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Abstract: According to first-order Born approximation, the scattering of a partially coherent pulse
with cosine-Gaussian correlation by a medium was studied. On the basis of analytic expression,
the changes in intensity evolution of the scattered pulse are discussed. The influences of pulse and
medium characteristics on the intensity of the scattered pulse were investigated. The intensities
of a Gaussian Schell-model (GSM) pulse and a cosine-Gaussian-correlated Schell-model (CGSM)
pulse, both scattered by the same medium, are compared, and their similarities and differences are
examined in detail. The effective angular width of the scattered pulse could be modulated by the
parameters of the pulse and medium. The obtained results could find potential applications in pulsed
beam scattering.
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1. Introduction

Light scattering has received continuous attention from researchers because of its potential
applications in some areas, like medical detection and ocean remote sensing. Since pioneering research
in 1870, many studies have been carried out in this field, where the optical statistical characteristics
of a scattered pulse, such as intensity, polarization, and coherence, were extensively studied [1–4].
The inverse problem, obtaining information on a scatterer through the characteristics of a scattered
pulse, was also examined [5,6]. However, most of the above investigations were carried out on the
scattering of statistically stationary fields.

The optical pulse is an important part of a broad class of light beams [7]. The basic concepts and
representations of partially coherent pulses were established [8,9]. In the discussion of pulsed-beam
scattering [10–16], the initial pulse was fully or partially coherent, and the complex degree of coherence
of the majority of these partially coherent pulses is a conventional Gaussian Schell-mode function [17].
In recent years, a large number of partially coherent sources with other types of Schell-mode
coherence were proposed, e.g., nonuniform-correlation [18], multi-Gaussian Schell-model [19,20],
Laguerre-Gaussian and Hermite-Gaussian Schell-model [21], and sinc-correlation sources [22]. Some
experiments related to the realization of these pulses have also been made [23,24].

We studied the scattering of a cosine-Gaussian-correlated Schell-model (CGSM) pulse on a
quasihomogeneous medium, and investigated the intensity evolution of the scattered pulse within
the accuracy of first-order Born approximation. We pay more attention to examining the intensity
variation of the scattered pulse with order-parameter n, duration, the temporal-coherence length of the
initial pulse, and the radius and correlation length of the medium.
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2. Theory

The temporal mutual coherence function for a CGSM pulse has the following form [19]:
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〈
E∗(t1)E(t2)

〉
= Γ0 exp

− t2
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where E(t1) and E(t2) are the complex analytic signals of pulse realizations at time t1 and t2, respectively;
the asterisk is the complex conjugate; Γ0 is a positive constant; T0 represents the pulse duration; Tc

is the temporal-coherence length denoting the temporal correlation of the pulse; ω0 describes the
carrier frequency of the pulse [25]; n is a constant greater than zero and does not need to be an integer.
Obviously, for the case of n = 0, a CGSM pulse is simplified to a GSM pulse.

By performing Fourier transform on Equation (1), the cross-spectral density function for a CGSM
pulse is given by [11]
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where Ω0 denotes the spectral width of the CGSM pulse. Ωc represents the spectral coherence width of
the pulse. cosh(x) is a hyperbolic cosine function.

Suppose a CGSM pulsed beam is incident on a scatterer along the direction described by unit
vector s0 (Figure 1). The cross-spectral density of a CGSM pulse at two points with position vectors r1

′

and r2
′ can be written as [26]
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In the scattering process, the correlation function of the scattering potential is used to describe the
scattering properties of a random medium [27]. In [10], it was assumed that the resonance frequency
of molecules or atoms in the medium is approximately represented by the carrier frequency of the
pulse. Therefore, the correlation function of the scattering potential is expressed as [28,29]

CF(r′1, r′2,ω) =
〈
F∗(r′1,ω)F(r′2,ω)

〉
m
=

〈
F∗(r′1,ω0)F(r′2,ω0)

〉
m
= CF(r′1, r′2,ω0), (8)

where F(r′, ω) is defined as the scattering potential of the medium, and<·>denotes averaging over the
ensemble of a random medium [30].

According to the first-order Born approximation, we obtained the formula for the cross-spectral
density function of the scattered pulse [31,32]:
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where rs1 and rs2 are the position vectors of two observation points (s1 and s2 are unit vectors). K1 = −k1(s1

− s0) and K2 = k2(s2 − s0) are the momentum-transfer vectors. D is the domain that the medium occupies.
A quasihomogeneous medium was considered in this paper of which the correlation function of

the scattering potential is given by [1,29,33]
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where C0 is a positive constant, σR is the effective radius of the medium, and σr is the correlation length
of the media, which must satisfy inequality σR ≥ σr.

When we substitute from Equation (10) into Equation (9), we can obtain the cross-spectral density
of a pulse scattered by a medium [34]:
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By using theinverse Fourier transform of Equation (11), the mutual-coherence function of the
scattered pulse is expressed by the following formula:
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With the help of unified theory [35,36], where spectral density, spectral degree of coherence, and
spectral degree of polarization can be treated in the same manner, the intensity of the scattered pulse
has the following form.

I(s)(rs, t) = W0C0(2πσRσr)
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3. Intensity Properties of CGSM Pulse Scattered by a Medium

On the basis of Equation (15), the intensity involution of a CGSM pulse scattered by a random
medium can be studied as follows. Figure 2 shows changes in the normalized intensity of the scattered
pulse with the scattering angle for four different values of parameter n. In the following numerical
calculations, unless specified otherwise, parameters were chosen as: T0 = Tc = 5 fs, λ0= 800 nm,
σR = 10 λ0, σr = λ0, and t = r/c. Figure 2 shows that the intensity properties of the scattered CGSM pulse
were closely related to parameter n. For a GSM pulse, the intensity distribution of the scattered pulse
has Gaussian distribution. With an increase of parameter n, the effective angular width of the scattered
pulse decreases. Here, the effective angular width of the scattered pulse is defined as the 1/e point of
the normalized intensity of the scattered pulse [37].
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Figure 2. Normalized intensity of scattered pulse as function of scattering angle θ for four different
values of parameter n.

Figure 3a illustrates the variations of the normalized intensity of the scattered pulse with scattering
angle θ, n = 2. In order to display the impact of initial pulse duration T0 on the intensity of the scattered
pulse, Figure 3b gives the changes of the effective angular width of the scattered pulse with initial
pulse duration T0. It is clear from Figure 3a that the effective angular width of the scattered pulse
increased when the initial pulse duration T0 increased. Furthermore, Figure 3b shows that, for small
values of parameter n, the effective angular width of the scattered pulse varied rapidly with initial
pulse duration T0; however, it changed slowly for large values of parameter n.
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Figure 3. (a) Normalized intensity of scattered pulse against scattering angle θ for different initial pulse
duration T0. (b) Effective angular width of scattered pulse against initial pulse duration T0.

Figure 4 shows (a) the behavior of the normalized intensity of the scattered pulse as a function of
scattering angle θ, and (b) the effective angular width of the scattered pulse against temporal-coherence
length Tc of the initial pulse. The effective angular width of the scattered pulse increased with increasing
temporal-coherence length Tc of the initial pulse. However, the effective angular width of the scattered
pulse changed rapidly with temporal-coherence length Tc for large values of parameter n. Especially
with an increase of temporal-coherence length Tc of the initial pulse, the effective angular width of the
scattered pulse remained nearly unchanged for the case of n = 0, and it converged to a constant 0.241
for the case of n = 0, 2, 6, 10. The reason for this phenomenon is as follows.
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When temporal-coherence length Tc of the initial pulse is infinite, the intensity of the scattered
pulse takes the following form:

I(s)(rs, , t) =
W0C0T0(2πσRσr)
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[
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0(m− a)

T2
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., (16)

which is independent of temporal-coherence length Tc of the initial pulse and parameter n. Therefore,
the effective angular width of the scattered pulse converged to a constant when temporal-coherence
length Tc of the initial pulse increased for different n parameters.

Figure 5 illustrates the influence of effective radius σR of the medium on the normalized intensity
of the scattered pulse. As shown in Figure 5, the effective angular width of the scattered pulse increased
as effective radius σR of the medium decreased. For large values of parameter n, effective radius σR of
the medium had little impact on the effective angular width of the scattered pulse.
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Figure 6 displays the effect of correlation length σr of the medium on the normalized intensity
of the scattered pulse. The effective angular width of the scattered pulse decreased with increasing
correlation length σr of the medium. In comparison with effective radius σR, the correlation length σr of
the medium resulted in a more rapid change in the effective angular width of the scattered pulse.
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4. Conclusions

In summary, we investigated the intensity evolution of a CGSM pulse scattered by a
quasihomogeneous medium on the basis of the scattering theory of nonstationary fields. We derived
the closed-form formula for the intensity of the scattered pulse in the time domain. We found
that the effective angular width of the scattered pulse can be modulated by the pulse and medium
parameters. It increased when the pulse parameters increased or the medium parameters decreased.
When variations in the correlation length of the medium and the effective radius of the medium were
the same, the former resulted in a more rapid change in the effective angular width of the scattered
pulse. In addition, the intensity properties of the scattered CGSM pulse were closely related to the n

parameter. Variations of the effective angular width of the scattered pulse induced by parameter n

were analyzed in detail. For large values of parameter n, the effective angular width of the scattered
pulse changed slowly with the initial pulse duration, and sharply with the temporal-coherence length
of the pulse. These results might find uses in practical applications of pulsed-beam scattering.
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