [6] interpolates and enlarges the original LR image,
and then extracts it through a convolution layer. However, this method directly extracts features from
the original LR image through a convolutional layer. The reason is that the computational complexity
is related to the size of the image, and the computational complexity of the model increases as the size
of the space grows. The second is that SRCNN uses only one convolutional layer for feature extraction.
In order to extract more image details, this article uses a two-layer network for extraction, which can
make the extracted information more complete and more effective.

The size of the convolution kernel used in SRCNN is 9 x 9, but this is performed on the enlarged
image. Therefore, in this paper, we only use a 5 X 5 convolution kernel to roughly include image
information. For the number of convolution kernels 721 in this layer, it represents the feature dimension
of the LR image. The number of channels is set to the same value as SRCNN, which is 1. Thus, the first
part of the convolutional layer can be expressed as conv(5,nq,n7).

3.2. Shrinking

In many previous algorithms that use CNN for image super-resolution, most of them are directly
mapped from high-dimensional LR features to the corresponding HR feature space, which will cause
the computational complexity in the mapping step to be very high. Therefore, a shrinking layer is
introduced in this paper to compress the high-dimensional features of LR, so as to reduce the number
of parameters. In the first part, it was introduced that the LR feature dimension is 1y after feature
extraction. In this part, we use a convolution kernel with a size of 1 and a number of 7, for dimensional
compression. In this case, the value of 11, is much smaller than 77. The dimensions are reduced from
11 to 1y, so the convolutional layer of the second part can be expressed as conv(1, ny, ny).

3.3. Non-Linear Mapping

In this section, we mainly implement non-linear mapping by stacking local residual blocks (LRB),
and use global residual learning to send the output results of each local residual block to the subsequent
expansion layer, which can more effectively learn image details. Additionally, the local residual block
can better solve the problem of image degradation and reduce network redundancy. The structure of
the local residual block (LRB) [14] is shown in Figure 3b. In this figure, (a) is a DRRN [11] network
structure with two residual units. The local residual block structure used in this paper is improved on
the basis of the structure of DRRN. It mainly uses local residual learning and is composed of adding
shallow convolution branches (SCB) and deep convolution branches (DCB).

PReLU+Conv

PReLU+Conwv

Figure 3. (a) The partially simplified structure of DRRN. (b) The structure of LRB with a shallow
convolutional branch (SCB) and a deep convolutional branch (DCB).



Appl. Sci. 2020, 10, 1856 70f 12

LRB can be written as:
Xt = U(x”_l) = GD(U(x”_l),HD) + Gs(o(x”_l), 0s), 4)

where U represents the function of the residual unit, and x*~! and x* represent the input and output,
respectively. The weight sets of the deep convolution branches and the shallow convolution branches
were flagged as Op and 0s. Gp and Gg are residual mappings that need to be learned for deep and
shallow branches, respectively.

In this part, we use a 3 x 3 convolution kernel for non-linear mapping. The number of mapping
layers is m, which determines both the accuracy of the mapping and the complexity of the mapping.
In order to maintain consistency, the number of convolution kernels is still 15, so thispart can be
expressed as m X conv(3, ny, ny).

3.4. Expanding

If high-resolution images are generated directly from low-dimensional features, the restoration
quality will be poor. Therefore, we need to add an expanding layer to expand the high-resolution
feature dimensions. This expanding layer is essentially the inverse process of the shrinking layer, and,
in order to maintain consistency with the shrinking layer, we still use a convolution kernel size of
1 x 1 and the number of convolution kernels 77 to expand the feature dimension from the n; to n;
dimension. Therefore, the final extension layer can be expressed as conv(1, ny,nz).

However, in this scenario, in order to better apply LR features to HR image reconstruction, we use
the features after the shrinking layer and the features after each LRB as the input of the expanding
layer. The obtained results are sent to the subsequent deconvolution layer, which can make the details
of the learned image clearer.

3.5. Deconvolution

Deconvolution is the aggregation and up-sampling of the previously obtained features. It is
essentially an inverse process of convolution. The output of the convolution is used as the input of the
deconvolution, and the input of the convolution is used as the output of the deconvolution. Therefore,
the effect of feature up-sampling can be achieved. Thus, in this part, a 9 X 9 convolution kernel is used,
and the number is 1, so it can be expressed as deconv(9,1,n1). In this case, each output after passing
the expanding layer needs to be used as the input of the deconvolution layer. Therefore, four output
results are obtained after deconvolution. The output results are weighted and averaged to obtain the
final reconstructed image.

3.6. PReLU

In this paper, the activation function after the convolution layer uses a parametric rectified linear
unit (PReLU) instead of the traditional ReLU [13]. This is because PReLU can successfully avoid
causing dead zone. The formula for PReLU is as follows.

o(x;) = max(x;,0) 4+ a;min(x;,0), 5)

where x; is the input signal of the ith convolutional layer and g; is the coefficient of the negative part.
However, in ReLU, g; is 0.
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3.7. Loss Function

The loss function is to predict the difference between the recovered HR image and the true image
to minimize this difference. The loss function used in this case is the mean square error, which can be

expressed as:
2

, (6)

N
L(©) = %Vzl [ - D)

where N is the number of training patches, © is the parameter set, 71 is the ground truth image, and D
is the mapping function of the HR image generated from the LR image training.

4. Experiments and Results

A total of 291 images are used in the training set used in the algorithm of this paper including
91 of which are from the training set adopted by Yang et al. [17]. In addition, the other 200 are from the
Berkeley Segmentation dataset [18]. We use Set5 [19], Set14 [20], BSD100 [21], and Urban100 [22] as the
test set, containing 5, 14, 100, and 100 images, respectively. These images were processed by the model
we used to reconstruct the final high-resolution image.

4.1. Experimental Details

This experiment is performed on 291 training data sets, and this model is trained using different
scale factors. The scale factors are X2, X3, and x4, respectively. The network depth we use is 20 layers,
the mini-batch size is 64, and the momentum and weight decay parameters are set to 0.9 and 0.0001,
respectively. The initial learning rate is set to 0.1, and the weights of all filters are initialized using the
Adam algorithm. The number of iterations is 180,000,000. This experiment was performed in a Caffe
environment, and the GPU used was 1080ti.

4.2. Comparison with Other Methods

4.2.1. In Terms of a Reconstruction Effect

Compare our method with five other methods of image super-resolution, which include
Bicubic [11], Aplus [21], SRCNN, VDSR, and DRCN. The models of these methods are trained
on a 291-image data set. Table 1 lists the quantitative results under different scale factors (X2, X3, x4)
on the test set Set5, Set14, Urban100, and BSD100. There are two types of evaluation criteria, which are
subjective evaluation and objective evaluation. Subjective standard evaluation is the most intuitive and
simple method. It is mainly judged by the intuitive feelings of the human eyes. This method requires
people to know some important image features in advance, and then evaluate the reconstructed image,
such as whether the image details are clear. Objective standard evaluation is a method of evaluation
results calculated by the correlation coefficient between the images. Typically, there are two standards
for the evaluation of the effect of super-resolution image reconstruction: peak signal-to-noise ratio
(PSNR) and a structural similarity index (SSIM). Generally, the larger of these two values, the better
the reconstruction effect. Although PSNR is more commonly used, in some cases, it may be contrary to
human subjective feelings. When the PSNR value is small, the visual effect may be better.

Listed in Table 1 are the average values of PSNR and SSIM of each method on each data set.
As can be seen from the table, compared with VDSR and DRCN, the PSNR and SSIM of our proposed
method have advantages only on some data sets, but the differences are not large. It can be seen that
the reconstruction effect of our method is almost the same as the effective method proposed previously.
Since the main purpose of this paper is to reduce the computational complexity without affecting the
reconstruction effect, the running time is reduced. Thus, what this section discusses is that, compared
with other deep neural networks, the reconstruction effect is not affected. In addition, as can be seen
from Figure 4, in the reconstruction effect of some images, the outline of our method is significantly
cleaner and more vivid, which is closest to the ground truth image.
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Table 1. Comparison of peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) values
for various methods with a scale of X2, X3, X4 on Set5, Set14, Urban100, BSD100.

Dataset Scale Bicubic Aplus SRCNN VDSR DRCN FGLRL
x2 33.66/0.9299 36.55/0.9341 36.34/0.9542 37.53/0.9587 37.63/0.9588 37.75/0.9633
Set5 X3 30.39/0.8682 32.59/0.9270 32.39/0.9090 33.66/0.9213 33.82/0.9226 32.95/0.9105
x4 28.42/0.8104 30.28/0.8603 30.09/0.8628 31.35/0.8838 31.53/0.8854 31.44/0.8846
x2 30.24/0.8688 32.28/0.8986 32.45/0.9067 33.03/0.9124 33.04/0.9118 33.11/0.9133
Set14 x3 27.55/0.7742 29.13/0.8311 29.00/0.8215 29.77/0.8314 29.76/0.8311 29.51/0.8325
x4 26.00/0.7027 27.33/0.7491 27.50/0.7513 28.01/0.7674 28.02/0.7670 28.05/0.7688
X2 26.88/0.8403 28.58/0.8744 29.50/0.8946 30.76/0.9140 30.75/0.9133 29.99/0.9102
Urban100 x3 24.46/0.7349 26.11/0.7869 26.24/0.7989 27.14/0.8279 27.15/0.8276 27.30/0.8280
x4 23.14/0.6577 24.32/0.7183 24.52/0.7221 25.18/0.7524 25.14/0.7510 25.13/0.7501
x2 29.56/0.8431 30.78/0.8766 31.36/0.8879 31.90/0.8960 31.85/0.8942 32.30/0.8842
BSD100 x3 27.21/0.7385 28.18/0.7644 28.41/0.7863 28.82/0.7976 28.80/0.7963 28.66/0.7870
x4 25.96/0.6675 26.77/0.7087 26.90/0.7101 27.29/0.7251 27.23/0.7233 27.26/0.7244

Comment: Red color indicates the best performance of all methods and blue color indicates the second-best
performance of all methods.
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Figure 4. Qualitative comparison. The first row shows image “img_096" (Urban100 with scale factor x3).

The second row shows image “img_099” (Urban100 with scale factor x3). The third row shows image
“ppt3” (Set14 with scale factor x4).
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4.2.2. In Terms of Runtime

The main purpose of this algorithm is to reduce the parameters and reduce the computational
complexity without affecting the image restoration quality as much as possible. As can be seen from
the above figure, the method used in this article has significant image quality in terms of reconstruction
quality, but it is sometimes lower than VDSR and DRCN when calculating the average PSNR and SSIM
values of each data set. The computation time is lower than other algorithms.

Table 2 lists the average running time of each algorithm on different data sets. As can be seen from
this table, the running time of this algorithm is significantly lower than other algorithms, but, on some
data sets, the running time of this algorithm is higher than SRCNN, mainly because SRCNN has fewer
convolutional layers. The computational complexity is relatively low, and, for a deep convolutional
neural network similar to this article, the running time will be two to four times lower.

Table 2. Comparison of average running time of various algorithms.

Dataset Bicubic Aplus SRCNN VDSR DRCN FGLRL

Set5 — 0.35 0.18 0.74 0.63 0.29
Set14 — 0.69 0.39 1.35 0.98 0.23
Urban100 — 0.54 0.33 0.89 0.73 0.43
BSD100 — 0.46 0.23 0.75 0.66 0.32

Comment: Red color indicates the best performance of all methods and blue color indicates the second-best
performance of all methods.

4.3. Discussion of the GLRL and FGLRL

In this paper, before performing non-linear mapping, a shrinking layer is added to compress the
feature dimensions. After the mapping, an expanding layer is added to restore the original dimensions,
which makes the network structure funnel-shaped. The main purpose is to reduce the number of
parameters in the non-linear mapping layer and reduce the computational complexity. This section
discusses the effects of the presence and absence of shrinking and expanding layers. We call the
network without shrinking and expanding layers of GLRL [16]. Listed in Table 3 are the PSNR and
SSIM of GLRL and FGLRL in Set5 and their running time. The reconstruction results of the two
methods are compared in Figure 5. It can be seen from Figure 5 and Table 3 that the difference between
the reconstruction effect with and without the compression and expansion layer is not large, but the
running time with the compression and expansion layer is significantly lower. Without changing the
depth of the convolutional network, the running time of the method in this paper is reduced by two to
three times.

GLRL FGLRL GLRL FGLRL
35.01/09268 35.10/09248 27.58/0.8015 28.40/09150

v

Figure 5. Qualitative comparison. The first image shows “baby” (Set5 with scale factor x3). The second
shows image “butterfly” (Set5 with scale factor x3).
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Table 3. Comparison of PSNR, SSIM and running time values for GLRL and FGLRL on Set5.

Set5 GLRL FGLRL
Baby 35.01/0.9268/0.79 35.10/0.9248/0.40
Bird 37.09/0.9664/0.68 35.66/0.9552/0.27
Butterfly 27.58/0.8015/0.43 28.40/0.9150/0.28
Head 33.58/0.8340/0.57 33.81/0.8283/0.29

Woman 31.33/0.9428/0.63 31.76/0.9290/0.25

Comment: Red color indicates the best performance of two methods.

5. Conclusions

While observing the limitations of current deep learning-based SR models, we explore a more
efficient network structure. The inspiration of this network structure mainly comes from the five
structures SRCNN, FSRCNN, DRCN, DRRN, and GLRL. This network structure directly convolves the
original low-resolution small image, reconstructs it with a deconvolution layer, and adds a shrinking
and expanding layer to achieve high operating speed without loss of recovery quality. Extensive
experiments show that, compared with other deep neural networks, this method performs better on
some datasets in terms of the reconstruction effect, but has a significant reduction in running time and
has a satisfactory SR performance.
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