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Abstract: Deep learning is starting to offer promising results for reconstruction in Magnetic Resonance
Imaging (MRI). A lot of networks are being developed, but the comparisons remain hard because the
frameworks used are not the same among studies, the networks are not properly re-trained, and the
datasets used are not the same among comparisons. The recent release of a public dataset, fastMRI,
consisting of raw k-space data, encouraged us to write a consistent benchmark of several deep neural
networks for MR image reconstruction. This paper shows the results obtained for this benchmark,
allowing to compare the networks, and links the open source implementation of all these networks in
Keras. The main finding of this benchmark is that it is beneficial to perform more iterations between
the image and the measurement spaces compared to having a deeper per-space network.
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1. Introduction

A short version of this work has been accepted to the 17th International Symposium on Biomedical
Imaging (ISBI 2020), 3–7 April 2020, Iowa City, IO, USA [1]. Magnetic Resonance Imaging (MRI) is
an imaging modality used to probe the soft tissues of the human body. As it is non-invasive and
non-ionizing (contrary to X-Rays, for example), its popularity has grown over the years, for example,
tripling between 1997 and 2006, according to the authors of [2]. This is attributed in part to the technical
improvements of this technique. We can, for example, mention higher field magnets (3 Teslas instead
of 1.5), parallel imaging [3], or compressed sensing MRI [4] (CS-MRI). These improvements allow for
better image quality and lower acquisition duration.

There is, however, still room for improvement. Indeed, an MRI scan may last up to 90 min
according to the NHS website [5], making it unpractical for some people because you need to lay still
for this long period. Typically, babies or people suffering from Parkinson’s disease or claustrophobia
could not stay that long in a scanner without undergoing general anesthesia, which is a heavy process,
making the overall exam less accessible. To extend the accessibility to more people, we should,
therefore, either increase the robustness to motion artifacts, or reduce the acquisition time with the
same image quality. On top of that, we should also reduce the reconstruction time with the same image
quality to increase the MRI scanners throughput and the total exam time. Indeed, the reconstructed
image might show some motion artifacts, and the whole acquisition would need to be re-done [6].
Some other times, based on the first images seen by the physician, they may decide to prescribe
complementary pulse sequences if necessary to clarify the image-based diagnosis.

When working in the framework of CS-MRI, the classical methods generally involve solving
a convex non-smooth optimization problem. This problem often involves a data-fitting term and
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a regularization term reflecting our prior on the data. The need for regularization comes from the
fact that the problem is ill-posed since the sampling in the Fourier space, called k-space, is under the
Nyquist–Shannon limit. However, these classical reconstruction methods exhibit two shortcomings.

• They are usually iterative involving the computation of transforms on large data, and therefore,
take a lot of time (2 min for a 512× 512−500 μm in plane resolution slice [7], on a machine with
8 cores).

• The regularization is usually not perfectly suited to MRI data (it is indeed very difficult to come
up with a prior that perfectly reflects MR images).

This is where learning comes in to play, and in particular, deep learning. The promise is that it
will solve both the aforementioned problems.

• Because they are implemented efficiently on GPU and do not use an iterative algorithm, the deep
learning algorithms run extremely fast.

• If they have enough capacity, they can learn a better prior of the MR images from the training set.

One of the first neural networks to gain attention for its use in MRI reconstruction was
AUTOMAP [8]. This network did not exploit a problem-specific property except the fact that the
outcome was supposed to be an image. Some more recent works [9–11] have tried to inspire themselves
from existing classical methods in order to leverage problem specific properties but also expertise
gained in the field. However, they have not been compared against each other on a large dataset
containing complex-valued raw data.

A recently published dataset, fastMRI [12], allows this comparison, although it is still to be done
and requires an implementation of the different networks in the same framework to allow for a fairer
comparison in terms of, for example, runtime.

Our contribution is exactly this, that is:

• Benchmark different neural networks for MRI reconstruction on two datasets: the fastMRI
dataset, containing raw complex-valued knee data, and the OASIS dataset [13] containing DICOM
real-valued brain data.

• Provide reproducible code and the networks’ weights (https://github.com/zaccharieramzi/
fastmri-reproducible-benchmark), using Keras [14] with a TensorFlow backend [15].

While our work focuses on classical MRI modalities reconstruction, note that other works
have applied deep learning to other modalities like MR fingerprinting [16] or diffusion MRI [17].
The networks studied here could be applied but would not benefit from some invariants of the
problem, especially in the fourth (contrast-related) dimension introduced.

2. Related Works

In this section, we briefly discuss other works presenting benchmarks on many different
reconstruction neural networks.

In [18], they benchmark their (adversarial training based) algorithms against classical methods
and against Cascade-net (which they call Deep Cascade) [11] and ADMM-net (which they call
DeepADMM) [19]. They train and evaluate the networks quantitatively on two datasets, selecting each
time 100 images for train and 100 images for test:

• The IXI database (http://brain-development.org/ixi-dataset/) (brains),
• The Data Science Bowl challenge (https://www.kaggle.com/c/second-annual-data-science-

bowl/data) (chests).

While both these datasets provide a sufficient number of samples to have a trustworthy estimate
of the performance of the networks, they are not composed of raw complex-valued data, but of
DICOM real-valued data. Still, in [18], they do evaluate their algorithms on a raw complex-valued
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dataset (http://mridata.org/list?project=Stanford%20Fullysampled%203D%20FSE%20Knees), but it
only features 20 acquisitions, and therefore the comparison is only done qualitatively.

In [10], they benchmark their algorithm against classical methods. They train and evaluate their
network on three different datasets:

• The brain real-valued data set provided by the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) [20],

• Two proprietary datasets with raw complex-valued data of brain data.

Again, the only public dataset they use features real-valued data. It is also to be noted that their
code cannot be found online.

3. Models

In this section, we will first introduce what we call the classical models to do reconstruction in
CS-MRI. The models we chose to discuss are in no way an exhaustive list of all the models that can be
used without learning for reconstruction in MRI (think of LORAKS [21], for example, just to name
this one), but they allow us to justify how the subsequent neural networks are built. These models are
introduced shortly.

3.1. Idealized Inverse Problem

In anatomical MRI, the image is encoded as its Fourier transform, and the data acquisition is
segmented in time in multiple shots or trajectories. This does not take possible gradient errors or
B0-field inhomogeneities into account. Because each Fourier coefficient trajectory takes time to acquire,
the time separating two consecutive shots, namely the TR or time of repetition, being potentially pretty
long, the idea of CS-MRI is to acquire less of them. We, therefore, have the following idealized inverse
problem in the case of single-coil CS-MRI:

y = FΩx (1)

where y is the acquired Fourier coefficients, also called the k-space data, Ω is the sub-sampling
pattern or mask, FΩ is the non-uniform Fourier transform (or masked Fourier transform in the case of
Cartesian under-sampling), and x is the real anatomical image. Here, we will only deal with Cartesian
under-sampling, and there we have FΩ = MΩF , where MΩ is a mask, and F is the classical Fourier
transform. This model is also valid for 3D (volumewise) imaging, but in the following, we only
consider 2D (slicewise) imaging.

3.2. Classic Models

The first (although unsatisfactory model) that can be used to perform the reconstruction of an
MR image with an under-sampled k-space, is to simply use the inverse Fourier transform with the
unknown Fourier coefficients replaced by zeros (zero-filled inverse Fourier transform). This method is
called zero-filled reconstruction and we have:

x̂z f = F−1y (2)

The second model we want to introduce makes use of the fact that MR images can be represented
in a wavelet basis with only a few non-zero coefficients [4] according to the sparsity principle.
The reconstruction is, therefore, done by solving the following optimization problem:

x̂wav = arg min
x∈Cn×n

1
2
‖y −FΩx‖2

2 + λ‖Ψx‖1 (3)

where the notations are the same as in Equation (1), and λ is a hyper-parameter to be tuned, and
Ψ is a chosen wavelet transform. This problem can be solved iteratively using a primal-dual
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optimization algorithm like Condat-Vù [22] or Primal Dual Hybrid Gradient (PDHG) [23] (also
known as Chambolle-Pock algorithm) or, if the wavelet transform is invertible (i.e., non-redundant or
decimated), using a proximal algorithm like the Fast Iterative Shrinkage Algorithm (FISTA) [24] or the
Proximal Optimal Gradient Method (POGM) [25]. Since the problem is convex, all these algorithms
converge to the same solution, only at different speeds.

The last model we choose to introduce is the dictionary learning model [26,27]. Its assumption
is that an MR image is only composed of a few patches, and can therefore be expressed sparsely
in a corresponding dictionary. This dictionary can be learned per-image, leading to the following
optimization problem:

x̂dl = arg min
x,D,{αij}(i,j)∈I

1
2
‖y −FΩx‖2

2 + λ ∑
(i,j)∈I

‖Rijx− Dαij‖2
2

subject to ∀(i, j) ∈ I, ‖αij‖0 ≤ T0

(4)

where the notations are the same as in Equation (3), and I is the fixed set of patches locations, D is the
dictionary, λ and T0 are hyper-parameters to be set, and Rij is the linear operator extracting the patch
at location (i, j). This problem is solved in two steps:

1. The dictionary learning step, where both the dictionary D and the sparse codes αij are updated
alternatively.

2. The reconstruction step, where x is updated. Since this subproblem is quadratic, it admits an
analytical solution, which amounts to averaging patches and then performing a data consistency
in which the sampled frequencies are replaced in the patch-average result.

3.3. Neural Networks

The neural networks introduced here are all derived in a certain way from the classical models
introduced before.

3.3.1. Single-Domain Networks

What we term single-domain networks are networks which only act either in the k-space or in the
image (direct) space. They make use of the fact that we have a pseudo-inverse like in Equation (2). They
usually use a U-net-like [28] architecture. This network was originally built for image segmentation
but has since been used for a wide-variety of image-to-image tasks, mainly as a strong baseline.
In [29], they used a U-net to apply on the under-sampled k-space measurements before performing the
inverse Fourier transform. In [30], they used a U-net to apply on the zero-filled reconstruction and
correct the output of the U-net with a data consistency step (where they replace sampled values in the
k-space). The network we implemented was, however, vanilla, without this extra data-consistency step.
Our implementation, however, only features the following cascade of number of filters: 16, 32, 64, 128.
The original U-net is illustrated in Figure 1, where the number of filters used in each layer is four times
what we used.
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Figure 1. Illustration of the U-net from [28]. In our case, the output is not a segmentation map
but a reconstructed image of the same size (we perform zero-padding to prevent decreasing sizes
in convolutions).

3.3.2. Cross-Domains Networks

The second class of networks we introduce, we term cross-domain networks. The key intuitive
idea is that they correct the data in both the k-space and the image space alternatively, using the Fourier
transform to go from one space to the other. They are derived from the optimization algorithms used
to solve the optimization problems introduced before, using the idea of “unrolling” introduced in [31].
An illustration of this class of networks is presented in Figure 2.

Because these networks work directly on the input data (and not on a primarily reconstructed
version of it), they need to handle complex-valued data. In particular, the classical deep learning
frameworks (TensorFlow and Pytorch) do not feature the ability to perform complex convolutions
off-the-shelf. The way convolution is performed in the original papers is, therefore, to concatenate the
real and imaginary of the image (respectively the k-space), making it a two-channel image, performing
the series of convolutions, and having the output be a two-channel image then transformed back in a
complex image (respectively k-space).

The Cascade-net [11] is based on the dictionary learning optimization Problem (4). The idea
is to replace the dictionary learning step by convolutional neural networks and still keep the data
consistency step in the k-space. The optimization algorithm is then unrolled to allow us to perform
back-propagation. The authors of [11] show that we can perform back-propagation through the data
consistency step (which is linear) and derive the corresponding Jacobian. The parameters used here
for the implementation are the same as those in the original paper, except the number of filters, which
was decreased from 64 to 48 to fit on a single GPU. This network is illustrated in Figure 3.
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Figure 2. The common backbone between the Cascade net, the KIKI-net, and the PD-net. US mask
stands for under-sampling mask. DC stands for data consistency. (I)FFT stands for (Inverse) Fast
Fourier Transform. Nk,d is the number of convolution layers applied in the k-space. Ni,d is the number
of convolution layers applied in the image space. NC is the total number of alternations between the
k-space and the image-space. It is to be noted that in the case of PD-net, the data consistency step is not
performed, the Fourier operators are performed with the original under-sampling mask, and a buffer
is concatenated along with the current iteration to allow for some memory between iterations and to
learn the acceleration (in the k-space net—dual net—it is also concatenated with the original k-space
input). In the case of the Cascade net, Nk,d = 0, only the data consistency is performed in the k-space.
In the case of the KIKI-net, there is no residual connection in the k-space. However, the k-space nets
and image space nets could potentially be any kind of image-to-image neural network.

Figure 3. Illustration of the Cascade-net from [11]. Here, each Ci is a convolutional block of 64 filters
(48 in our implementation) followed by a ReLU non-linearity, nd is the number of such convolutional
blocks forming a convolutional subnetwork between each data consistency layer DC, and nc is the
number of convolutional subnetworks.



Appl. Sci. 2020, 10, 1816 7 of 15

The KIKI-net [10] is an extension of the Cascade-net where they additionally perform
convolutions after the data consistency step in the k-space. The parameters used here for the
implementation are the same as those in the original paper. This network is illustrated in Figure 4.

Figure 4. Illustration of the KIKI-net from [10]. The KCNN and ICNN are convolutional neural
networks composed of a number of convolutional blocks varying between 5 and 25 (we implemented
25 blocks for both KCNN and ICNN), each followed by a ReLU non-linearity and featuring between 8
and 64 filters (we implemented 32 filters). For both the varying numbers, the supplementary material
of [10] shows that the higher the better. The ICNN also features a residual connection.

The Primal-Dual-net (PD-net) was introduced by [9] and applied to MRI by [32], is based on
the wavelet-based denoising (3), and in particular, the resolution of the corresponding optimization
problem with the PDHG [23] algorithm. Here, the algorithm is unrolled, and the proximity operators
(present in the general case of PDHG) are replaced by convolutional neural networks. For our
implementation, for a fairer comparison with Cascade-net and the U-net, we used a ReLU non-linearity
instead of a PReLU [33]. This network is illustrated in Figure 5.

Figure 5. Illustration of the PD-net from [9]. Here, T denotes the measurement operator, which in our
case is the under-sampled Fourier transform, T ∗ its adjoint, g is the measurements, which in our case
are the undersampled k-space measurements, and f0 and h0 are the initial guesses for the direct and
measurement spaces (the image and k-space in our case). The initial guesses are zero tensors. Because
we transform complex-valued data into 2-channel real-valued data, the number of channels at the
input and the output of the convolutional subnetworks are multiplied by 2 in our implementation.

3.4. Training

The training was done with the same parameters for all the networks. The optimizer used was
from Adam [34], with a learning rate of 10−3 and default parameters of Keras (β1 = 0.9, β2 = 0.999,
the exponential decay rates for the moment estimates). The gradient norm was clipped to one to
avoid the exploding gradient problems [35]. The batch size was one (i.e., one slice) for every network
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except the U-Net, where the whole volume was used for each step. For all networks, to maximize the
efficiency of the training, the slices were selected in the eight innermost slices of the volumes, because
the outer slices do not have much signal. No early stopping or learning rate schedule was used (except
for KIKI-net to allow for a stable training where we used the learning rate schedule proposed by the
authors in the supporting information of [10]). The number of epochs used was 300 for all networks
trained end-to-end. For the iterative training of the KIKI-net, the total number of epochs was 200 (50
per sub-training). Batch normalization was not used; however, in order to have the network learn
more efficiently, a scaling of the input data was done. Both the k-space and the image were multiplied
by 106 for fastMRI and by 102 for OASIS because the k-space measurements had values of mean 10−7

(looking separately at the real and imaginary parts) for fastMRI and of mean 10−3 for OASIS. Without
this scaling operation, the training proved to be impossible with bias in the convolutions and very
inefficient without bias in the convolutions.

4. Data

4.1. Under-Sampling

The under-sampling was done retrospectively using a Cartesian mask described in the data set
paper [12] and an acceleration factor of four (i.e., only 25% of the k-space was kept). It contains a
fully-sampled region in the lower frequencies, and randomly selects phase encoding lines in the higher
frequencies.

It is to be noted that different under-sampling strategies exist in CS-MRI. Some of them are listed
in [36], for example, spiral or radial. These strategies allow for a higher image quality while having the
same acceleration factor or the same image quality with a higher acceleration factor. Typically, the spiral
under-sampling scheme was designed to allow fast coronary imaging [37,38]. These under-sampling
strategies must take into account kinematic constraints (both physically and safety based) but should
also be with variable density [36]. Recent works even try to optimize the under-sampling strategy
under these kinematic constraints [39]. Others have tried to learn the under-sampling strategy in a
supervised way. In [40], the under-sampling strategy is learned with a greedy optimization. In [41], a
gradient descent optimization is used. Some approaches ([42–44] even try to jointly learn the optimal
under-sampling strategy along with the reconstruction.

4.2. FastMRI

The data used for this benchmark is the emulated single-coil k-space data of the fastMRI
dataset [12], along with the corresponding ground truth images. The acquisition was done with
a 15-channel phased array coil, in Cartesian 2D Turbin Spin Echo (TSE). The pulse sequences were
proton-density weighting, half with fat suppression, half without, some at 3.0 Teslas (T) others at
1.5 T. The sequence parameters were as follows: Echo train length 4, matrix size 320× 320, in-plane
resolution 0.5×0.5 mm, slice thickness 3 mm, no gap between slices. In total, there are 973 volumes (34,
742 slices) for the training subset and 199 volumes (7135 slices) for the validation subset.

Since the k-spaces are of different sizes, therefore resulting in images of different sizes, the outputs
of the cross-domain networks were cropped to a central 320× 320 region. For the U-net, the input of
the network was cropped.

4.3. OASIS

The Open Access Series of Imaging Studies (OASIS) brain database [13] is a database including
MRI scans of 1068 participants, yielding 2168 MR sessions. Of these 2168, we select only 2164 sessions,
which feature T1-weighted sequences. Of these,1878 were acquired on a 3.0 T, 236 at 1.5 T, and the
remaining are undisclosed (50). The slice size is majorly 256× 256, and sometimes 240× 256 (rarely it
can be some other sizes). The number of slices per scan is majorly 176, and sometimes 160 (rarely it
can be smaller).
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The data was then separated into a training and validation set. The split was participant-based, that
is, a participant cannot have a scan in both sets. The split was of 90% for the training set and 10% for
the validation set. We further reduced the training data to make it comparable to fastMRI, to 1000 scans
randomly selected for the training subset and 200 scans randomly selected for the validation subset.

Contrarily to fastMRI, the OASIS data is available only in magnitude and, therefore, is only
real-valued. The k-space is computed as the inverse Fourier transform of the magnitude image.

5. Results

5.1. Metrics

The metrics we used to benchmark the different networks are the following:

• The Peak Signal-to-Noise Ratio (PSNR);
• The Structural SIMilarity index (SSIM) [45];
• The number of trainable parameters in the network;
• The runtime in seconds of the neural network on a single volume.

The PSNR is computed as follows, on whole magnitude volumes:

PSNR(x, x̂) = 10 log10

(
max(x)2

1
n ∑i,j,k(xi,j,k − x̂i,j,k)2

)
(5)

where x is the ground truth volume, x̂ is the predicted volume (magnitude image), and n is the total
number of points in the ground truth volume (same as the predicted volume). Since this metric
compares very local differences, it does not necessarily reflect the global visual comparison of the
images. The SSIM was introduced in [45] exactly to take more structural differences or similarities
between images into account. It is computed as in the original paper, per slice, then averaged over the
volume (the range, however, is computed volume-wise):

SSIM(x, x̂) =
(2µxµx̂ + c1)(2σxσx̂ + c2)(covxx̂ + c3)

(µ2
x + µ2

x̂ + c1)(σ2
x + σ2

x̂ + c2)(σxσx̂ + c3)
(6)

where x is the ground truth slice, x̂ is the predicted slice, µi is the mean of i, σ2
i is the variance of i, covij

is the covariance between i and j, c1 = (k1L)2, c2 = (k2L)2, c3 = c2
2 , L is the range of the values of the

data (given because computed over the whole volume), and k1 = 0.01 and k2 = 0.03.
While the two aforementioned metrics control the reconstruction quality, it is important to note

that this is not the only factor to take into account when designing reconstruction techniques. Because
the reconstruction has to happen fast enough for the MR physician to decide whether to re-conduct
the exam or not, it is important for the proposed technique to have a reasonable reconstruction speed.
For real-time MRI applications or dynamic MRI (e.g., cardiac imaging), it is even more important (for
example, in the context of monitoring surgical operations [46]). The runtimes were measured on a
computer equipped with a single GPU Quadro P5000 with 16 GB of RAM.

Concurrently, the number of parameters has to stay relatively low to allow the implementation
on the different machines with potentially limited memory, which will probably need to have multiple
models (for different contrasts, different organs, or different undersampling schemes including
different acceleration factors).

5.2. Quantitative Results

The quantitative results in Tables 1–4 show that the PD-net [9] outperforms its competitors in
terms of image quality metrics but also has the least amount of trainable parameters. It is slightly
slower than the Cascade-net [11] though, which can be explained by its higher number of iterations,
therefore involving more costly Fourier transform (inverse or direct) operations. These results hold
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true on the two data sets, fastMRI [12] and OASIS [13]. The only exception is that KIKI-net [10] is
slightly better than the U-net [28] on the OASIS data set, but still far from the best performers. We can
also note that the standard deviation of the image quality metrics is way higher in the fastMRI data
set than in the OASIS data set. This higher standard deviation is explained by the fact that the two
contrasts present in the fastMRI dataset, Proton Density with and without Fat Suppression (PD/PDFS),
have widely different image metrics values. The standard deviations when we compute the metrics for
each contrast separately are more in-line with the OASIS ones. The range of the image quality metrics
is also much higher in the OASIS results.

Table 1. Quantitative results for the fastMRI dataset. Peak Signal-to-Noise Ratio (PSNR) and Structural
SIMilarity index (SSIM) mean and standard deviations are computed over the 200 validation volumes.
Runtimes are given for the reconstruction of a volume with 35 slices.

Network PSNR-mean (std) (dB) SSIM-mean (std) #params Runtime (s)

Zero-filled 29.61 ( 5.28) 0.657 ( 0.23) 0 0.68

KIKI-net 31.38 (3.02) 0.712 (0.13) 1.25M 8.22

U-net 31.78 ( 6.53) 0.720 ( 0.25) 482k 0.61

Cascade net 31.97 ( 6.95) 0.719 ( 0.27) 425k 3.58

PD-net 32.15 ( 6.90) 0.729 ( 0.26) 318k 5.55

Table 2. Quantitative results for the fastMRI dataset with the Proton density fat suppression (PDFS)
contrast. PSNR and SSIM mean and standard deviations are computed over the 99 validation volumes.
Runtimes are given for the reconstruction of a volume with 35 slices.

Network PSNR-mean (std) (dB) SSIM-mean (std) # params Runtime (s)

Zero-filled 28.44 (2.62) 0.578 (0.095) 0 0.41

KIKI-net 29.57 (2.64) 0.6271 (0.10) 1.25M 8.88

Cascade-net 29.88 (2.82) 0.6251 (0.11) 425K 3.57

U-net 29.89 (2.74) 0.6334 (0.10) 482K 1.34

PD-net 30.06 (2.82) 0.6394 (0.10) 318K 5.38

Table 3. Quantitative results for the fastMRI dataset with the Proton density (PD) contrast. PSNR
and SSIM mean and standard deviations are computed over the 100 validation volumes. Runtimes are
given for the reconstruction of a volume with 40 slices.

Network PSNR-mean (std) (dB) SSIM-mean (std) # params Runtime (s)

Zero-filled 30.63 (2.1) 0.727 (0.087) 0 0.52

KIKI-net 32.86 (2.4) 0.797 (0.082) 1.25M 11.83

U-net 33.64 (2.6) 0.807 (0.084) 482K 1.07

Cascade-net 33.98 (2.7) 0.811 (0.086) 425K 4.22

PD-net 34.2 (2.7) 0.818 (0.084) 318280 6.08

5.3. Qualitative Results

The qualitative results shown in Figures 6 and 7 confirm the quantitative ones on the image quality
aspect. The PD-net [9] is much better at conserving the high-frequency parts of the original image, as
can be seen when looking at the reconstruction error, which is quite flat over the whole image.
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Table 4. Quantitative results for the OASIS dataset. PSNR and SSIM mean and standard deviations
are computed over the 200 validation volumes. Runtimes are given for the reconstruction of a volume
with 32 slices.

Network PSNR-mean (std) (dB) SSIM-mean (std) # params Runtime (s)

Zero-filled 26.11 (1.45) 0.672 (0.0307) 0 0.165

U-net 29.8 (1.39) 0.847 (0.0398) 482k 1.202

KIKI-net 30.08 (1.43) 0.853 (0.0336) 1.25M 3.567

Cascade-net 32.0 (1.731) 0.887 (0.0327) 425k 2.234

PD-net 33.22 (1.912) 0.910 (0.0358) 318k 2.758

Reference Zero-filled KIKI-net U-net Cascade-net PD-net

Figure 6. Reconstruction results for a specific slice (16th slice of file1000196, part of the validation set).
The first row represents the reconstruction using the different methods, while the second represents
the absolute error when compared to the reference.

Reference Zero-filled KIKI-net U-net Cascade-net PD-net

Figure 7. Reconstruction results for a specific slice (15th slice of sub-OAS30367_ses-d3396_T1w.nii.gz,
part of the validation set). The top row represents the reconstruction using the different methods, while
the bottom row represents the absolute error when compared to the reference.
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6. Discussion

In this work, we only considered one scheme of under-sampling. However, it should be interesting
to see if the performance obtained on one type of under-sampling generalizes to other types of
under-sampling, especially if we do a re-gridding step for non-Cartesian under-sampling schemes.
On that specific point, the extension of the networks towards non-Cartesian sampling schemes is not
easy because the data consistency cannot be performed in the same way, and the measurement space
is no longer similar to an image (except if we re-grid). In a recent work [47], some of the authors
of the Cascade-net [11] propose a way to extend their approach to the non-Cartesian case, using a
re-gridding step. The PD-net [9] also has a straightforward implementation for the non-Cartesian case
even without re-gridding, in what is called the learned Primal. In this case, the network in the k-space
is just computing the difference (residual) between the current k-space measurements and the initial
k-space measurements. Therefore, there are no parameters to learn, which alleviates the problem of
how to learn them.

We also only considered a single-coil acquisition setting. As parallel imaging is primarily used in
CS-MRI to allow higher image quality [3], it is important to see how these networks will behave in the
multi-coil setting. The difficult part in the extension of these works to the multi-coil setting will be to
understand how to best involve the sensitivity maps (or even not involve them [48]).

Regarding the networks themselves, the results seem to suggest that for cross-domain networks,
the trade-off between a high number of iterations and a richer correction in a certain domain (by having
deeper networks) is in favor of having more iterations (i.e., alternating more between domains). It is,
however, unclear how to best tackle the reconstruction in the k-space, since the convolutional networks
make a shift invariance hypothesis, which is not true in the Fourier space where the coefficients
corresponding to the high frequencies should probably not be treated in the same way as with the low
frequencies. This leaves room for improvement in the near future.

Finally, this work has not dealt with recent approaches involving adversarial training for MRI
reconstruction networks [18,49]. It would be very interesting to see how the adversarial training could
improve each of the proposed networks.
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