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Abstract: Covering spheroids (ellipsoids of revolution) by different spheres is studied. The research is
motivated by packing non-spherical particles arising in natural sciences, e.g., in powder technologies.
The concept of an ε-cover is introduced as an outer multi-spherical approximation of the spheroid
with the proximity ε. A fast heuristic algorithm is proposed to construct an optimized ε-cover giving
a reasonable balance between the value of the proximity parameter ε and the number of spheres used.
Computational results are provided to demonstrate the efficiency of the approach.
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1. Introduction

Covering a certain region by simple shapes has various applications. Our interest in covering
problems is motivated by packing particles arising in science and engineering applications. Packing
problems are widely used in modeling liquid and glass structures [1,2], representing granular
materials [3], packing beds, and cermet [4], as well as in many other applications (see, e.g., [5–10]).
Many algorithms have been proposed for packing spherical particles (see, e.g., [11–16] and the references
therein). However, to have a better and more adequate representation of particulate microstructure,
packing non-spherical particles must be considered. The approaches proposed to handle non-spherical
shapes can be divided in three large groups [17]. Techniques in the first group use analytical equations
for the shapes of the particles, e.g., ellipsoids, and the main modeling problem is to state analytically
non-overlapping and containment conditions [18–23]. The second approach is based on tessellating
the container/particles shapes with a grid and then approximating them by corresponding collections
of grid nodes (see, e.g., [15,24] and the references therein). This way, detecting the overlap is reduced
to verify if two shapes share the same node. However, to get a reasonable approximation, fine grids
must be used resulting in large-scale and memory-consuming problems. In the third approach, the
shape of the particle is represented approximately by a collection of spheres having different sizes and
positions (see, e.g., [25–27]). Then, detecting the overlap is reduced to verifying the overlapping for two
spheres from different particle collections. This problem is much simpler than detecting overlapping
in the first approach. The third approach can be considered as a compromise between the simplicity
of the tessellating techniques and the rigor of the methods based on analytical shapes presentation.
The efficiency of the third approach depends on the quality of the multi-spherical approximation of the
shape of the particle. The number of the spheres representing the shape of the particle must be small
enough to simplify the non-overlapping (pairwise) test. At the same time, the union of the spheres in
the collection must represent the original shape of the particle closely enough.
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Among the different shapes used to represent the microstructure of non-spherical particles, the
spheroid (ellipsoid of revolution) is one of the most frequently used (see, e.g., [5–8,10]). One of the
reasons to use the spheroid is its relative simplicity comparing to the general ellipsoid. Moreover,
in many cases, analyses of 3D spheroids are reduced to the examination of the 2D ellipses used to
generate the spheroid.

In this paper, the problem of covering the spheroid by different spheres is studied. An ε-cover
is introduced as an outer multi-spherical approximation of the spheroid within the error ε. A fast
heuristic algorithm is proposed to construct the optimized ε-cover giving a reasonable balance between
the value of the proximity parameter ε and the number of spheres used. Computational results are
provided to demonstrate efficiency of the approach.

The main contributions of the paper are as follows:

• The concept of the ε-cover is introduced for the outer multi-spherical approximation of the spheroid.
• A fast two-stage approach is proposed to get a reasonable (optimized) ε-cover.
• Numerical results are provided to illustrate the main constructions.

The paper is organized as follows. Section 2 presents the basic definitions and formulations used
in the paper as well as the two-stage conceptual approach. Solution techniques are presented in detail
in Section 3. Numerical results are presented in Section 4, while Section 5 presents the conclusions.
Expressions for the parameters used in Section 3 are derived in the Appendix A.

2. Basic Constructions

The following definitions are used throughout the paper. Let

E =

{
(x, y, z) |

x2

a2 +
y2

b2 +
z2

c2 − 1 ≤ 0
}

(1)

be a given spheroid (ellipsoid of revolution) with c = b.

Definition 1. A set Λ ⊂ R3 is called a cover (outer approximation) for the spheroid E if Λ ⊇ E.

The following extended spheroid, referred to as an ε-spheroid,

E(ε) =

(x, y, z) |
x2

(a + ε)2 +
y2

(b + ε)2 +
z2

(b + ε)2 − 1 ≤ 0

 (2)

can be considered as an outer approximation of the original spheroid E with a given error ε ≥ 0.

Definition 2. set Λ(ε) ⊂ R3 is called an ε-cover if E(ε) ⊇ Λ(ε) ⊇ E, where ε is an error of the cover.

In this paper, the ε-cover of the spheroid E by spheres Sk, k = 1, . . . , M is studied.

The multi-spherical ε-cover is denoted by Λ(ε, M), i.e., E ⊂ Λ(ε, M) =
M
∪

k=1
Sk.

From a practical point of view, a “good” ε-cover Λ(ε, M) must use a few circles M and provide a
small approximation error ε. However, we may expect that for sufficiently small ε, decreasing ε in
Λ(ε, M) results in increasing M, and vice versa. Thus, we cannot minimize ε and M simultaneously.
Instead, our problem is formulated as follows:

Find Λ(ε, M), i.e., positions, radii and total number M of spheres, providing a reasonable balance
between ε and M.

The following heuristic two-stage approach is proposed to construct the optimized ε-cover.
Stage 1. For a given ε, find the minimum number M∗ of the spheres covering the given spheroid

E; i.e., find Λ(ε, M∗). Here, the decision variables are the positions and radii of the circles and their
total number M.



Appl. Sci. 2020, 10, 1846 3 of 13

Stage 2. For M∗ obtained at Stage 1, find a cover of the given spheroid E with the minimal value
ε∗ ≤ ε; i.e., find Λ(ε∗, M∗). Here, the decision variables are the positions and radii of the circles and the
proximity parameter ε.

In what follows, constructing the cover Λ(ε∗, M∗) is referred to as an Optimized Spherical Covering
(OSC). Detailed descriptions of problems arising at Stages 1,2 and their solutions are presented in the
next section.

3. Solution Algorithm

Let an ellipse E with semi-axes a and b be the projection of the spheroid E on the plane XOY. It is
assumed that the centers vk = (xk, yk, zk) of the spheres Sk of variable radii rk belong to the axis OX, i.e.,
vk = (xk, 0, 0).

The parametric description of the ellipse E presented in [28] is used:

E =
{
(x(s, t), y(s, t)) : 0 ≤ s ≤ b, 0 ≤ t ≤ 2π

}
, (3)

x(s, t) =
cos t

a
(a2
− b2 + s · b), y(s, t) = s · sin t. (4)

Note that the point x(s, t) = cos t
a (a2

− b2) belongs to the axis OX for s = 0. Denote by Λ(ε, M) the
cover that is the projection of Λ(ε, M) on the plane XOY. By the definition, the cover Λ(ε, M) is an outer

approximation of the ellipse E, i.e., Λ(ε, M) =
M
∪

k=1
Ck(xk, 0). Suppose that the odd number of the circles is

used for the cover, and the first circle has its radius b + ε and is centered at the point (0, 0, 0), as shown
at Figure 1a. Then, due to the symmetry, the ellipse E can be covered by a collection of M = 2m + 1
circles. Here, the right-hand side of the E can be covered by the circles Ck(xk, 0), k = 0, 1, . . . , 2m with
xk+1 > xk, xk ≥ 0, and similarly the left-hand side.

For the case of an even number of circles, the ellipse E be covered by a collection of 2m circles
Ck(xk, 0), k = 1, . . . , 2m. Let the first circle be centered at the point (x0, 0, 0), as shown at Figure 1b. To
find the parameters x0, r0 of the first circle for 0 ≤ t ≤ π

2 , the following optimization problem is solved:

t0 = min
(r,t)∈V

t

 r2
− ( aε

cos t · (aε
2
− bε2))

2
− b2

≥ 0
bε
aε ·

√
bε2 cos2 t + aε2 sin2 t− r ≥ 0

.

For the given t0 corresponding parameters x0, r0 are defined in the form of

x0 =
aε

cos t0
· (aε2

− bε2), r0 =
√

x2
0 + b2.

Using the parametric description of the ellipse [28], the parameter x0 can be obtained analytically
as follows (we would like to thank the anonymous referee for pointing out the possibility of getting
the explicit solution):

x0 =

√
(aε2 − bε2)(bε2 − b2)

aε
.

The details are presented in the Appendix A.
Then, due to the symmetry, the right-hand side of the ellipse E can be covered by a collection of m

circles Ck(xk, 0), k = 1, . . . , m, for xk+1 > xk, xk > 0 and similarly for the left-hand side.
In what follows, the solution algorithm for the OSC problem is presented only for the odd number

of spheres, since the difference between the odd and even cases is only in the parameters of the
first sphere.
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Figure 1. The center of the first approximating circle: (a) for odd circular covering and (b) for even
circular covering.

3.1. Solution Algorithm for Stage 1

Let the value of ε > 0 be given.
At Stage 1, the objective is to find the minimum number of circles Ck(xk, 0), k = 0, 1, . . . , 2m

covering the ellipse E centered at (0, 0) for the given value of ε.
Step 1. Set r0 = b + ε, x0 = 0, k = 0, aε = a + ε, bε = b + ε, where aε, bε are the sizes of the

ellipse Eε.
Step 2. Get the intersection point p′k = (p′kx, p′ky) of the ellipse E and the circle Ck solving the

following system: 
(xk − pkx)

2 + p2
ky = r2

k ,
p2

kx
a2 +

p2
ky

b2 = 1, pkx ≥ 0, pky ≥ 0
,

where rk is the radius of the circle Ck centered at the point (xk, 0).
Using the parametric description of the ellipse [28], the point p′k = (p′kx, p′ky) is presented

analytically by the following formula (see the Appendix A for details):

p′kx =
a2xk + a

√
a2xk

2 − (b2 − a2)(r2
k − xk

2 − b2)

a2 − b2 , p′ky =
√

r2
k − (xk − p′kx)

2.

Step 3. Set k = k + 1.
Step 4. Solve the following nonlinear programming problem:

t∗k = min
(rk,tk)∈V

tk

and get its optimal solution (r∗k, t∗k). Here, the feasible set V is defined by the following system of
inequalities:

r2
k − (

aε
cos tk

· (aε2
− bε2) − p(k−1)x)

2
− p2

(k−1)y ≥ 0, (5)

bε
aε
·

√
bε2 cos2 tk + aε2 sin2 tk − rk ≥ 0, (6)

tk ≤ t∗k−1, (7)

rk > 0, (8)

where inequality (5) assures that the point pk−1 is inside the circle Ck of radius rk centered at (xk, 0);
inequality (6) guarantees that the circle Ck of radius rk centered at (xk, 0) is inside the ellipse Eε with
semi-axes aε = a + ε, bε = b + ε; inequality (7) reflects the monotonous decrease of the corresponding
angle tk; and the last inequality describes the natural constraint for the radius of the circle Ck. Find
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xk =
aε

cos t∗k
· (aε2

− bε2). Using the parametric description of the ellipse [28], the parameters xk and rk

are presented analytically in the following form (see the Appendix A for details):

xk =
(a2

ε−b2
ε)pkx+

√
(a2

ε−b2
ε)(a2

ε(b2
ε−p2

ky)−p2
kxb2

ε)

a2
ε

,

if xk ≤
a2
ε−b2

ε
aε then rk = bε

√
1−

x2
k

a2
ε−b2

ε
, otherwise rk = aε − xk.

Step 5. If the point (a, 0) is inside the circle Ck of radius rk centered at (xk, 0), then the solution is
obtained and the algorithm stops. Otherwise, go to Step 2.

Figures 2 and 3 illustrate an iterative procedure for the algorithm described above.
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3.2. Solution Algorithm for the Stage 2

At this stage, the minimum value of ε is obtained for a given number 2m + 1 of covering circles.
Let Eε be the ellipse centered at (0, 0) with semi-axes aε = a + ε, bε = b + ε (see Figure 4).
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The points pk = (pkx, pky) ∈ R2, pk ∈ Ck, pk < intE, pkx ≥ 0, pky ≥ 0, k = 0, 1, 2, . . . , m, which are
referred to as the pilot points, are introduced for the “gluing” circles Ck(xk, 0), k = 0, 1, 2, . . . , m.

Let pnx = a, pny = 0, t0 = π
2 , x0 = x0(0, t0) = 0, xk(0, tk) =

cos tk
aε · (aε

2
− bε2), and k = 1, 2, . . . , m.

Here, tk is the parameter (angle) introduced in Equations (3)–(4) and obtained at Stage 1.
The following nonlinear programing problem is used to optimize ε:

ε∗= min
v∈V⊂R4n+1

ε.

Here, v = (ε, tk, k = 1, . . . , m, pkx, pky, rk, k = 0, 1, 2, . . . , m) is the (4n + 1)-dimensional vector of
unknown variables and the feasible set V is defined by the following system of inequalities:

ε ≥ 0, r0 ≤ b + ε (9)

tk ≥ 0, tk ≤ tk−1, k = 1, 2, . . . , m (10)

rk ≥ 0, k = 0, 1, 2, . . . , m (11)

bε
aε
·

√
bε2 cos2 tk + aε2 sin2 tk − rk ≥ 0, k = 1, 2, . . . , m (12)

pkx ≥ 0, pky ≥ 0, k = 0, 1, 2, . . . , m (13)

r2
k − (xk − pkx)

2
− p2

ky ≥ 0, k = 0, 1, 2, . . . , m (14)

r2
k+1 − (xk+1 + pkx)

2
− p2

ky ≥ 0, k = 0, 1, . . . , m− 1 (15)

p2
kx

a2 +
p2

kx

b2 − 1 ≥ 0, k = 0, 1, 2, . . . , m. (16)

Here, inequality (9) assures C0(0, 0) ⊂ Eε; inequality (10) reflects the monotonous decrease of the
corresponding angle tk; inequality (11) describes the natural constraint for the radius of the circle Ck;
constraints (12) guarantee Ck ⊂ Eε; inequalities (13) present the nonnegativity of all pk; constraints (14)
and (15) assure pk ∈ Ck ∩Ck+1, while (16) guarantees pk < intE.

4. Computational Results

Computational experiments were run on an AMD Athlon 64 X2 5200+ computer. Local
optimization was performed by the IPOPT solver [29], which is available at an open access
noncommercial software depository (https://projects.coin-or.org/Ipopt).

To illustrate the algorithm performance, examples for ellipses and spheroids are considered. For
each problem instance, the computational time required to construct the approximated cover is less
than a second.

https://projects.coin-or.org/Ipopt
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Instance 1. The ellipse E with semi-axes a =1.3, b =1 is given.

(a) For ε = 0.3, the solution with one covering circle is presented in Figure 5a:

Λ(ε∗, M∗) = C1(x1 = 0, 0, 0), ε∗ = 0.3, M∗ = 1.

(b) For ε = 0.2, the solution with an even number of covering circles is shown in Figure 5b:

Λ(ε∗, M∗) =
2
∪

k=1
Ck(xk, 0, 0), ε∗ = 0.087477, M∗ = 2,

{xk, k = 1, 2} ={0.265385,−0.265385}, and {rk, k = 1, 2} ={1.034615, 1.034615}.
(c) For ε = 0.05, the solution with an odd number of covering circles is given in Figure 5c:

Λ(ε∗, M∗) =
3
∪

k=1
Ck(xk, 0, 0), ε∗ = 0.040356, M∗ = 3,

{xk, k = 1, 2, 3} ={0.357061, −0.357061, 0.000}, {rk, k = 1, 2, 3} ={0.942939, 0.942939, 1.040356}.
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M∗ = 3 circles.

Instance 2. The ellipse E with semi-axes a =2.3, b =1 is given and ε = 0.1.

(a) The optimized cover with an even number of circles is presented in Figure 6a:

Λ(ε∗, M∗) =
6
∪

k=1
Ck(xk, 0, 0), ε∗ = 0.072085, M∗ = 6,

{xk, k = 1, . . . , 6} = {1.596217, −1.596217, 1.008362, −1.008362, 0.344754, −0.344754},

{rk, k = 1, . . . , 6} = {0.703783, 0.703783, 0.942524, 0.942524 1.057759, 1.057759}.
(b) The optimized cover with an odd number of circles is shown in Figure 6b:

Λ(ε∗, M∗) =
7
∪

k=1
Ck(xk, 0, 0), ε∗ = 0.05372, M∗ = 7,

{xk, k = 1, . . . , 7} = {1.638879, −1.638879, 1.146544, −1.146544, 0.589831, −0.589831, 0.0000},

{rk, k = 1, . . . , 7} = {0.661121, 0.661121, 0.883641, 0.883641, 1.011495, 1.011495, 1.053720}.
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Instance 3. The spheroid E  with semi-axes a  1.9, b c  1 is given and 0.1  . 

(a) The optimized cover with an even number of spheres is presented in Figure 7a:  
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Figure 6. The optimized cover of the ellipse E: (a) by M∗ = 6 circles; (b) by M∗ = 7 circles.

Instance 3. The spheroid E with semi-axes a =1.9, b = c =1 is given and ε = 0.1.

(a) The optimized cover with an even number of spheres is presented in Figure 7a:

Λ(ε∗, M∗) =
4
∪

k=1
Sk(xk, 0, 0), ε∗ = 0.092225, M∗ = 4,

{xk, k = 1, . . . , 4} = {1.054209, −1.054209, 0.367367, −0.367367},

{rk, k = 1, . . . , 4} = {0.845791, 0.845791, 1.065344, 1.065344}.
(b) The optimized cover (for a =2) with an odd number of spheres is shown in Figure 7b:

Λ(ε∗, M∗) =
5
∪

k=1
Sk(xk, 0, 0), ε∗ = 0.070009 , M∗ = 5,

{xk, k = 1, . . . , 5} = {1.229404, −1.229404, 0.644245, −0.644245, 0.0000},

{rk, k = 1, . . . , 5} = {0.770596, 0.770596, 0.996786, 0.996786, 1.070009}.



Appl. Sci. 2020, 10, 1846 9 of 13

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 13 

{ , 1, ..., 5}kx k    {1.229404, −1.229404, 0.644245, −0.644245, 0.0000}, 

{ , 1, ..., 5}kr k    {0.770596, 0.770596, 0.996786, 0.996786, 1.070009}. 

 
(a) 

 
(b) 

Figure 7. The optimized cover of the spheroid E : (a) by 
* 4M   spheres; (b) by 

* 5M   spheres. 

Instance 4. The spheroid E  with semi-axes a  2, b c  1 is given and 0.03  .  

The optimized cover with an odd number of spheres is presented in Figure 8:  

9
* *

1

( , ) ( , 0, 0)k k

k

M S x



   U , * 0.022435  , * 9M  ,  

{ , 1, ..., 9}kx k   {0.000000, 0.366202, 0.721511, 1.055358, 1.357813, −0.366202, −0.721511, 

−1.055358, −1.357813}, 

{ , 1, ..., 9}kr k   {1.022435, 0.999666, 0.930939, 0.814240, 0.642187, 0.999666, 0.930939, 0.814240, 

0.642187}. 

 

Figure 8. The optimized cover of the spheroid E  by 
* 9M   spheres. 

Instance 5. The spheroid E  with semi-axes a  10, b c  1 is given and 0.3  .  

The optimized cover with an odd number of spheres is shown in Figure 9:  

21
* *

1

( , ) ( , 0, 0)k k

k

M S x



   U , * 0. 223518  , * 21M  ,  

{ , 1, ..., 21}kx k    {0.000000, 1.395933, 2.764207, 4.077711, 5.310411, 6.437857, 7.437658, 

8.289887, 8.977362, 9.485512, 9.798415, −1.395933, −2.764207, −4.077711, −5.310411, −6.437857, 

−7.437658, −8.289887, −8.977362, −9.485512, −9.798415,}, 

Figure 7. The optimized cover of the spheroid E: (a) by M∗ = 4 spheres; (b) by M∗ = 5 spheres.

Instance 4. The spheroid E with semi-axes a =2, b = c =1 is given and ε = 0.03.
The optimized cover with an odd number of spheres is presented in Figure 8:

Λ(ε∗, M∗) =
9
∪

k=1
Sk(xk, 0, 0), ε∗ = 0.022435, M∗ = 9,
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Figure 8. The optimized cover of the spheroid E by M∗ = 9 spheres.

{xk, k = 1, . . . , 9} = {0.000000, 0.366202, 0.721511, 1.055358, 1.357813, −0.366202, −0.721511,
−1.055358, −1.357813},

{rk, k = 1, . . . , 9} = {1.022435, 0.999666, 0.930939, 0.814240, 0.642187, 0.999666, 0.930939, 0.814240,
0.642187}.

Instance 5. The spheroid E with semi-axes a =10, b = c =1 is given and ε = 0.3.
The optimized cover with an odd number of spheres is shown in Figure 9:

Λ(ε∗, M∗) =
21
∪

k=1
Sk(xk, 0, 0), ε∗ = 0.223518, M∗ = 21,

{xk, k = 1, . . . , 21} = {0.000000, 1.395933, 2.764207, 4.077711, 5.310411, 6.437857, 7.437658, 8.289887,
8.977362, 9.485512, 9.798415, −1.395933, −2.764207, −4.077711, −5.310411, −6.437857, −7.437658,
−8.289887, −8.977362, −9.485512, −9.798415,},
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{rk, k = 1, . . . , 21} = {1.223518, 1.211410, 1.175328, 1.115988, 1.034567, 0.932687, 0.812378, 0.676054,
0.526503, 0.367023, 0.203604, 1.211410, 1.175328, 1.115988, 1.034567, 0.932687, 0.812378, 0.676054,
0.526503, 0.367023, 0.203604}.
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5. Conclusions

The problem of optimized multi-spherical covering for spheroids is introduced. This problem
is motivated by the packing non-spherical particles arising in naturals sciences and engineering.
The simple heuristic approach is proposed to construct an optimized covering, providing a reasonable
balance between the number of spheres and the error of approximation. Computational experiments
indicate that the proposed approach constructs good feasible coverings very fast: in less than a second.
The multi-spherical approximations obtained in the paper provide a basis for fast optimized packing
spheroids in different containers, using algorithms proposed, e.g., in [30–32]. The two-stage scheme
presented in Section 2 can be applied for the general optimized multi-spherical covering. An extension
of the covering approach to the case of more complex objects [33–36] is an interesting direction for the
future research. Some results on this topic are on the way.
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Appendix A

We would like to thank the anonymous referee for pointing out that the explicit expressions can
be obtained for rk, xk and p′k = (p′kx, p′ky) in our algorithm at Stage 1.

The parameters have been derived based on constructions proposed in [28].

1. Deriving rk.

Observe that the point
(
x(s, t) = cos t

aε (a2
ε − b2

ε + s · bε), y(s, t) = s sin t
)

belongs to the coordinate
axis OX for s = 0, while the point (xe = aε cos t, ye = bε sin t) belongs to the frontier of the ellipse.

Since x = cos t
aε (a2

ε − b2
ε), then

cos t = aεx
a2
ε−b2

ε
, sin t =

√
1− a2

εx2

(a2
ε−b2

ε)
2 for aε > bε and

1− a2
εx2

(a2
ε−b2

ε)
2 ≥ 0, (a2

ε − b2
ε)

2
− a2

εx2
≥ 0, x2

≤
(a2

ε−b2
ε)

2

a2
ε

, x ≤ (a2
ε−b2

ε)
aε , x ≤ aε −

b2

aε .

The tangent point (x′, y′), x′ = a2
εx

a2
ε−b2

ε
, y′ = b

√
1− a2

εx2

(a2
ε−b2

ε)
2 belongs to the frontier of the ellipse.
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Since r2 = (x− x′)2 + (0− y′)2, then r2 =
(
x− a2

εx
a2
ε−b2

ε

)2
+ y′2 and thus

r2 =
(
x− a2

εx
a2
ε−b2

ε

)2
+ b2

ε

(
1− a2

εx2

(a2
ε−b2

ε)
2

)
= b2

ε

(
−(a2

ε−b2
ε)x2+(a2

ε−b2
ε)

2

(a2
ε−b2

ε)
2

)
= b2

ε

(
1− x2

a2
ε−b2

ε

)
.

Here we used

(
x(a2

ε−b2
ε)

a2
ε−b2

ε
−

a2
εx

a2
ε−b2

ε

)2
=

(
−b2

εx
a2
ε−b2

ε

)2
=

(
b2
εx

a2
ε−b2

ε

)2
=

b4
εx2

(a2
ε−b2

ε)
2 .

Therefore rk = bε

√
1−

x2
k

a2
ε−b2

ε
at the k-th iteration.

2. Deriving p′k = (p′kx, p′ky).

The tangent point p′k = (p′kx, p′ky) is defined from the system
p2

kx
a2 +

p2
ky

b2 = 1
(pkx − xk)

2 + p2
ky = r2

k

Therefore
p2

ky = r2
k − (pkx − xk)

2, b2p2
kx + a2(r2

k − (pkx − xk)
2) = a2b2,

(b2
− a2)p2

kx + 2a2xkpkx + a2(r2
k − xk

2
− b2) = 0 and thus

p′kx =
−a2xk±a

√
a2xk

2−(b2−a2)(r2
k−xk

2−b2)

(b2−a2)
, p′ky =

√
r2

k − (pkx − xk)
2.

3. Deriving xk+1.

From the system at Step2 we have
(xk+1 − pkx)

2 + p2
ky = r2

k

bε

√
1−

x2
k+1

a2
ε−b2

ε
= rk

.

Therefore

(xk+1 − pkx)
2 + p2

ky = b2
ε

(
1−

x2
k+1

a2
ε−b2

ε

)
,

a2
ε

a2
ε−b2

ε
x2

k+1 − 2pkxxk+1 + p2
kx + p2

ky − b2
ε = 0 and thus

xk+1 =
(a2

ε−b2
ε)pkx+

√
p2

kx(a
2
ε−b2

ε)
2
−a2

ε(a2
ε−b2

ε)(p2
kx+p2

ky−b2
ε)

a2
ε

,

xk+1 =
(a2

ε−b2
ε)pkx+

√
(a2

ε−b2
ε)(a2

ε(b2
ε−p2

ky)−p2
kxb2

ε)

a2
ε

.
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