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Abstract: Cervical cancer can be prevented by having regular screenings to find any precancers
and treat them. The Pap test looks for any abnormal or precancerous changes in the cells on the
cervix. However, the manual screening of Pap smear in the microscope is subjective with poorly
reproducible criteria. Therefore, the aim of this study was to develop a computer-assisted screening
system for cervical cancer using digital image processing of Pap smear images. The analysis of Pap
smear image is important in the cervical cancer screening system. There were four basic steps in our
cervical cancer screening system. In cell segmentation, nuclei were detected using a shape-based
iterative method, and the overlapping cytoplasm was separated using a marker-control watershed
approach. In the features extraction step, three important features were extracted from the regions
of segmented nuclei and cytoplasm. RF (random forest) algorithm was used as a feature selection
method. In the classification stage, bagging ensemble classifier, which combined the results of five
classifiers—LD (linear discriminant), SVM (support vector machine), KNN (k-nearest neighbor),
boosted trees, and bagged trees—was applied. SIPaKMeD and Herlev datasets were used to prove
the effectiveness of our proposed system. According to the experimental results, 98.27% accuracy
in two-class classification and 94.09% accuracy in five-class classification was achieved using the
SIPaKMeD dataset. When the results were compared with five classifiers, our proposed method was
significantly better in two-class and five-class problems.
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1. Introduction

Cancer is the uncontrolled growth of abnormal cells in the body. Rather than responding
appropriately to the signals that control normal cell behavior, cancer cells grow and divide in an
uncontrolled manner, invading normal tissues and organs and eventually spreading throughout the
body [1]. Cervical cancer is cancer arising from the cervix. The most important risk factor for cervical
cancer is infection with human papillomavirus (HPV). The goal of cervical screening is to identify
and remove significant precancerous lesions in addition to preventing mortality from invasive cancer.
Cervical cancer is the fourth most frequent cancer in women, with an estimated 570,000 new cases
in 2018, representing 6.6% of all female cancers. Approximately 90% of deaths from cervical cancer
occur in low- and middle-income countries. Precancerous changes in the cervix usually don’t cause
any signs or symptoms [2]. Symptoms of cervical cancer include irregular intermenstrual (between
periods) or abnormal vaginal bleeding after sexual intercourse, back, leg or pelvic pain, fatigue, weight
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loss, loss of appetite, vaginal discomfort or odorous discharge, and a single swollen leg. More severe
symptoms may arise at advanced stages [3].

Cervical cancer can be prevented by regular screening tests if precancerous changes are detected
and treated effectively before cancer develops. Cervical cancer typically develops from precancerous
changes over 10 to 20 years. The only way to know if there are abnormal cells in the cervix, which
may develop into cervical cancer, is to have a cervical screening test. Screening is testing of all women
at risk of cervical cancer, most of whom will be without symptoms. A Pap test is commonly used
to screen for cervical cancer. A Pap smear is a simple, quick, and essentially painless screening test
(procedure) for cancer or precancer of the uterine cervix. Cervical cancer testing should start at age 21.
Women under age 21 should not be tested. Women between the ages of 21 and 65 should have a Pap
test done every 3 years. About 80 percent of deaths from cervical cancer occur in developing countries
due to the lack of screening programs [4].

The regular Pap test system reduces the incidence rate of cervical cancer. The visual examination
of the Pap smears is time-consuming, very demanding, tedious, and expensive in terms of labor
requirements. The cytotechnologists are laboratory professionals who study cells and cellular anomalies
who go through specialized training, typically of about one year. The Pap test or smear starts with
the pelvic exam. In this exam, cell samples are collected from the cervix and stained on a glass slide.
The collected cells are visually examined under a microscope to classify each cell. The shape, size,
texture, and nucleus to cytoplasm ratio are the important features to classify the cervical cells into
normal and abnormal epithelial cells [5].

Literature reviews that are related to previous research studies about cervical cancer cells’
segmentation and classification are described as follows: A. H. Mbaga et al. proposed Pap smear
images classification for cervical cancer detection using a support vector machine (SVM) classifier and
got an accuracy of 92.961% [6]. In another study, M. E. Plissiti et al. presented an approach to segment
cells cluster using intensity variation. But most of the real Pap smear images were poor contrast, and
sometimes intensity variation was invisible in overlapping conditions [7]. S. N. Sulaiman et al. also
developed the method of overlapping cell separation by integrating edge detection and pseudo-color
algorithm. The seed-based region growing method was used to detect the boundary of cells, and cell
components (nucleus, cytoplasm, and background) were grouped according to color techniques [8].
Most research studies focus on the nuclei segmentation in a single [9] or overlapping cells [10], and
other researchers focus on the nuclei segmentation in both single and overlapping cells [11].

The studies of computer-assisted screening of cervical cytology can be classified into the cell
level classification, smear level classification, applied segmentation algorithms, usage of features, and
classifiers. In cell level classification, each input image has only one cell, which is classified into the
normal or abnormal cell [12]. In smear level classification, the input image includes one more cell and
also other artifacts [13]. There are many different algorithms that have been used for image segmentation,
such as clustering [14], thresholding [15,16], edge detection [17], and watershed transformation [18].
The watershed segmentation was firstly proposed by L. Vincent and P. Soille [19]. Over segmentation is
one of the significant problems in watershed algorithms. Our proposed study developed an improved
marker-based watershed algorithm that provided better results than the traditional algorithm and
helped to reduce the over-segmentation problem. Most research studies have used a watershed
algorithm to split overlapping cells’ nuclei [20]. But in our multi-cells Pap smear images, overlapping
cytoplasm was mostly contained, as shown in Figure 1 and a few overlapping nuclei were found.
Therefore, the watershed transform algorithm was used for overlapping cytoplasm segmentation.

Recently, Chuanyun et al. [21] had proposed the segmentation of nuclei and cytoplasm regions
using the gradient vector flow method (GVF). However, this study only used a single cell as an
input to be analyzed. While each cell slide can contain over 10,000 cells [22], the approach using a
single cell cannot be enough in real cases. However, it does not solve the issue of the overlapping
cells. Many different algorithms have been proposed to solve the problem of overlapping cells [23].
Among them, marker controlled watershed transformation is one of the most used methods. The
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main problem in this approach is over-segmentation problems [24]. In feature extraction, mostly used
features are shape [25], texture [26], and color features. The major advantage of using texture attribute
is its simplicity. Therefore, the texture feature was extracted using GLCM (Gray Level Co-Occurrence
Matrix) in our feature extraction stage. The mostly used classifiers in the multi-cell cervical image
analysis are support vector machine (SVM) [27], LDA (Linear Discriminant Analysis) [28], k-nearest
neighbor (KNN) [29], and ANN (Artificial Neural Networks) [30]. There have been many research
studies about cervical cancer detection, but most studies have only targeted the segmentation of nuclei
regions [31]. The segmentation of cytoplasm regions is also essential. The features that are extracted
from cytoplasm regions are helpful for the classification of abnormal cells [32].
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Figure 1. (a) Single-cell image (nucleus and cytoplasm), (b) Multi-cells image, and (c) Overlapping cytoplasm.

This paper is divided into four parts. Part 1 introduces about cervical cancer screening system
and discusses the previous research studies. Part 2 expresses the explanations of the datasets used and
the methodology that is used in this study. Part 3 indicates the results of the proposed system. Finally,
Part 4 presents the conclusion.

2. Materials and Methods

The system flow diagram of the proposed computer-assisted screening of cervical cytology
is presented in Figure 2. Our proposed system involved six stages—Image acquisition, image
enhancement, cell segmentation, features extraction, features selection, and classification [33]. At the
image acquisition step, the SIPaKMeD dataset was used for multi-cells, and the Herlev dataset was
used for a single cell. Input Pap smear images were enhanced and denoised to improve the image
quality as an image enhancement step. The next step was cell segmentation. This step partitioned the
input images into the interesting regions—nucleus and cytoplasm. After segmentation, the next step
was feature extraction. In feature extraction, distinctive interested points or features were extracted. In
the features selection stage, the random forest algorithm was used as a selection method. The final step
was the classification. In this stage, the cells were classified using bagging ensemble classifiers into
normal or abnormal cells. The details of each step have been explained in each sub-sections.
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2.1. Image Acquisition

For image acquisition, we used two datasets named SIPaKMeD [34] and Herlev datasets [35].
For single-cell classification, the Herlev dataset was used, and the SIPaKMeD dataset was used for
multi-cells classification. The Herlev dataset contained 917 images. The classes 1 to 3 are normal
cervical cells, and classes 4 to 7 are abnormal cervical cells. In multi-cells dataset, there were 966
images, and 4049 cells were cropped from these images. Cells were divided into normal, begin, and
abnormal stage. There were five classes—superficial intermediate cells, parabasal cells, metaplastic
cells, dyskeratotic cells, and koilocytotic cells. The details of each dataset have been explained in
Tables 1 and 2. The sample pap smear images of Herlev dataset and SIPaKMeD dataset were shown in
Figures 3 and 4.

Table 1. Descriptions of seven-classes cells from the Herlev (single cells) dataset.

Class Number of Cells

Normal Cells

1. Normal superficial cells 74

2. Normal intermediate cells 70

3. Normal columnar cells 98

Abnormal Cells

4. Mild dysplastic cells 182

5. Moderate dysplastic cells 146

6. Severe dysplastic cells 197

7. Carcinoma in situ 150

Total 917

Table 2. Descriptions of five-classes cells from the SIPaKMeD (Multi-cells) dataset.

Class Number of Images Number of Cells

Normal Cells

1. Superficial-Intermediate cells 126 831

2. Parabasal cells 108 787

Benign Cells

3. Metaplastic cells 271 793

Abnormal Cells

4. Dyskeratotic cells 223 813

5. Koilocytotic cells 238 825

Total 966 4049
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squamous epithelia, (c) Columnar epithelial, (d) Mild squamous non-keratinizing dysplasia, (e) 
Figure 3. Single cells images of seven classes: (a) Superficial squamous epithelia, (b) Intermediate
squamous epithelia, (c) Columnar epithelial, (d) Mild squamous non-keratinizing dysplasia,
(e) Moderate squamous non-keratinizing dysplasia, (f) Severe squamous non-keratinizing dysplasia,
(g) Squamous cell carcinoma in situ.
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2.2. Image Enhancement

Most of Pap smear images were noisy and low contrast, as shown in Figure 5a. Therefore,
image enhancement was needed to remove the noises and increase the contrast. A median filter was
used to remove the noises, as shown in Figure 5b, and CLAHE (contrast limited adaptive histogram
equalization) was used to enhance the contrast, as shown in Figure 5c. High contrast images were
easier and more precise for cell segmentation stage than in low contrast images.
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2.3. Cells Segmentation

The aim of this step was to segment the regions of the cell from input images. The nuclei and
cytoplasm are important components in the cell region. In a Pap smear screening system, cytologists
examine the microscope images of cells and label the cells into cancer or normal cells based on
the appearance of cells components. The automated screening system is also the same procedure.
The segmentation of cell components is an important step in the automated detection system. There
are many difficulties in the multi-cells segmentation process, such as overlapping cells or including
unwanted artifacts. The nuclei segmentation is easier than cytoplasm segmentation. In our multi-cells
image, nuclei were low intensity, and the shapes were well structured, mostly oval or round shape,
and significantly different from the other regions, background, or cytoplasm. But the major issues
in cytoplasm segmentation are overlapping boundary and poor contrast. Most studies have focused
on nuclei segmentation, and rarely studies have focused on cytoplasm segmentation. In Pap smear
analysis, the characteristics of cytoplasm are very important. We used the marker-controlled watershed
algorithm for cytoplasm segmentation to solve the issue of overlapping boundary detection and
splitting of touching cells into individual cells. The main problem of the standard watershed transform
is over-segmentation. To avoid this problem, we used markers. The marker image was a binary
image with one marker point or multiple points. The flowchart of the proposed modified watershed
transform algorithm is described in Figure 6.
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In our proposed overlapping cells’ segmentation method, there were ten stages to segment the
multi-cells images into individual cells that were used for the nuclei and cytoplasm regions extraction.
The summary of each step is shown in Table 3. As first, the original images were changed into gray
images. The next step was foreground and background markers extraction and then segmentation using
watershed transform function and viewing the segmented results. For foreground and background
markers calculation, morphological operations based techniques were used. To separate overlapping
cells into individual cells, the boundary of cytoplasm regions was detected after overlapping the cells’
detection stage. Then, the area of each cell was detected by thresholding the predefined minimum
and maximum area values to remove the unwanted object areas. After that, the detected regions
were cropped by a bounding box, and the cropped regions were classified into three classes using
unsupervised machine learning, k-means with six intensity-based features. The intensity variation of
three groups of cell patches (isolated, touching, and overlapping cells) were significantly different,
as shown in Figure 7. So, we used six intensity-based features (mean, variance, skewness, kurtosis,
energy, and entropy).

Table 3. Processing steps of proposed overlapping cells’ segmentation method.

Step 1: Read color image and convert gray image
Step 2: Mark the foreground objects
Step 3: Compute background objects
Step 4: Use markers’ image that is roughly in the middle of the cells to be segmented
Step 5: Compute the watershed transform of makers’ image
Step 6: Show the result of detected overlapping cells’ regions
Step 7: Calculate the boundaries of detected regions in the image
Step 8: Detect areas between the minimum and maximum values for cells regions
Step 9: Cropping the regions
Step 10: Classify the regions of the cell into isolated, touching, or overlapped cells
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K-means clustering approach was used to classify the cropping cells’ patches into three groups.
It was first proposed by McQueen [36]. It organizes a set of observations that are represented as feature
vectors into clusters based on their similarity. There are three basic steps in the training algorithm for
k-means. They are initialization, update, and assignment. Initialization assigns each observation from
the data set randomly to one of the k clusters and then takes k observations randomly from the data
set and assigns each to a cluster. Figure 8 shows the three steps of the k-means clustering algorithm for
classification. Results of the proposed cell segmentation algorithm are showed in Figure 9.
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Figure 9. Results of the proposed cell segmentation algorithm. (a) Original color image, (b) Image of
foreground objects, (c) Image of background objects, (d) Image of distance transformed, (e) Image of
over-segmentation result without using markers, (f) Markers’ image, (g) Image of segmentation result
by using markers’ image, (h) Image of boundary detection, (i,j) Image of cropping results, (k) Image of
isolated or touching cells, and (l) Image of overlapping cells.

2.4. Nuclei and Cytoplasm Segmentation

In this stage, nuclei and cytoplasm regions from each segmented cell that resulted from overlapping
cells’ segmentation stage were segmented. There were three types of segmented cells that were outputs
of overlapping cells’ segmentation stage. They were isolated cells, touching cells, and overlapping cells.
We divided the nuclei and cytoplasm segmentation into three sub-processes. The first one was the
segmentation of the components of the cell from isolated cells. The second one was segmentation from
touching cells, and the last one was segmentation from overlapping cells. The cytoplasm boundary of
isolated cells, touching cells, and overlapping cells could be extracted from segmented cells’ results of
the watershed transform approach that was proposed in the overlapping cells’ segmentation stage.
The regions of touching and overlapping cytoplasm in the image obtained in the segmentation step
were not enough to represent the boundaries of the cytoplasm. Thus, we did the process of smoothing
the boundaries of the cytoplasm using an edge smoothing method that is described in Table 4.

Table 4. Processing steps of edges smoothing method.

Step 1: Read grayscale image and convert binary image
Step 2: Extract the largest blob only
Step 3: Crop-off the frame on the left and top
Step 4: Fill holes
Step 5: Blur the image
Step 6: Threshold again
Step 7: Show the smoothed binary image

The nuclei of isolated cells, touching cells, and overlapping cells were segmented using the
shape-based iteration method that is described in Table 5.
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Table 5. Processing steps of the shape-based nuclei detection algorithm.

Step 1: Read the input color image and invert the grayscale image
Step 2: Remove noise using the median filter
Step 3: Predefine minimum area, major and minor axis lengths, minimum and maximum intensity values, and solidity
Step 4: Binarize the image using the lowest and highest thresholds
Step 5: Remove the regions under limited shape and intensity values
Step 6: Segment nuclei

The nuclei segmentation was easier than cytoplasm segmentation. In our multi-cells image, nuclei
were low intensity, and the shapes were well structured, mostly oval or round shape, and significantly
different from the other regions, background, or cytoplasm. The area, average intensity, major and
minor axis lengths, and solidity were the five most important features of nuclei to distinguish from
other objects, cytoplasm, and background. Therefore, we used these features and developed a method
to detect and segment nuclei. A median filter was used to remove the noise from the original Pap smear
images. The shape-based features (area, intensity values, major axis length, minor axis length, and
solidity) were used in the nuclei segmentation process. According to the experiments, the minimum
area of nuclei was 362 µm2. The average intensity value was between 60 and 150, and solidity values
were less than or equal 0.98. The major axis length of nuclei was between 24 m and 117 m, and the
minor axis length was between 17m and 87m. Shape-based features’ name and their formula are
explained in Figure 10b.
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and their equations.

The results of the nuclei segmentation step are shown in Figures 11 and 12. The performance of
our proposed nuclei detection method was evaluated, and their results are shown in Table 6. The nuclei
and cytoplasm segmentation results of isolated cells, touching cells, and overlapping cells are described
in Tables 7–9, respectively. The proposed overlapping cells’ segmentation method had been tested on
images with a 4049 cytoplasm in total. About 6.47% of the cytoplasm was isolating, while 35.27% of
cytoplasm were touching, and 58.26 % of cytoplasm were overlapping. The rate of well-segmented
cytoplasm was calculated by dividing the detected cytoplasm number with the actual cytoplasm
number and multiplied by 100, and the results are shown in Table 10.
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The dice similarity coefficient (DSC)—the value was between 0 and 1. False-negative rate
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Table 8. Cont.

Class Touching Cell Segmented
Cytoplasm Clean Boundary Smooth

Boundary
Segmented

Nuclei

Class5
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2.5. Features Extraction

After the cells’ segmentation stage, the next stage was features extraction. In this stage, the
important features, texture, shape, and color features were extracted. Texture features were obtained
using the gray level co-occurrence matrix. In the cervical Pap smear image, healthy and abnormal cells
were highly different in their distributions of color and shape [37]. Therefore, we extracted features of
shape and color. The extracted texture features were contrast, smoothness, third moment, uniformity,
and entropy for RGB channels [38]. The color-based features were mean of six color channels (red, green,
and blue) and H, S, and V channels (hue, saturation, and value) that were extracted independently from
RGB and HSV model. The extracted features’ names of nuclei and cytoplasm are shown in Table 11.

Table 11. The descriptions of nuclei and cytoplasm features’ names.

No. Nuclei Features (35) No. Cytoplasm Features (35)

N1 Nucleus’s area C1 Cytoplasm’s area

N2 Nucleus’s major axis length C2 Cytoplasm’s major axis length

N3 Nucleus’s minor axis length C3 Cytoplasm’s minor axis length

N4 Nucleus’s eccentricity C4 Cytoplasm’s eccentricity

N5 Nucleus’s orientation C5 Cytoplasm’s orientation

N6 Nucleus’s equivalent diameter C6 Cytoplasm’s equivalent diameter

N7 Nucleus’s solidity C7 Cytoplasm’s solidity

N8 Nucleus’s extent C8 Cytoplasm’s extent

N9 Nucleus’s compactness C9 Cytoplasm’s compactness

N10 Nucleus’s short diameter C10 Cytoplasm’s short diameter

N11 Nucleus’s long diameter C11 Cytoplasm’s long diameter

N12 Nucleus’s elongation C12 Cytoplasm’s elongation

N13 Nucleus’s roundness C13 Cytoplasm’s roundness

N14 Nucleus’s perimeter C14 Cytoplasm’s perimeter

N15 Nucleus’s position C15 Nucleus to cytoplasm ratio

N16 Nucleus’s maximum number C16 Cytoplasm’s maximum number

N17 Nucleus’s minimum number C17 Cytoplasm’s minimum number

N18 Nucleus’s average intensity in R C18 Cytoplasm’s average intensity in R

N19 Nucleus’s average intensity in G C19 Cytoplasm’s average intensity in G

N20 Nucleus’s average intensity in B C20 Cytoplasm’s average intensity in B

N21 Nucleus’s average intensity in H C21 Cytoplasm’s third moment in H

N22 Nucleus’s average intensity in S C22 Cytoplasm’s uniformity in S

N23 Nucleus’s average intensity in V C23 Cytoplasm’s entropy in V

N24 Nucleus’s contrast C24 Cytoplasm’s contrast

N25 Nucleus’s local homogeneity C25 Cytoplasm’s local homogeneity

N26 Nucleus’s correlation C26 Cytoplasm’s correlation

N27 Nucleus’s cluster shape C27 Cytoplasm’s cluster shape

N28 Nucleus’s cluster prominence C28 Cytoplasm’s cluster prominence

N29 Nucleus’s maximum probability C29 Cytoplasm’s maximum probability

N30 Nucleus’s energy C30 Cytoplasm’s energy
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Table 11. Cont.

No. Nuclei Features (35) No. Cytoplasm Features (35)

N31 Nucleus’s variance C31 Cytoplasm’s variance

N32 Nucleus’s uniformity C32 Cytoplasm’s uniformity

N33 Nucleus’s entropy C33 Cytoplasm’s entropy

N34 Nucleus’s sum entropy C34 Cytoplasm’s sum entropy

N35 Nucleus’s difference entropy C35 Cytoplasm’s difference entropy

2.6. Features Selection

In this stage, the random forest algorithm was used as a feature selection algorithm. The main
reason for using a feature selection method was to select the most important features and to improve the
accuracy of the classifier. The feature selection algorithm can reduce the complexity of the classification
model and reduce the training time of machine learning algorithms. There are many feature selection
algorithms. Among them, we used the random forest algorithm because the tree-based strategies used
by random forests naturally rank by how well they improve the purity of the node. This means a
decrease in impurity over all trees. Nodes with the greatest decrease in impurity were at the start of the
trees, while nodes with the least decrease in impurity were at the end of trees. Thus, by pruning trees
below a node, we could create a subset of the most important features. Table 12 shows the features’
names and their top rank attributes by the random forest (RF) algorithm.

Table 12. Features’ names and their top rank attributes by random forest (RF) algorithm.

No. Selected Features Name Ranked Values

1 Nucleus to cytoplasm ratio 0.67559
2 Nucleus’s average intensity in G 0.58192
3 Cytoplasm’s average intensity in R 0.56378
4 Nucleus’s average intensity in R 0.5015
5 Cytoplasm’s average intensity in G 0.48555
6 Nucleus’s entropy 0.39472
7 Nucleus’s average intensity in B 0.38415
8 Nucleus’s uniformity 0.32821
9 Cytoplasm’s contrast 0.27581

10 Nucleus’s long diameter 0.25963
11 Cytoplasm’s average intensity in B 0.24524
12 Cytoplasm’s long diameter 0.23685
13 Cytoplasm’s uniformity 0.23395
14 Nucleus’s perimeter 0.21901
15 Cytoplasm’s major axis length 0.19202
16 Cytoplasm’s equivalent diameter 0.18936
17 Nucleus’s area 0.17126
18 Cytoplasm’s perimeter 0.16393
19 Nucleus’s minimum number 0.16279
20 Nucleus’s minor axis length 0.15295

2.7. Classification

In this stage, we used a bagging ensemble classifier. Ensemble learning can help to improve the
prediction results by combining several models. Bagging uses bootstrap sampling to obtain the data
subsets for training the base learners. For combining the outputs of base learners, bagging uses voting
for classification. Combining stable learners was less advantageous since the ensemble would not help
improve generalization performance. In our proposed classifier, five classifiers were trained, and the
results of the predictions of each classifier were combined. The result was decided based on majority
voting. The block diagram of the combined five classifiers is shown in Figure 13.
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3. Results

To validate the effectiveness of our proposed system, SIPaKMeD (multi-cells) dataset and Herlev
dataset (single-cell) were used. In the multi-cells dataset, there were 996 images, and 4049 cells
were cropped from these total images. These cells were divided into five classes, class1 (superficial
intermediate cells), class 2 (parabasal cells), class 3 (metaplastic cells), class 4 (dyskeratotic cells), and
class 5 (koilocytotic cells). For the two-class problem, the first three classes were grouped into normal
cells and 1618 cells in total. The last two classes were grouped into abnormal cells and 2431 cells
in total. The performance measures were accuracy, recall, specificity, precision, and F-measure [39].
The formulas are given in the below equations:

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Sensitivity\Recall =
TP

TP + FN
(2)

specificity =
TN

TN + FP
(3)

Precision =
TP

TP + FP
(4)

F_Measure = 2 ∗
Precision ∗Recall
Precision + Recall

(5)

where True positive (TP)—the results of the correctly classified positive class. True negative (TN)—the
results of the correctly classified negative class. False-positive (FP)—the results of the incorrectly
classified positive class. False-negative (FN)—the results of the incorrectly classified negative class.

The comparison results of classification performance in terms of accuracy with five classifiers
and our ensemble classifier using nuclei features only, cytoplasm features only, combining nuclei and
cytoplasm features without features selection method, and with features selection method for the
two-class problem (SIPaKMed dataset) are shown in Figure 14 and five-class problem in Figure 15.
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Figure 14. Classification performance of five classifiers and our ensemble classifier in terms of
accuracy using four datasets (nuclei features only (Accuracy_N), cytoplasm features only (Accuracy_C),
combining nuclei and cytoplasm features without features selection method (Accuracy_NC), and with
features selection method (Accuracy_Selected)). (SIPaKMed dataset for the two-class problem).
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Figure 15. Classification performance of five classifiers and our ensemble classifier in terms of
accuracy using four datasets (nuclei features only (Accuracy_N), cytoplasm features only (Accuracy_C),
combining nuclei and cytoplasm features without features selection method (Accuracy_NC), and with
features selection method (Accuracy_Selected)). (SIPaKMed dataset for the five-class problem).

Moreover, the five performance measures of each classifier using selected features are shown in
Figure 16 for the two-class problem and Figure 17 for the five-class problem.
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Figure 16. Evaluation of classifier’s performance using selected features for the SIPAKMed dataset in
the two-class problem.
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Figure 17. Evaluation of classifier’s performance using selected features for the SIPAKMed dataset in
the five-class problem.

The comparison results of five classifiers with our ensemble classifier in terms of accuracy using
four datasets (nuclei features only, cytoplasm features only, combining nuclei and cytoplasm features
without features selection method, and with features selection method) are shown in Figure 18 for the
two-class problem and Figure 19 for the seven-class problem.



Appl. Sci. 2020, 10, 1800 18 of 22
Appl. Sci. 2019, 9, x FOR PEER REVIEW 18 of 22 

 

Figure 18. Classification performance of five classifiers and our ensemble classifier in terms of 

accuracy using four datasets (nuclei features only (Accuracy_N), cytoplasm features only 

(Accuracy_C), combining nuclei and cytoplasm features without features selection method 

(Accuracy_NC), and with features selection method (Accuracy_Selected)). (Herlev dataset for the 

two-class problem). 

 

Figure 19. Classification performance of five classifiers and our ensemble classifier in terms of 

accuracy using four datasets (nuclei features only (Accuracy_N), cytoplasm features only 

(Accuracy_C), combining nuclei and cytoplasm features without features selection method 

(Accuracy_NC), and with features selection method (Accuracy_Selected)). (Herlev dataset for the 

seven-class problem). 

The five performance measures of each classifier using selected features for the Herlev dataset 

are shown in Figure 20 for the two-class problem and Figure 21 for the seven-class problem. 

82

84

86

88

90

92

94

96

98

100

SVM LDA KNN Boosted

Trees

Bagged

Trees

Ensemble

Accuracy_N Accuracy_C Accuracy_NC Accuracy_Selected

0

10

20

30

40

50

60

70

80

90

100

SVM LDA KNN Boosted

Trees

Bagged

Trees

Ensemble

Accuracy_N Accuracy_C Accuracy_NC Accuracy_Selected

Figure 18. Classification performance of five classifiers and our ensemble classifier in terms of
accuracy using four datasets (nuclei features only (Accuracy_N), cytoplasm features only (Accuracy_C),
combining nuclei and cytoplasm features without features selection method (Accuracy_NC), and with
features selection method (Accuracy_Selected)). (Herlev dataset for the two-class problem).
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Figure 19. Classification performance of five classifiers and our ensemble classifier in terms of
accuracy using four datasets (nuclei features only (Accuracy_N), cytoplasm features only (Accuracy_C),
combining nuclei and cytoplasm features without features selection method (Accuracy_NC), and with
features selection method (Accuracy_Selected)). (Herlev dataset for the seven-class problem).

The five performance measures of each classifier using selected features for the Herlev dataset are
shown in Figure 20 for the two-class problem and Figure 21 for the seven-class problem.
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Figure 20. Evaluation of classifier’s performance using selected features for the Herlev dataset in the
two-class problem.
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Figure 21. Evaluation of classifier’s performance using selected features for the Herlev dataset in the
seven-class problem.

4. Conclusions

This paper proposed a system for computer-assisted screening for cervical cancer using digital
image processing of Pap smear images. Our proposed system consisted of six steps: image acquisition,
image enhancement, cell segmentation, feature extraction, feature selection, and classification. Our
proposed system first segmented each independent cell components, such as nucleus and cytoplasm,
and then detected whether cells were cancerous or not through machine learning-based technique.
There are several techniques, which had been proposed in the past in this direction. But the accuracy
has not been found to be significantly accessible [40]. In our work, the average classification result
showed an accuracy of 98.47% and 98.27% in the two-class problem and 90.84% (seven-class) and
94.09% (five-class) in multi-class problem using Herlev dataset and SIPaKMed dataset individually.
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The main advantage of our proposed method is an increase in the predictive performance in separating
the abnormal cells from the normal cells. The proposed system could be further enhanced by using
other classifiers. Our proposed system showed better classification accuracy, sensitivity, and specificity
than individual five classifiers. So, this framework could be used for cervical cancer screening system
to detect women with precancerous lesions.
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