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Abstract: In this paper the influence of in situ local heat treatment performed by additional stitches
on the weldability of high-strength low-alloy (HSLA) S355J2C+N steel was tested. The investigated
steel is characterized by high susceptibility to cold cracking. It is necessary to find a method to
improve the quality of welded joints. The local heat treatment was applied as an effect of bead-on
plate welding made on the face of a Tekken test joint. The specimens were made by the use of covered
electrodes in the water environment. For testing weldability, Tekken test specimens were made.
Then, the different number of the pad welds with different overlapping were laid on the face of
the tested welds. Non-destructive (NDT) visual and penetrant tests were undertaken. During the
NDT, imperfections like shape mistakes and spatters were found. Then, metallographic macro- and
microscopic testing were performed. The macroscopic observations proved that water environment
can generate imperfections like cracking and pores. However, for specimens with additional stitches
the number of imperfections decreased. Microscopic tests proved that the proposed technique
affected the structure of the heat-affected zone (HAZ). The specimens without the application of
additional stitches are characterized by brittle bainitic and martensitic structure. Specimens, in which
the additional stitches were applied, contain tempered martensite, fine ferrite and fine pearlite in
their HAZ. It was also observed that the number of cracks decreased for in situ local heat-treatment
specimens. The final step was Vickers HV10 hardness measurement. These measurements confirmed
previous results. The heat from additional stitches affected the steel by significantly decreasing the
hardness by 80–100 HV10. The results of experiments showed that the heat from pad welds provided
microstructural changes in heat-affected zones and a decrease in the susceptibility to cold cracking,
which results in improvement in the weldability of HSLA steel in wet welding conditions.

Keywords: underwater wet welding; high-strength low-alloy steel; cold cracking; bead-on plate
welding; metallographic testing

1. Introduction

High-strength low-alloy (HSLA) steels are used in many types of structure. In comparison to
conventional low-carbon steels, HSLA steels are characterized by favorable strength-to-weight ratio.
That results in a lower cost of structures [1]. The usage of these materials has been changing in recent
years. Earlier, they have been used only in the air. Now, they are the most common materials used for
marine structures, which are characterized by direct contact with water [2]. The following application
may be classified as an example of marine and offshore structures:
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• bridges [3];
• pipelines [4,5];
• wind turbines [6];
• ships [7];
• wharfs [8].

Defects could occur in marine and offshore structures, so it is important to find the proper
strengthening technique [9]. The technique could be applied during preparation of the structures.
The laying of the coating is widely used to improve the surface and properties of the substrate. Coatings
are widely deposited by pad welding [10] and arc spraying [11]. The other method of improving the
properties of the material surfaces could be the use of the ceramic brush tools to change the roughness.
High roughness can generate the notch effect, which can cause a cracking effect [12]. Also, welding
imperfections may occur in offshore constructions. During preparation of the structure, numerical
analysis can be used for prediction the potential location of the failure [13,14]. Welding of HSLA
steels in the air is a well-known process. There is a lot of literature addressing concerns about joining
of these group of materials by different welding methods. To improve the quality of welded joints,
the modeling of temperature field during multi-pass gas metal arc welding (GMAW) surfacing or
rebuilding of steel elements taking into account that the heat of the deposit metal could be applied [15].
The cooling time between temperatures 800 ◦C and 500 ◦C (t8/5) is a factor with high influence on the
quality of the joint [16]. This factor is responsible for microstructural transformations in a welded
joint. There are HSLA steels in which the preheating process generates positive effects and provides
increasing t8/5, which is responsible for decreasing the occurrence of the welding imperfections [17].
During joining in the air, the quality of a welded joint also depends on welding parameters [18] and
filler material storage conditions [19].

However, offshore structures may undergo failures. Damaged areas can be located under the
water surface, which determines the necessity of repairs in water conditions. There are three methods
of underwater welding [20–23]:

• dry welding (hyperbaric and isobaric)—the welding area and welder are isolated from the
environment by a special chamber;

• local dry cavity welding—the welding area is in situ isolated from environment, the steel plates
and welder are in direct contact with environment;

• wet welding—the welding area and welder are in direct contact with the water environment.

The method of underwater welding used most often is wet welding. The most common methods
of wet welding are flux-cored arc welding (FCAW) [24] and manual metal arc welding (MMA) [25,26].
The water, as a welding environment, generates problems, which have a negative influence on the
quality of the joint. The biggest negative phenomenon during wet welding is presence of high diffusible
hydrogen content in deposited metal. The results of the measurements of diffusible hydrogen in
deposited metal ranged from 32.61 to 39.95 mL/100 g for specimens welded in air and from 51.50
to 61.34 mL/100 g for specimens made in the water [27]. This chemical element is a factor with
significant impact on the properties of welded joints. A phenomenon of hydrogen embrittlement is
characteristic for low-carbon structural steel also in the air [28,29]. This type of embrittlement can
occur even with the cathodic protection conditions [30]. In an air environment, the modeling of a
hydrogen-inducted delayed intergranular fracture in high strength steels can be used [31]. However,
the prediction of diffusible hydrogen content in deposited metal, in a water environment, is impossible
due to unpredictable process conditions, which change during welding. These changes result from the
instability of the welding arc in the water, which is the other problem in this environment. Wang et al.
stated that ultrasonic wave-assisted during underwater FCAW welding has the potential to control the
dynamic bubble and then improve arc stability [32]. Xu et al. [33] proved, that droplet has significant
influence on the stability of underwater welding process. Chen et al. [34] stated also that ultrasonic
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energy decreases the porosity and diffusible hydrogen content, which can improve the quality of
underwater welded joints.

Problems of underwater wet welding generate the high susceptibility of HSLA steel to cold
cracking. The cold cracks can occur in the welds and in the heat-affected zone (HAZ) near the fusion
line [35].

There are a couple of methods which provide to decreasing the susceptibility to cold cracking
of underwater wet-welded joints. It was proved that welding with austenitic consumables, which
provides welds with a good plasticity, can reduce the susceptibility to cold cracking. The temper bead
welding can also decrease the number of cold cracks in pad welds, made in the water [25]. In previous
experiments the bead sequence was investigated. It was stated that a proper bead sequence during
underwater wet welding can contribute to decreasing the hardness, tempering the HAZ and reducing
the number of cracks in the area of pad welds [36]. A further method reducing the susceptibility to
cold cracking is submerged-arc welding applied to marine steels. Han et al. proved, that this method
can also reduce the tendency to corrosion of underwater welded joints [37]. Wang et al. proposed
welding with higher heat input, which provides a large possibility for a better protective effect and a
larger weld penetration [38]. Another method for improving the quality of underwater welded joints
is modification of filler materials. Menezes et al. [39] proposed silicate and polymer agglomerated
electrodes, which caused higher arc voltage values in comparison to the conventional electrode with
the same polarity. This may contribute to decreasing of the number of cracks in the welded joints,
which results from lower diffusible hydrogen content in the deposited metal.

The use of traditional heat treatment possibilities is very limited in water due to the negative
influence of the environment. Zhang et al. [40] proposed real-time induction heating during wet FCAW
welding. Authors stated that the addition of induction heating could reduce the cooling rate of the
joint in a water environment to improve the microstructural properties of the joint. The content of
brittle structures such as martensite and bainite decreased while the proeutectoid ferrite and acicular
ferrite phases increased. However, the induction heating process caused major problems with the
stability of the welding arc. This can affect the quality of the welded joints. The local heat treatment as
an effect of multiple passes has a positive effect in HSLA steels in air [41]. However, this method has
not been verified sufficiently in a water environment.

The aim of this research was to study the influence of in situ local heat treatment on the weldability
of high-strength low-alloy S355J2C+N steel. As a method for improving the weldability of steel
local heat treatment, provided by the heat from additional stitches, was chosen. Weldability tests are
commonly used to evaluate the possibilities of the welding in the air for different materials [42,43],
and in the water [35]. A Tekken weldability test was chosen for investigation. This test allows
assessment of the weldability for a butt-welded joint. On the basis of performed tests [44], it was
concluded that investigated S355J2C+N steel is characterized by good weldability during welding
in the air and poor in underwater conditions. S355J2C+N steel is widely used in offshore structures,
which might be needing a repairs in the water. To the best of the author’s knowledge, there is no
research in the literature that provided detailed discussion on the improvement the weldability of a
HSLA steel butt-welded joint made in the wet welding conditions.

2. Materials and Methods

2.1. Used Materials

The HSLA S355J2C+N steel (16 mm thick) was chosen as a base material (BM) for welding.
The chemical composition of investigated steel has been analyzed by the emission spectrometry
method with spark excitation. As a filler material, ISO 2560-A: E 38 0 R11 [45] rutile electrodes (4.0
diameter) were used, which provide welds with a good plasticity, which contributes to decreasing
susceptibility to cold cracking. The chemical composition of the used materials are presented in Table 1.
The mechanical properties as yield point (Re) and tensile strength (Rm) of filler materials should be
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equal or greater than the properties of BM [41]. However, the filler material is characterized by a higher
value of elongation (A5), to decrease the susceptibility to cold cracking [25]. The mechanical properties
of the used materials are listed in Table 2.

Table 1. Chemical composition of used materials wt. %.

Material C Si Mn P Cr Mo Ni Cu V CeIIW
1

S355J2C+N in accordance
to control analysis 0.20 0.50 1.10 0.02 0.02 0.001 0.001 0.02 0.005 0.386

E 38 0 R 11 electrodes
deposit in accordance to

manufacturer data
0.07 0.44 0.55 0.01 0.04 - - 0.05 - -

1 CeIIW—carbon equivalent by International Institute of Welding.

Table 2. Mechanical properties of used materials in accordance to manufacturer data.

Material Yield Point, Re (MPa) Tensile Strength, Rm (MPa) Elongation, A5 (%)

S355J2C+N min. 355 470–630 17–22
E 38 0 R 11 electrodes deposit 503 538 26

2.2. Welding Procedure

In accordance with EN-ISO 17642-2 [46] the Tekken weldability test was chosen for the experiment.
This test enables assessment of susceptibility to cold cracking in all joint areas. The Tekken test is one
of the weldability tests, which is characterized by high thermal severity. This test was chosen because
it allows us to study even a small impact of factors on weldability. For the experiment, six Tekken
test were prepared. The upper surfaces of all specimens were placed 0.5 m below the water surface.
The schematic view of the Tekken specimens is presented in Figure 1.
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Figure 1. Schematic illustration of the Tekken test specimen.

In the first step of investigations, the Tekken butt welded joints were performed. The welding was
carried out in the flat position in accordance to EN ISO 17642-2 standard [46]. In the next step five of
the Tekken specimens were modified. On the surface of the prepared butt welded joints, the additional
stitches were laid immediately after preparation of Tekken joints, to check the influence of the proposed
technique on the HSLA steel weldability in wet-welding conditions. The in situ heat treatment was an
effect of the heat impact generated by the process of welding of additional stitches. They were laid in
the same direction as the Tekken test weld, within the maximum time of two minutes after completion
of the previous welding process. The scientific hypothesis stated that this modification causes changes
in microstructure in heat affected zone (HAZ), which decreases the hardness. The specimens were
modified by applying one, two or three additional stitches to the face of the Tekken weld. The stitches
were welded with different distance between axes of the stitches calculated as percentage overlapping.
During the process, the welding arc was unstable, which produces difficulties in keeping the constant
welding speed and planned overlapping of the stitches. One of the reasons was limited visibility of
the welding area, which disturbed the process of welding. These factors are typical for underwater
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wet-welding processes [25,27,36]. The welding parameters are presented in Table 3. The additional
stitches were welded with higher heat input values in accordance with the literature proceedings [25].
The schematic view of cross-sections of the tested area of each specimen is shown in Figure 2.

Table 3. Welding conditions for tested specimens.

Specimen No. Stitch No. Overlapping (%) I (A) U (V) ql (kJ/mm)

1 1 - 180 26.3 0.60

2
1 - 184 26.0 0.92
2 100 200 28.0 0.91

3
1 - 184 27.3 0.76
2 90 200 27.0 0.86

4
1 - 188 25.0 0.80
2 80 196 30.0 0.95

5
1 - 180 25.0 0.68
2 100 200 29.0 0.65
3 100 200 28.8 0.64

6

1 - 180 27.3 0.59
2 100 200 27.5 0.81
3 100 200 27.8 0.97
4 10 204 28.0 0.90
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2.3. Methodology of the Tests

Tekken joints were tested by non-destructive tests (NDT) and destructive tests (DT). The first step
was NDT: visual testing (VT) in accordance with the EN ISO 17637:2017 [47] standard and penetrant
testing (PT) in accordance with the EN ISO 3452-1:2013 standard [48]. After NDT specimens were cut
for DT at 1

4 , 1
2 , and 3

4 of joint length of each specimens, and from each specimen, two testing specimens
were chosen. The prepared cross-sections were grinded, polished, and etched by Nital 4%. Then,
the metallographic macro-and microscopic testing was undertaken in accordance with the EN ISO
17639:2013 standard [49]. For micro observations optical microscope was used. Finally, Vickers HV10
measurements were undertaken in accordance with the EN ISO 9015-1:2011 standard [50]. The first
stitch (Tekken test weld) joined two pieces of used steel. The additional stitches, which were laid on
the surface of previous stitches provided the heat, which caused local heat treatment of lower areas of
the joint. The measurement points were located near the first welded stitch to show the influence of
the local in situ heat treatment on the microstructure of HAZ and hardness in this area. The hardness
was measured in the weld and HAZ in both sides from the axes of joint.

3. Results and Discussion

3.1. Non-Destructive Testing (NDT)

As previous investigations showed [44], used S355J2C+N steel is characterized by high
susceptibility to cold cracking. Those cracks can occur 72 h after welding. The NDT was prepared
after this time. During NDT some imperfections such as shape mistakes and spatters were found.
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The results of NDT allowed us to mark areas for DT without surface imperfections. The exemplary
results of NDT are presented in Figure 3.
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3.2. Metallographic Macroscopic Testing

The macroscopic tests showed the significant differences in cross-sections of prepared specimens.
Specimen 1 welded without additional stitches (in-situ local heat treatment) was broken into two parts
through a fusion line (FL). It was proved that S355J2C+N steel is characterized by high susceptibility
to cold cracking. In specimen 1 the gas pore in the weld was found (Figure 4a). Specimens in which
the additional stitches were laid were not broken into two parts. However, in Specimen 2, in which the
overlapping was 100%, the crack was found. This crack started near the notch and ran through the FL
into weld. The length of this crack was 90% of the weld height (Figure 4b). In other specimens no
imperfections were found. The exemplary, representative photos of macroscopic testing are presented
in Figure 4.
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3.3. Metallographic Microscopic Testing

From each welded joint two specimens were observed using an optical microscope.
The observations were carried out in the weld, in BM and in HAZ. The microstructure of S355J2C+N
steel is characterized by the presence of fine-grained ferrite and fine-grained pearlite (Figure 5a).
The structure of the weld, which was not tempered by heat from additional stitch was the same in
each specimen. The dendritic structure was built of bright fine-grained ferrite arranged in columns,
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from which grew acicular ferrite at the boundaries of dendrites. Inside dendrites were fine grains of
ferrite, which is typical for weld made under water (Figure 5b) [25,27,36]. The structures in HAZ were
different in each specimen. Specimen 1 welded without the additional stitches was characterized by
brittle, martensitic and bainitic structures (Figure 5b). The observed brittle structures are the result of a
high cooling rate generated by the water environment. Zhang et al. [40] stated that these structures
cause decreasing of the mechanical properties of underwater welded joints, and may increase the
susceptibility to cracking. The structures in HAZ in Specimen 2 were similar. The application of
additional stitch with the 100% overlapping did not affect changes of microstructures in the HAZ,
which generated cracks near the FL (Figure 5c). Similar results were found by Tasak et al. [51]. They
proved, that in some applications, the structure after heat treatment did not change, and still included
brittle martensite. Significant changes were observed in the weld of next specimens in areas where
the heat from the additional stitch was affected. These areas were characterized by disappearance of
the dendritic structure and the formation of a ferritic fine-grained structure (Figure 5d). The changes
in overlapping of tempering stitch contributes to tempering the brittle martensitic structure in the
HAZ. The structure in this area was mixed of brittle martensite, tempered martensite, ferrite and
pearlite (Figure 5e). The 80% overlapping provided a higher content of tempered structures in the
HAZ. However, cracks were still observed (Figure 5f). Using two tempering stitches with 100%
overlapping (Specimen 5) provided the best results. The in situ local heat treatment generated the
normalization structures with fine pearlite and fine ferrite in areas overlapping the HAZ from base
stitch and tempering stitches (Figure 5g). It was proved that the temper bead welding technique is
able to stop the cracking by the change of structure in bead-on plate welding conditions [52]. The
additional stitches were laid in the same direction as the Tekken test weld, within the maximum time
of two minutes after competition of previous welding process. It allows to increase the cooling rate
of prepared specimens. Sun et al. [53] performed an experiment with in situ quench and tempering
for microstructure control and enhanced the mechanical properties of a laser cladded process. They
proved that by pausing 80 s between tracks, a partial tempering effect was achieved. In this paper,
we achieved a similar tempering effect of the structures in HAZ. Jorge et al. [54] proved that longer
cooling times show a tendency to improvement of impact toughness of high-strength steel weld metals
obtained by GMAW process. It can be assumed that our technique would also improve the mechanical
properties. The microstructure in the area of overlapping of three HAZ in Specimen 5 was the same as
in Specimen 6 in the area where the third additional stitch with 10% overlapping generated in situ heat
treatment (Figure 5h). The structure in this area was built by normalized structures with fine pearlite
and fine ferrite. The microstructure in HAZ (which did not overlap on the other HAZ) in the last stitch
is similar to the microstructure of the HAZ for Specimen 1 (without in situ local heat treatment). This
stitch provided the heat treatment of the previous laid stitches. In industrial applications, the last stitch
can be ground after completion of the welding process. Water as a welding environment causes a high
cooling rate of welded joints. The residual thermal stresses are generated as a result of the decreasing
of t8/5 time. Rahman Rashid et al. [55] proved that micro-cracking in the welds near the surface of the
clads is developed by high rates of surface solidification in air environment. The solidification rate of
the welds in the water is quicker, and caused the susceptibility to cracking in the weld. This may be
the reason for the cracks observed in the weld (Figure 5i) of Specimen 6. The exemplary results of
metallographic microscopic testing are presented in Figure 5.
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Figure 5. The exemplary results of microscopic testing: (a) S355J2C+N structure; (b) Specimen 1
without in situ heat treatment—the view of the weld and heat-affected zone (HAZ); (c) Specimen 2,
one additional stitch with 100% overlapping—the view of the weld and HAZ; (d) Specimen 3, one
additional stitch with 90% overlapping—the view of the tempered weld and HAZ; (e) Specimen 3, one
additional stitch with 90% overlapping—the view of the tempered HAZ; (f) Specimen 4, one additional
stitch with 80% overlapping—the view of the weld and HAZ; (g) Specimen 5, two additional stitches
with 100% overlapping—the view of the tempered HAZ; (h) Specimen 6, three additional stitches with
10% overlapping of the las—the view of the tempered HAZ t; (i) Specimen 6, three additional stitches
with 10% overlapping of the last stitch—the view of the weld.

3.4. Hardness HV10 Measurements

For hardness HV10 measurements, the Sinowon V-10 stand (Sinowon, Dongguan, China) was
used. The hardness was measured in three points in the weld and in six points in the HAZ—three in
the left side from the axis of tested specimen and three in right side. Measurements were undertaken
in two cross-sections of each specimen (e.g., 1.1. and 1.2. for Specimen 1). Rahman Rashid et al. [56]
proved that decreasing hardness can result from tempered martensite occurring in the HAZ. The
same results were observed during our investigation. Hardness HV10 measurements confirmed the
microscopic observations. The highest HV10 values were measured in the HAZ, whose structures
were identified as brittle bainitic and martensitic structure. Lisiecki and Ślizak [57] stated, that high
hardness of welded layers was caused by a high cooling rate during welding process. The significant
effect of in situ local heat treatment was observed for Specimen 5, modified by two additional stitches.
The hardness HV10 values in this Specimen in HAZ were lower by 70–90 compared to the Specimen 1,
which was performed without additional stitches. The proposed technique caused decreasing of the
hardness in HAZ on both sides of weld axis. In Specimen 5, the biggest tempering effect was observed
during microscopic testing. For Specimens 4 and 6, where an additional stich was non symmetrical, the
hardness decreased in heat treatment areas (HAZ on right side from weld axis). The aim of using such
a low value of overlapping like in Specimen 6 (10%) was tempering the area near the edge to check the
influence of this value on the weldability of HSLA steel. The prepared examinations confirmed that
10% overlapping caused microstructural changes and a decrease of hardness in the HAZ of Tekken test
weld. It proved that the applied method of in situ local heat treatment can be used during underwater
welding as a technique, which improved the weldability of the HSLA steel in wet welding conditions.
However, it was observed that overlapping higher than 80% of one stitch generated higher hardness
and should be avoided. The results of HV10 hardness measurements are presented in Table 4. The
hardness distribution in each specimens is presented in Figure 6.
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Table 4. The results of HV10 hardness measurements.

Specimen No. Heat Affected Zone (HAZ) Base Material (BM) HAZ

1.1. 416 493 491 281 271 260 464 432 426
1.2. 475 458 423 262 275 276 446 451 428
2.1. 491 499 489 259 274 258 497 452 493
2.2. 479 465 439 258 266 242 472 471 477
3.1. 450 499 493 255 238 287 474 475 475
3.2. 482 501 472 260 245 278 404 466 430
4.1. 455 462 419 210 220 225 415 396 401
4.2. 461 452 459 260 286 232 384 371 379
5.1. 428 367 386 261 284 271 394 398 409
5.2. 381 390 382 266 265 284 373 384 378
6.1. 494 486 490 254 258 262 394 408 402
6.2. 480 494 490 277 280 275 387 367 377
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The effect of decreasing of HV10 hardness due to in situ local heat treatment can be observed in
areas where heat from additional stitch tempered the microstructures of the base Tekken test joint. The
measurements showed that there are significant differences in HAZ on both sides of the Tekken joint.
These differences resulted from different heat influence on the joint. In the HAZ near the additional
stitch (Specimens 4 and 6) the heat provides microstructural changes, which produced lower hardness.
The HAZ on other side from the weld axis have not been tempered as much and the hardness is similar
to the hardness in Specimen 1 welded without in situ heat treatment. Alipooramirabad et al. [58]
proved that hardness level in the welded joint can be related to the microstructure constituent of bainite
and Widmanstäten ferrite. These type of structures were observed during our microscopic testing in
specimens, which are characterized by the highest HV10 hardness values. For Specimen 5, in which
the additional stitch was produced by bead-on plate conditions with the 100% overlapping, the heat
was implemented symmetrically, which provided a decrease of the hardness values in the whole HAZ,
which resulted from tempering the microstructure in this region.

4. Conclusions

In the paper the effect of in situ local heat treatment on the weldability of HSLA steel welded
under water in wet welding conditions was studied. The investigations showed that additional stitches
can improve the quality of welded joints in the water environment. The additional stitches provided
microstructural changes in the HAZ, decreasing the hardness in this area. Prepared investigations
showed that the optimal number of stitches with 100% overlapping for S355J2C+N steel welded in wet
welding conditions is three.

The main conclusions resulting from experiments are:
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1. The investigated S355J2C+N steel is characterized by poor weldability in wet welding conditions.
The way to improve the weldability in the water environment is in situ local heat treatment
provided by additional welded stitches. During non-destructive testing it was observed that
these stitches do not cause imperfections on the surface.

2. The additional stitch laid on the face of welded joint contributed to tempering of brittle structures
in heat-affected zones which generated lower values of HV10 hardness. The tempered martensite
and normalized structures were observed during microscopic testing.

3. For improvement of the weldability of S355J2C+N steel in a water environment, two additional
stitches with 100% overlapping should be laid. This technique generated normalized structures
with fine pearlite and fine ferrite in the HAZ, which decrease hardness in this area by 70–90 HV10.
The higher number of additional stitches provided microstructure changes in the welded joint,
which may result from increasing the crucial t8/5 time.

4. The positive effect can also be achieved by bead-on plate welding with the one stitch with
overlapping lower then 80%. Welding with higher values increased the hardness and did not
affect the tempering of HAZ.
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