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Abstract: During the last years, highly-recognized computational intelligence techniques have been
proposed to treat classification problems. These automatic learning approaches lead to the most
recent researches because they exhibit outstanding results. Nevertheless, to achieve this performance,
artificial learning methods firstly require fine tuning of their parameters and then they need to
work with the best-generated model. This process usually needs an expert user for supervising
the algorithm’s performance. In this paper, we propose an optimized Extreme Learning Machine
by using the Bat Algorithm, which boosts the training phase of the machine learning method to
increase the accuracy, and decreasing or keeping the loss in the learning phase. To evaluate our
proposal, we use the Parkinson’s Disease audio dataset taken from UCI Machine Learning Repository.
Parkinson’s disease is a neurodegenerative disorder that affects over 10 million people. Although its
diagnosis is through motor symptoms, it is possible to evidence the disorder through variations in the
speech using machine learning techniques. Results suggest that using the bio-inspired optimization
algorithm for adjusting the parameters of the Extreme Learning Machine is a real alternative for
improving its performance. During the validation phase, the classification process for Parkinson’s
Disease achieves a maximum accuracy of 96.74% and a minimum loss of 3.27%.

Keywords: extreme learning machine; artificial neural networks; bat algorithm; optimization
algorithms; parkinson’s disease

1. Introduction

Parkinson’s disease (PD) is the most common age-related neurodegenerative disease and is the
second most prevalent in the world [1,2]. To date, no treatment has been seen to reduce or prevent the
disease’s progression [3,4]. Its detection is based on the manifestation of two or three motor symptoms.
Motor symptoms include muscle stiffness, resting tremor, slow movement, and balance problems [5].
Nowadays, evidence exists that signs of PD can be identified through speech, and the analysis using
machine learning techniques may help in the diagnosis [6].

Computational intelligence techniques are multi-purpose artificial procedures devoted to mainly
treat classification, prediction, and clustering problems. Most computational methods are inspired
by interesting natural phenomena, such as inter-species communication [7,8], selection and evolution
mechanisms [9], swarm intelligence [10], and evolutionary algorithms [11], among several others [12].
Artificial neural networks (ANN) are a type of bio-inspired algorithms based on how neurons operate in
the brain to process data from the senses, establish memories, and control the body [13,14]. Successful
studies show that ANNs are able to provide highly precise results in different disciplines [15].
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Despite the great success of artificial neural networks, its proper design and its successful
implementation to reach acceptable results is not a simple task. The procedure of ANNs is regulated
by a set of parameters that demand a previous configuration. In fact, selecting the appropriate
parameter setting is crucial for efficient algorithm performance, and therefore to the effective finding
of outstanding solutions [16]. Furthermore, there is no general optimal artificial neural network
configuration. Hence, the effects of an optimal initial configuration can considerably vary from
problem to problem and also between different instances of the same problem. This hard configuration
task is typically left to the modeler who has to decide based on the features of the problem and the
available parameter tuning knowledge. This task requires a significant amount of expertise.

This open challenge has led to new trends trying to modify ANNs in order to minimize the
number of parameters, and thus to avoid adjusting their values. That is how the Extreme Learning
Machine (ELM) was designed. In [17], ELM was proposed as a kind of artificial neural network which
is only composed by an input layer, an output node, and one or more layers of neurons. Unlike a
conventional artificial neural network, the ELM proposes no tuning of the parameters of the hidden
nodes: input weights and hidden layer biases, because they are arbitrarily assigned. This design tends
to provide an efficient generalization performance at breakneck learning speed [18]. However, to reach
this performance, ELM sacrifices precise and accurate in results. The trade-off between high-quality
solutions and the fast resolution process is an issue that should be covered.

In this work, we use the Bat Algorithm (BA) to enhance the yield of the extreme learning
machine during the learning phase. BA is a metaheuristic inspired by the echolocation feature
of microbats [19], and we already had fruitfully proved in optimization problems [20,21]. The main
idea is to automatically adjust the random parameters of the ELM for boosting to the neural network
to achieve better performance. Next, we use the models generated by the improved ELM as an offline
comparison resource and we analyze them in terms of accuracy-loss. There are two objectives in
conflict: to maximize accuracy and minimize loss. The balance between these measures allows us to
find the best model for the test phase of the ELM. To evaluate our proposal, the BA-ELM is applied to
the voice signals of Parkinson’s Disease patients, using a dataset taken from UCI Machine Learning
Repository [22]. The dataset was created at the Department of Neurology at Istanbul University and it
includes 195 voice recording from 31 people, 23 with PD The authors mentioned that the microphone
was set to 44.1 kHz during the data collection process. The signal contains the sustained phonation of
the vowel a and possess 23 features. The features includes vocal fundamental frequency, ratio of noise
to tonal components in the voice, signal fractal scaling exponent, and among others [22].

Computational experiments are firstly analyzed in terms of the over/under fitting. We compare
the results generated in the training phase by calculating the sum of the differences between curves.
Moreover, we employ charts for illustrating the behavior the optimized ELM against the native version.
If difference between curves trends to zero, then the training phase properly worked. Finally, we
employ a non-parametric test for evaluating the statistical different between the original ELM and its
optimized version. Results are promising and show that when the random parameters of the ELM are
properly adjusted for this classification problem, the accuracy increased from 90.16% to 96.74%, and
the loss decreased from 4.08% to 3.27%.

The manuscript is organized as follows. Section 2 illustrates related works in the field. Section 3
presents the methodology used for this work. Section 4 defines the tackled problem. Section 5 exposes
the default extreme learning machine, and its improved version with the bat metaheuristic. Next,
experimental results and discussions are shown in Section 6. At the end of the manuscript, conclusions
are presented in Section 7.

2. Background

In the last decade, interesting works had been proposed on artificial neural networks for
classification problems. For instance, in [23] a classification system to identify voice dysphonia
via Wavelet Packet Transform and the Best Basis Algorithm is designed. Outstanding results were
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reported by reaching from 87.5% to 96.8% of accuracy. Recently manuscripts study the deep learning
networks for classifying the environmental sounds. In [24], a convolution neural network is applied to
sound classification datasets. Results are encouraging due to during the learning phase, an accuracy
greater than 77% is achieved. In [25], the authors provide a review of the state-of-the-art deep learning
techniques for audio signal processing. Analyzed works range from variants of the long short-term
memory architecture, audio-specific neural network models, and also it includes convolution neural
networks. Other works detail traditional algorithms for pathological voices, using the auto-correlation
method [26], the cepstrum technique [26], and the data reduction procedure [27]. For all of them, the
accuracy is between 72.72% and 84.09%. In [28], a Mel Frequency Cepstral Coefficients is applied to
identify features in voices signals, which are then used for training an ANN with 10 neurons in the
hidden layer. Results are presented in terms of the generated loss. The more precise result is met with
nine neurons, a square mean loss of 1.05E-3, and a loss percentage equals to 12.8%.

Now, if we study the integration of bio-inspired metaheuristics in machine learning techniques,
an interesting set of works emerge. For example, hybrid methods were proposed in [29,30]. Here,
the parameters of a Support Vector Machine are optimized by the Genetic Algorithm and the Particle
Swarm Optimization (PSO), respectively. The first one is developed to classify voice disorders.
This approach shows an increase in accuracy from 79.16% to 87.5%. The second one was designed to
predict the use of electrical energy. The improved algorithm works in iterations. In each iteration, the
metaheuristic based on the movement of particles finds the best configuration for the classification
method. PSO was also integrated to an ELM. In [31], a mixed procedure based on the machine learning
approach is proposed. This technique includes the successful self-regulated learning capability of
the particle swarm optimization algorithm with an ELM classifier. The enhanced metaheuristic was
applied to define the optimum parameter setting for the ELM in order to reduce the number of hidden
layer neurons. The hybrid method was evaluated on five medical dataset classification problems:
Wisconsin Breast Cancer, Pima Indians Diabetes, Heart-Statlog, Hepatitis, and Cleveland Heart Disease.
Results illustrate that the integration of the self-regulated learning PSO to ELM works better than the
native ELM, and it also operates better than the original PSO on ELM.

Finally, if we analyze multi-objective optimization algorithms combined with the extreme machine
leaning method, we can find manuscripts such as [32–34]. The first one describes how the physical
programming that allows selecting the number of hidden nodes and the activation function for an
extreme learning machine by optimizing multiple performance objectives of networks. The second
one simultaneously considers the ELM model loss and the sparsity constraint of the hidden layer into
optimization. The last work details a new model selection method of ELM based on multi-objective
optimization to obtain dense networks with good generalization ability.

3. Methodology

In this section, we present the methodology used for the work global process. We begin with a
brief description of Parkinson’s Disease and we show how signal voices is transformed to spectrograms.
Finally, we describe the used experimental design.

3.1. Parkinson’s Disease

Parkinson’s Disease is a degenerative disorder of the central nervous system characterized by
tremors (shaking), rigidity, slow intentional movement as well as changes in memory and cognition [35].
The diagnosis of Parkinson’s Disease is frequently difficult, especially in early disease stages because
tremors may occur not only at rest, but also at posture and/or during action [36]. The vocal impairment
is considered one of the earliest indications that this disease begins. In this line, recent works have
endeavored in handling voice signals to support the diagnosis [22,37]. In this work, we forward another
step in the study of automatic classification of complex diseases by improving the learning machine.

We use Parkinson’s Disease Classification Dataset taken from UCI Machine Learning
Repository [22,37,38] for testing our proposal. Data was generated from 188 patients with Parkinson’s
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Disease (107 men and 81 women) with ages ranging from 33 to 87 (65.1 ± 10.9) at the Department of
Neurology at Istanbul University. Only 64 healthy individuals (23 men and 41 women) of 188 patients
were considered into the control group. Their ages varied between 41 and 82 (61.1 ± 8.9). In [22],
the authors inform that during the data collection process, the microphone was set to 44.1 kHz. After
the physician’s examination, three repetitions for each subject were extracted. The signal contains the
sustained phonation of the vowel a.

3.2. Signal’s Transformation

In [35,36], speech features have been successfully employed to the Parkinson’s Disease diagnosis,
such us jitter, shimmer, fundamental frequency parameters, harmonicity parameters, recurrence period
density entropy, detrended fluctuation analysis and pitch period entropy. In [22], some features are
referred as “baseline features” and they are employed for comparing the performance of the different
feature extraction methods.

Dataset was created from firstly voice signal. Next, these signals were transformed
in spectrograms using the Mel-Frequency Cepstral Coefficients technique [22]. In literature,
Mel-Frequency Cepstral Coefficients is described as a method that emulates the effective filtering
properties of the human ear [39]. This approach has been used as a robust feature extraction
method in the context of speaker identification, automatic speech recognition and Parkinson’s
Disease diagnosis [40,41]. After to apply this method for feature extraction, 23 features were
discovered/calculated, detailed in [22]. In our study, we use a feature vector with 23 elements.
This vector is employed in the input layer (variables) of the ELM to classify if a patient presents the
Parkinson’s Disease or not.

3.3. Experimental Design

The optimized ELM is evaluated via quantitative approach. Results will be compared by using
statistical metrics and a hypothesis contrast.

Firstly, we will separate the dataset in two group: 80% for training and 20% for validation. Next,
we will run the native ELM to know its performance. Results will be considered as gold standard to
compare future BA-ELM results. After, we will test BA-ELM for identifying whether the training phase
is under/over fitting. These concepts refer to the fails when the generated models try to generalize the
knowledge that machine learning intends to acquire. When a machine learning model is trained with
a set of input data, it generates computational models able to generalize a concept. In our case, trained
models generalize if a patient presents the Parkinson’s Disease or not. Thus, when a the machine
learning will use a new unknown dataset, it should be able of synthesizing it, understanding it and
giving us a reliable result.

Nevertheless, there is a key issue that should always be considered. If our training data is too few,
our learning algorithm will not be able to generalize the knowledge and will be incurring under f itting.
On the other hand, if we train the machine learning with a homogeneous dataset, the learning approach
will neither be able to generalize the knowledge and will be incurring over f itting. To identify whether
our generalized models suffer under/over fitting, we propose a simple metric: the sum of differences
between curves of the learning and the validation of training phase tends to zero. If under/over fitting
exists, we must check: minimum input sample, validation dataset, and feature selection, among others
factors in order to minimize these issues [42].

Next, to show the robustness of the proposal and to present a better significant difference
between the ELM and the optimized neural network, we will perform a contrast statistical test via the
Kolmogorov-Smirnov-Lilliefors to confirm the distribution of samples [43] and Wilcoxon′ssignedrank [44]
to compare statistically the results. For both tests, a hypothesis evaluation is considered, which is
analyzed assuming a p-value of 0.05—uncertainty—i.e., smaller values that 0.05 determine that the
corresponding hypothesis cannot be assumed. Both tests were conducted using GNUOctave. The first
test allows us to analyze the distribution of samples by determining whether the best value (maximum



Appl. Sci. 2020, 10, 1827 5 of 16

accuracy and minimum loss) achieves from the 31 executions follow a normal distribution. To proceed,
the hypothesis h0 states that the best value given by an algorithm (original or improved) draws a
normal distribution. Finally, if samples do not follow a normal distribution and they are independents,
we can assume a non-parametric evaluation for appraising the heterogeneity of them. We will use the
Wilcoxon′ssignedrank test. We will propose hypotheses ha0 where the median accuracy achieved by
ELM is great or equals than the median value reached by the optimized ELM and we will, in parallel,
define he0 where the median loss generated by ELM is less or equals than the median value given by
the optimized ELM. This method will allow us guarantee that BA-ELM effectively works better than
native ELM.

4. Extreme Learning Machine

In artificial intelligence, machine learning approaches have gained popularity in the last years,
mainly for their contributions in different disciplines. The extreme learning machine is a particular
case of machine learning methods [17]. ELM can be classified as a supervised learning algorithm
able to solve linear and non-linear classification problems. Traditional artificial neural network
architectures describe ELM as Single Layer Feedforward Neural Network (SLFN) [45], where input
weights and hidden layer biases do not need to iteratively be computed. One of the conventional
ELM implementations is about the randomly calculated nodes in the hidden layer independently of
the training data [46]. ELM has also been designed for working under the linear algebra operators,
and thus to achieve the optimal weights in the output layer.

A formal description of an ELM can be described from a set of N independent and identically
distributed random variables as a training sample (xi, ti), where xi represents the transpose of
the n-dimensional vector, i.e., xi = [xi1, xi2, . . . , xin]

T ∈ Rn, and ti describes the transpose of the
m-dimensional vector, i.e., ti = [ti1, ti2, . . . , tim]

T ∈ Rm. Thus, standard SLFNs with Ñ hidden nodes

and activation function g(x) = Sig(x) =
(

1
1 + e−x

)
, they are mathematically modeled by:

Ñ

∑
i=1

βigi(xj) =
Ñ

∑
i=1

βig(wi · xj + βi) = oj, ∀ j ∈ {1, 2, . . . , N} (1)

where [wi = wi1, wi2, . . . , win]
T is the weight vector connecting the ith hidden node and the input

nodes, [βi = βi1, βi2, . . . , βim]
T is the weight vector connecting the ith hidden node and the output

nodes, and βi is the bias of the ith hidden node. The inner product between wi and xj is denoted by
wi · xj (see Figure 1).

Huang et al. have rigorously proved in [17] that for N arbitrary distinct samples and any (wi, βi)

randomly chosen from Rn ×Rm according to any continuous probability distribution, the hidden
layer output matrix H of a standard SLFN with N hidden nodes, and it is invertible. Moreover,
||Hβ− T|| = 0 with probability one if the activation function g : R 7→ R is infinitely differentiable in
any interval.

Then, if we assume Hβ = T, the N-equations can be defined by:

H(w1, w2, . . . , wN , β1, β2, . . . , βÑ , x1, x2, . . . , wÑ) =

 g(w1 · x1 + β1) · · · g(wÑ · x1 + βÑ)
... · · ·

...
g(w1 · xN + β1) · · · g(wÑ · xN + βÑ)


N×Ñ

, (2)

where

β =
[

βT
1 · · · βT

Ñ

]
Ñ×m

and T =
[
tT
1 · · · tT

N
]

N×m (3)

The solution is given by computing the norm of weights β̂ = H†T, where H† is the Moore-Penrose
generalized inverse of matrix H.
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ELM algorithm requires a training sample (xi, ti) ∈ Rn ×Rm ∀ i ∈ {1, 2, . . . , Ñ}, an activation
function g and set of hidden nodes H, to ensure a weight output vector. These weights connect hidden
nodes to the hidden output. The procedure can be summarized in three stages:

1. Randomly generate input weight and bias (wi, βi), i = {1, 2, . . . , Ñ}.
2. Calculate the hidden layer output matrix H.
3. Calculate the weight β̂ = H†T.

The original version of ELM works properly, however, we firmly believe that its performance
can be even better [47]. For this reason, we focus on stage one and we propose an online parameter
control approach for ELM in order to find the best configuration of (wi, βi) and to generate the best
classification model.

Figure 1. ELM architecture.

5. Proposed Approach

In optimization, the parameter setting is known as a strategy for providing larger flexibility and
robustness to the solvers but requires an extremely careful initialization [48,49]. Indeed, parameters
of algorithms influence on the efficiency of the solving process. It is not obvious to a priori define
which parameter setting should be used. The optimal values for the parameters mainly depend on the
problem and even the instance to deal with and on the search time that the user wants to spend in
solving the problem. A universally optimal parameter value set for a given computational intelligence
algorithm does not exist [49,50].

In evolutionary computation, automatic parameter tuning is mainly divided into two key
approaches: the o f f line parameter tuning and the online parameter control. In the first one, the values
of different parameters are fixed before the run of the solver. In this situation, no interaction between
parameters is studied. This sequential optimization strategy does not guarantee to find the optimal
setting, even if an exact optimization setting is performed. In the second one, the parameters are
handled and updated during the run of the algorithm. This approach has widely been studied due to
the search for the best tuning of parameters that can be considered as an optimization problem itself [50].
It is a complex and extensive task, and the responsibility falls in the capacity and the experience of an
expert user. Under the paradigm of the online parameter control, we use a bio-inspired solver to finely
determine the most successful set of weights and hidden layer biases for an ELM.

The main idea is to define the best configuration of ELM (wi, βi) using the optimization solver
for generating solutions in order to properly train the ELM. This process operates as a loop statement
by transferring the feedback or fitness (accuracy and loss) given by the ELM towards the optimizer,
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who tries to improve generated results. Finally, the best configuration of the ELM reaches the best
classification model (see Figure 2).

As a bio-inspired solver, we propose the bat algorithm. Bat optimization, also known as the bat
algorithm, is a swarm intelligence optimization technique for global numerical optimization and it
was proposed by Yang in 2010 [19,51]. It is inspired by the echolocation behavior of bats that allows
them to avoid obstacles while flying and it locates his food or shelter. In nature, only the species of the
micro-bats exhibit this characteristic, which limits the technique [52]. To overcome this problem, the
concept of a virtualbat is proposed as an artificial bat indifferent to any species.

Figure 2. Representation of the process used in the proposed BA-ELM. ELM starts by randomly
initializing the input weights and hidden biases. Then, ELM is trained and generates a learning model.
This model gives an accuracy and a loss, both are used by bat algorithm to be evaluated as the fitness.
Finally, the bat algorithm computes new weights and biases for the ELM. This process operartes while
a stop criteria is met.

The bat algorithm has been developed following three simple rules:

1. It is assumed that all bats use echolocation to determine distances, and all of them are able to
distinguish food, prey, and background barriers.

2. A bat bi searches for prey with position xi that initially is random. Bats changes its frequency
depending on the proximity of their target, then affecting velocity. Thus, to change their position,
all bats used frequency fi calculated by Equation (4) and velocity vi computed by Equation (5).
The new position is defined by Equation (6). The bat algorithm is considered a frequency-tuning
algorithm that provides a balanced combination of exploration and exploitation. While more
(positive) velocity, more exploration, less (positive) velocity, more exploitation.

fi = fmin + ( fmax − fmin)β β ∼ U(0, 1) (4)

v(i,t+1) = v(i,t) + (xbest − x(i,t)) fi (5)

x(i,t+1) = x(i,t) + v(i,t+1) (6)

3. Finally, the variability of solutions is given by loudness A0 and a rate of pulse emission r ∈ (0, 1),
determined by Equations (7) and (8), respectively. Although the loudness can vary in many
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ways, it is assumed that the loudness varies from a large (positive) A0 to a minimum constant
value Amin.

A(i,t+1) = αA0 0 < α < 1 (7)

r(i,t+1) = r(i,0)(1− exp(−γt)) γ > 0 (8)

Algorithm 1 illustrates the pseudo-code for bat optimization. At the beginning, a population of m
bats is initialized with position xi and velocity vi. The position of a bat bi is a vector composed by the
set of weights and biases. We instance each bat solution as the position bi. This position corresponds
to a vector composed by the set of weights and biases. This vector is used by tuning and training
the ELM. This training takes only one epoch and return the achieved accuracy and generated loss.
After, the frequency fi at position xi is set followed by pulse rates and loudness, both through uniform
distribution between zero and one. Finally, the accuracy and the loss, both are taken by the objective
function to be evaluated them as fitness. In this study, we use the objective function as follows:

maximize k · accuracy + (1− k) · loss (9)

where k is a constant that weights the objectives of accuracy and loss. For computational experiments,
k ∈ {0, 10, 20, . . . , 100}, therefore each evaluation of the the objective function is eleven times calculated.
The best (greatest) value is returned as fitness and it is stored in ith position of the fitness vector f it.

Next, a while loop is used to enclose a set of actions for being performed t times until the fixed
number T of iterations is reached. Lines 7–11, the loudness of each bat (solution) is compared with a
random value. If the loudness of the ith bat surpasses any other bat, then it decreases via Equation (7)
and the ratio of pulse emission increases using Equation (8). This condition handles the variability of
the potential solutions through the exploration process and the exploitation process. Small values for
loudness suggest intensified solutions and large values of the rates of pulse emission. After, best f it
and bestindex are obtained by the evaluation o the objective function. If best f it is better than global f it,
then best f it is stored in global f it.

Next, the loop statement between lines 16 and lines 25, is an equation representing the movement
of bats. A solution is firstly selected among the current best solutions, and a new solution is generated
via random walks (Equation (10)):

xnew = xold + εĀ (10)

where ε ∈ {−1, 0, 1} and Ā represents the loudness average of all bats. Then, bats move according
to Equations (4)–(6). Equation (4) controls the pace and range of bats movements, where β provides
variability to the frequencies and it is randomly generated from an uniform distribution within the
interval (0, 1). Equation (5) defines the velocity held by ith bat in time t, where xbest represents the
current global best position encountered from the m bats. Finally, the Equation (6) determines the new
position held by ith bat. At the end, the bats are ranked in order to find xbest, i.e., the best configuration
(wi, βi) for the ELM, and thus it generates the best classification model.

Effectiveness of bat algorithm has been proved in a large instance of combinatorial and
optimization problems. For example, in [53] an adaptive version of the metaheuristic was used
as an optimization strategy of the observation matrix. In this line, a compact bat algorithm is proposed
for the class of optimization problems involving devices that have limited hardware resources [54].
Finally, if we focus on machine learning techniques enhanced by the bat algorithm, we can find [55,56].
In these works, an improved bat algorithm is proposed to optimize artificial neural networks.
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Algorithm 1: Bat algorithm.
Data: m, fmin, fmax, tmax, α, γ, and ε.
Result: The best solution xbest.
// Initialize the bat population:
// velocity vi, position xi, loudness Ai, and rates of pulse emission ri.

1 for bat i, (i = {1, . . . , m} do
2 vi ← Random[0, 1], xi ← Random[0, 1], Ai ← Random[0, 1], ri ← Random[0, 1];
3 f iti ← objective_ f unction(xi);
4 end
// global f it is assigned to the worst case value.

5 global f it← w.c.v;
// Produce tmax-generations of m bats.

6 while t < tmax do
7 for bat i, (i = {1, . . . , m}) do

// If the loudness of the ith bat surpass any other bat.
8 if Ai > Random[0, 1] then
9 Ai ← αAi, ri ← r0[1− e(−γt)];

10 end
11 end
12 {best f it, bestindex} ← eval( f it);
13 if best f it is better than global f it then
14 global f it← best f it, xbest ← xbestindex;
15 end
16 for bat i, (i = {1, . . . , m} do

// A new solution is generated via random walks.
17 if ri > Random[0, 1] then
18 xi ← xi + εĀ;
19 end
20 if Ai > Random[0, 1] and f iti < global f it then
21 β← Random[0, 1];
22 fi ← fmin + ( fmax − fmin)β, vi ← vi + (xbest − xi) fi, xi ← vi + xi;
23 f iti ← objective_ f unction(xi);
24 end
25 end
26 end

6. Computational Experiments

In this section, the proposed hybrid method is compared with the native version of the Extreme
Learning Machine. We use the Python programming language to implement the neural artificial
network. Experiments have been launched on a 2.5 Ghz Intel Core i5 7300HQ with 8 GB RAM machine
running Windows 10. ELM was mainly managed by Anaconda and its packages: Tensorflow, Numpy,
and Scipy. We employ 23 neurons in the input layer related directly to 23 features, i.e., N = 23,
each variable associated to one and only one neuron. In hidden layer, we use 12 nodes, i.e., Ñ = 12.
We apriori define the the number of neurons, i.e., N and Ñ, both remain unchanged during the
computational experiments. All the inputs (attributes) have been normalized into the range [0, 1];
similarly, as we work a binary classification problem, the output (target) has been normalized into [0, 1].
ELM only requires one epoch for training data. In this moment, ELM computes the Moore–Penrose
generalized inverse H† of the hidden layer output matrix H. Respect to the bat algorithm, it was coded
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by using native Python version 3, and we employ an initial configuration suggested in [57]: m = 20,
fmin = 0.75, fmax = 1.25, tmax = 100, α = γ = 0.9, and ε = 1.

In the training phase of the ELM, a set of models is generated and improved during the run of
the bat algorithm. We perform multiple simulations with different discrete time intervals, in order
to demonstrate the robust behavior of the proposed approach. The main idea is to know how the
neural network works in its training phase. In this line, two key issues appear: underfitting and
overfitting. Both topics can be considered as problems because do not allow that the machine learning
properly generalizes the knowledge. In this case, will not give a good classification. To illustrate the
performance of the BA-ELM, we evaluate scenarios using:

∑
t∈T

(
Accx

t − Accy
t

)
(11)

∑
t∈T

(
Lossx

t − Lossy
t

)
(12)

where T represents the maximum iteration, Accx
t and Accy

t describe given accuracy, and finally, Lossx
t

and Lossy
t depict generated loss, both in the training phase and the validation phase, respectively.

Moreover, we report four charts of accuracy and loss during the training phase.
From Figures 3–6, it is indicated how the accuracy and loss both vary during the training phase.

For instance, curves generated by the accuracy data allow us assume that there is not overfitting and
underfitting because difference computed by Equation (11) trends to 0 (see Figures 3 and 4). On the
other hand, if we analyze drawn curves by loss data, we note that few iterations BA-ELM produces
overfitting and underfitting calculated by Equation (12) (see Figure 5). However, as iterations pass,
overfitting and underfitting begin to decrease (see Figure 6). This performance can be explained by
converges of parameter setting given by bat algorithm because a properly tune provides models that
better generalize knowledge [58].
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Figure 3. Accuracy for BA-ELM training phase with 50 iterations.
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Figure 6. Loss for BA-ELM training phase with 100 iterations.

In the classification phase, we run ELM and the optimized ELM both 31 times. Table 1 shows
generated results. We can observe that the non-optimized ELM shows an excellent performance in
the classification phase, reaching a maximum accuracy of 91.61%, generating an average accuracy
close to 90.7%, and median value equals to 90.87%. These results expose that the ELM is able to
properly work when patients present Parkinson’s Disease. Nevertheless, when we analyze the results
generated by the optimized neural network, we can note an outstanding performance. For instance,
the computed mean value and the calculated median value, both are similar and close to the maximum
value (96.74%). This distribution can be seen in Figure 7, where we can observe that achieved values
are homogeneously dispersed, so much that the difference between the best value and the worst value
is evidently small (0.93%).

Regarding results for generated loss, again the optimized technique behaviors better than the
static version, as shown in Figure 8. If we study the loss produced by ELM, we can note that these
values are localized between 5.36% and 7.29%, while loss given by the BA-ELM are distributed between
3.27% and 4.25%. If we analyze 2-IQR for the generated loss, we can observe that BA-ELM produces
fewer loss than the simple ELM when it classifies Parkinson’s Disease. Similarly, when the mean value
is evaluated, the appeared difference between BA-ELM and ELM is abysmal. ELM exceeds 6.35%
while BA-ELM does not surpass 3.73%.
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Table 1. Statistical results of ELM and BA-ELM.

Statistical Comparison

Item Accuracy Loss

ELM BA-ELM ELM BA-ELM

Average 90.70 96.34 6.35 3.72
Standard deviation 0.59 0.27 0.58 0.27

Minimum 89.76 95.81 5.36 3.27
1-IQR (25%) 90.14 96.11 5.78 3.53
2-IQR (50%) 90.87 96.41 6.42 3.77
3-IQR (75%) 91.15 96.58 6.89 3.91
Maximum 91.61 96.74 7.29 4.25

Figure 7. Accuracy distribution of ELM versus BA-ELM.

Figure 8. Loss distribution of ELM versus BA-ELM.

To deep the generated results, we employ the statistical tests Kolmogorov-Smirnov-Lilliefors [43] and
Wilcoxon′ssignedrank, both described in the methodology section. For the first test, we found p-values
equal to 0.001278 (the accuracy sample) and 0.000728 (the loss sample), both were smaller than 0.05,
therefore do not allow to assume that samples follow a normal distribution. The non-parametric
test computed p-values equal to 6.665× 10−17 and 1.644× 10−18 for ha0 and he0 , respectively. Again,
both were smaller than 0.05. These results indicate that ha0 and he0 , they cannot be assumed. By
contradiction, we can assume that BA-ELM works better than ELM, in precision as well as in loss.

By summarizing, if we consider the two approaches (accuracy and loss), the homogeneity of the
results, and the hypothesis contrast, we can conclude that the optimized artificial method presents a
robustness yield and it overcomes its static version. Then, we establish that bat algorithm is a suitable
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bio-inspired solver to optimize the ELM parameters and it shows outstanding results to classify voice
signals in patients with Parkinson’s Disease.

7. Conclusions

Parkinson’s Disease is a degenerative disorder of the central nervous system and it is the most
common movement disorder diseases. Its diagnosis is frequently difficult especially when it is at an
early stage. An early indication of patients suffer the Parkinson’s Disease is the vocal impairment.
Recent works have proposed mechanics to support the diagnosis task. In this paper, we propose an
optimized ELM through the bio-inspired algorithm to properly classify patients with Parkinson’s
Disease. The approximate method defines an optimal vector with input weights and biases values,
at the same time. The idea is optimizing the training phase of the ELM to generate the best classification
model. To solve this problem, we first propose the bat algorithm to compute the parameter values in
order to find the best attainable configuration for the ELM, and then, we test this proposal on voice
signals in patients with Parkinson’s Disease. Results suggest that the bat solver is an efficient optimizer
for improving the yield of the ELM For this reason, we can guarantee that whether ELM is fine-tuned,
efficient models can be developed by solving classification problems, and thus, BA-ELM become a real
alternative to help potential expert users.

As future work, we plan to update this architecture in order to classify ultrasound medial images
using different ANNs. Moreover, we will study the learnheuristic approach to take advantage of the
machine learning world on optimization algorithms, mainly during the resolution processes, and thus
to improve local and global searches. Finally, we consider use a hyper-metaheuristic approach to firstly
find the best feature vector using a bio-inspired optimization algorithm and then, training the the
already optimized ELM.
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