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Abstract: Manual classification of sleep stage is a time-consuming but necessary step in the diagnosis
and treatment of sleep disorders, and its automation has been an area of active study. The previous
works have shown that low dimensional fast Fourier transform (FFT) features and many machine
learning algorithms have been applied. In this paper, we demonstrate utilization of features extracted
from EEG signals via FFT to improve the performance of automated sleep stage classification through
machine learning methods. Unlike previous works using FFT, we incorporated thousands of FFT
features in order to classify the sleep stages into 2–6 classes. Using the expanded version of Sleep-EDF
dataset with 61 recordings, our method outperformed other state-of-the art methods. This result
indicates that high dimensional FFT features in combination with a simple feature selection is effective
for the improvement of automated sleep stage classification.

Keywords: automatic sleep stage classification; electroencephalogram; fast Fourier transform

1. Introduction

Sleep is one of the basic physiological needs, and an important part of life. A typical human
spends one-third of his lifetime sleeping. Lack of sleep may cause health issues, influence mood,
and interfere with cognitive performance [1,2]. Examination of sleep is usually performed with the aid
of polysomnography (PSG). PSG is used to examine multiple parameters that may be useful in the
diagnosis of sleep disorders, or may be analyzed in pursuit of a deeper understanding of sleep itself.
Hollan, Dement, and Raynal introduced the term Polysomnography in 1974. PSG is performed using
an electronic device equipped to monitor multiple physiologic parameters during sleep by recording
corresponding electrophysiological signals, for instance: from the brain via electroencephalogram
(EEG), from the eyes via electrooculogram (EOG), from the skeletal muscles via electromyogram (EMG),
and from the heart via electrocardiogram (ECG) [3]. To collect this data, recording devices are attached
to the relevant locations of the body, typically including three EEG electrodes, one EMG electrode and
two EOG electrodes. ECG is also a compulsory component of PSG. Additionally, the monitoring of
respiratory functions may be desired in the diagnosis of respiratory disorders such as sleep apnea and
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require the addition of other tools applied in conjunction with the EEG electrodes, most often a pulse
oximeter, oral thermometer, nasal cannula, thoracic and abdominal belt, and a throat microphone [4,5].

Figure 1 represents the standard system used for measuring the EEG signal, termed as the
10–20 system, in which the minimum number of electrodes used is 21. This method regulates the
physical placement and designations of electrodes on the scalp. The head is divided into proportions
from important sites of the skull so that all areas of the brain are adequately covered. The label of
10–20 indicates that the actual distances between neighboring electrodes are either 10% or 20% of the
distance from the nasion (front side of the head/anteriorly) to the inion (back side of the head/posteriorly)
between the ears and nose where electrode points are chosen. Generally, electrodes marked with even
numbers are placed on the right side of the head and those marked with odd numbers on the left
side. The electrodes are also marked with letters to represent their locations relative to the anatomical
divisions of the brain: F (frontal), C (central), T (temporal), P (parietal), O (occipital), and Fp (Frontal
pole). A subscript z is used to mark the midline electrodes as zero.

Figure 1. Electrodes placement of electroencephalogram (EEG) measurement [4] (reproduced with
permission by Elsevier (License Number 4781771458692)).

The electric signal in the brain is determined by measuring the difference of the electric activity
between the two electrodes over a period of time. As it propagates, the signal gradually decays with
distance from the source. Finally, the signal has a decreased value since only one of the parallel
combinations of electrodes gives precise measurement [4,6].

EEG waveforms have several kinds of rhythms. These rhythms are remarkably useful for
classification annotation of sleep score as recorded by PSG. In a normal EEG, we differentiate these
rhythms into five frequency bands. Table 1 lists the frequency and amplitude ranges of these bands [4,7]

Table 1. Frequency and amplitude range of the EEG signal.

Bands Frequencies (Hz) Amplitude (µV)

Delta 0.5–3.5 20–100
Theta 3.5–7.5 10
Alpha 7.5–12 2–100
Beta 12–30 5–10

Gamma >31 -

Human sleep consists of cyclic stages, and the sleep stages are essential sections of activity
during sleep. Three main stages of the sleep cycle are awake, non-REM (NREM) sleep, and rapid eye
movement (REM) sleep. The NREM phase is also called dreamless sleep: breathing is slow and heart
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rate and blood pressure are normal. NREM sleep eventually deepens and leads to REM sleep. The REM
stage occurs most often while dreaming. At the time, the body goes into a temporary paralysis to
prevent it from acting out these dreams. However, during REM sleep the eyes move quickly back and
forth. The absence of one of these stages or the overabundance of another can lead to the diagnosis of
numerous conditions ranging from sleep apnea, hypersomnia, insomnia, or sleep talking [8].

There are two recognized standards for interpreting sleep stages based on sleep recordings:
the Rechtschaffen and Kales (R & K) criteria and the American Academy of Sleep Medicine (AASM)
criteria. The R & K recommendations classify sleep into seven discrete stages: wake/wakefulness,
S1/drowsiness, S2/light sleep, S3/deep sleep, S4/deep or wave sleep, REM and MT/movement time [9].
The AASM criteria are a modified version of the R & K criteria. Some differences between the AASM
and R & K criteria are as follows [9,10]:

1. NREM stages in the R & K criteria (S1, S2, S3, and S4) are referred to as stages N1, N2, and N3 in
the AASM criteria.

2. In the AASM criteria, deep sleep (N3) is a combination of the S3 and S4 stages of the R & K criteria.
3. Movement time (MT) is eliminated as a sleep stage in the AASM criteria.

The stages of sleep can be thought of as a cyclic alternation of non-rapid eye movement (NREM)
and rapid eye movement (REM) stages [11]. It has been recognized that NREM sleep consists of four
distinct stages: S1, S2, S3, and S4, each with specific characteristics. In S1, the patient is drowsy but
still awake. The appearance of sleep spindles, vertex sharp waves, and K complexes mark S2 sleep.
Shallow sleep consists of both S1 and S2, while deep sleep consists of S3 and S4 [12].

Conventionally, technicians have interpreted and marked the sleep stages manually. As such,
it is a time-intensive process as well as being expensive and dependent on human resources. Because
it is time consuming, expensive, and is an enormous process, it is not suitable to hold the large EEG
datasets for sleep stages annotation by the human expert [13]. As a result, it has become necessary to
develop a sleep stage classification in order to achieve better accuracy.

Previous attempts at automated classification of sleep stages have been based on single-channel
as well as multi-channel EEG recordings and various other physiological markers. Ronzhina et al.
described a single-channel EEG based scheme utilizing an artificial neural network coupled with power
spectrum density analysis of EEG recordings [14]. Zhu et al. analyzed nine features from single-channel
EEG recordings and applied an artificial intelligence technique referred to as a support vector machine
(SVM) to perform classification [15]. High classification performance has been reported by Huang
by applying short-time Fourier transform to a two-channels recording of forehead EEG signals and
a relevance vector machine [16]. In addition, Aboalayon et al. have conducted a comprehensive
review of automatic sleep stage classification (AASC) systems, which includes a survey of processing
techniques including pre-processing, feature extraction, feature selection, dimensionality reduction,
and classification. This study evaluated AASC methods against the sleep-EDF database based on
single-channel EEG recordings, and is remarkable for having selected 10 s epochs for its analysis. Their
model’s performance achieved the highest accuracy in comparison to previous results [17]. Braun et al.
had applied low dimensional FFT features on the sleep-EDF database with the usage of eight statistical
features from the Pz-Oz EEG channel. The classification performance had reached with the accuracy
90.9%, 91.8%, 92.4%, 94.3%, and 97.1% for all 6- to 2-state sleep stages [18].

In this paper, we present a system of sleep stage classification based on EEG signals. Instead of
using complicated processes of signal filtering and feature extraction, we utilized high-dimensional
features calculated by fast Fourier transform (FFT) from single- or multi-channel EEG signals. FFT is
one of the traditional and verified techniques capable of extracting features from EEG signals. If an
EEG signal is recorded at a sampling frequency of 100 Hz, the FFT can separate the signal into
features in the range of 0–100 Hz. Typically, in previous studies, a small number of FFT features
corresponding to the bands shown in Table 1 were extracted and used. However, a sampling window
of 30 s at 100 Hz sampling frequency allows for an extraction of at most 3000 features in the range of
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0–100 Hz. In this study, we demonstrate that by incorporating high-dimensional FFT features and
a simple feature selection by random forest algorithm into the analysis, it is possible to outperform
state-of-the-art algorithms for the Sleep-EDF database. Our proposed approach consists of three main
steps: brainwaves acquisition from EEG channel, feature processing, and finally, the classification
evaluation by measuring the accuracy. The flowchart of our approach is shown in Figure 2.

Figure 2. The flowchart of the proposed research.

2. Materials and Methods

2.1. Experimental Data

Sleep-EDF Dataset

The dataset is open-source, and many previous researchers have utilized this dataset in sleep
scoring research [15,17–22]. Among three available versions of the dataset, we used an expanded
version containing 61 recordings from 42 Caucasian male and female subjects. The subjects’ ages ranged
from 18 to 79 years. This dataset was organized into two sub-sets. The first subset with 39 recordings
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from 20 subjects was EEG data recorded in a study from 1987 to 1991. These subjects were healthy and
in ambulatory condition. The second subset with 22 recordings from 22 subjects was EEG data recorded
in a study in 1994 and the subjects reported slight difficulty in falling asleep but were otherwise healthy.
The EEG data had been collected over 24 h of the daily lives of the subjects. A miniature telemetry
system recorded nocturnal EEG data from four subjects in a hospital [19]. The data was collected from
just two channels: Fpz-Cz and Pz-Oz, at a sampling frequency of 100 Hz. The previous researchers had
established that on single-channel analysis the Pz-Oz channel demonstrated improved performance
over the Fpz-Cz channel. Using R & K criteria, EEG recordings of both of the subsets had been
annotated by an experienced sleep technician on a 30 s basis. Therefore, the duration of each epoch is
established as 30 s and yielded 3000 samples. The epochs had been annotated by sleep technicians as:
AWA, REM, S1, S2, S3, S4, “Movement Time” or “Unscored.” On the other hand, the annotations using
AASM criteria consisted of the designations AWA, REM, N1, N2, N3, and “Unknown sleep stage.”
The number of samples according to R & K criteria are shown in Table 2. After removing “Movement
Time” and “Unscored,” total number of the samples is 127,663. The epoch duration was 30 s.

Table 2. The number of samples in Sleep-EDF dataset (R & K criteria).

# of Classes AWA REM S1 S2 S3 S4

6 74,827 11,848 4,848 27,292 5075 3773

5 74,827 11,848 4,848 27,292 8848

4 74,827 11,848 32,140 8848

3 74,827 11,848 40,988

2 74,827 52,836

As far as features analyzed, we prepared 6000 features extracted from two channels (Pz_Oz and
Fpz_Cz). For each channel, 1000 features were extracted at a sampling frequency of 100 Hz and epoch
lasted 30 s. The features were used in the experiments separately or in combination.

2.2. Feature Extraction with Fast Fourier Transform (FFT)

The feature represents a differentiating property or an operative component identified in a section
of a pattern, and a recognizable measurement. Feature extraction is a critical step in EEG signal
processing. Consequently, minimizing the loss of valuable information attached to the signal is one of
the goals of feature extraction. Additionally, feature extraction decreases the resources required to
describe a vast set of data accurately. When carried out successfully, feature extraction can minimize
the cost of information processing, reduce the complexity of data implementation, and mitigate the
possible need to compress the information [23].

The extraction of informative statistical features from the EEG signal is necessary to perform
sleep stage classification efficiently. In general, the EEG signal is highly complex and non-linear,
so it would be better to use a non-linear model [24]. In this study, the fast Fourier transform (FFT)
is utilized to extract the features of EEG signal for sleep stage classification. Hence, the values of
a given time-series data as a numeric sequence data are converted into a finite set of the frequency
domain. Then, to deconstruct signals into segmented EEG signal sequences, we divided them into
equal time intervals called epochs. The length of each epoch was set to every 30 s of EEG signal.
Accordingly, the epochs were then processed using frequency analysis in which frequency spectra
were generated using FFT. We used FFT to convert a signal from its original, time domain signal to a
representation in the frequency domain signal [25]. Figure 3 represents in the form of time-domain
signal and frequency-domain signal.
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Figure 3. EEG signals in time domain signal and frequency domain signal.

Previous studies have shown that FFT is a promising tool for stationary signal processing,
and enjoys a speed advantage over virtually all other available methods in real-time applications,
and it is more appropriate for sine waveforms such as in EEG signals. However, the disadvantage is
that it does not have excellent spectral estimation and cannot be employed for analysis of short EEG
signals [23].

2.3. Feature Selection and Optimization

Feature extraction is an effective way of recognizing and visualizing significant data. This process
shortens the time for training and application, as well as reducing demands for data calculation and
storage. Some researchers combine several feature extraction techniques in order to achieve better
data analysis. Consequently, application of multiple processes may often affect feature redundancy
and expansion of feature dimension. Feature selection reduces the dimension of feature space and
minimizes the data training and application [26]. In this study, we conducted a simple feature selection
based on the importance of each feature evaluated by random forest algorithm. Mean decrease in
Gini was calculated by using the random Forest package for R, then all features were sorted in the
descending order of this value. For Sleep-EDF dataset, we examined the number of important features
to be selected with 50 increments in between 500 and 2500, and the most appropriate feature subset
were determined for each number of classes. More details about the feature selection in this study are
found in [27] which describes basically the same feature selection method.

2.4. Classification Evaluation

The classification step was completed with the 5- or 10-fold cross-validation. This means for
each process, this step is repeated 5 or 10 times per sample. The 5- or 10-fold cross-validation comes
from the cross validation technique to evaluate prediction performance from classification model.
This technique splits the dataset into training and test data. We trained each fold in order to have a
better estimation of the true error rate of each set. The model is created by using the training data, and
the test data is used for evaluating the performance of prediction.

Among the various classification algorithms, we adopted the multiclass support vector machine
(SVM) algorithm, a supervised machine learning method, implemented in the kernlab package for R.
The SVM classifier is a popular algorithm widely applied to various problems in machine learning.
SVM constructs the maximum margin around the separating hyperplane between the classes. In this
study, we utilized a Gaussian or Radial Basis Function (RBF) Kernel. One of the advantages of the
SVM method is that this method is effective when the number of features is greater than the number of
samples. In addition, the model is sufficient as a classification model of the EEG signal.
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3. Experimental Results

3.1. Classification of Sleep-EDF Dataset

In this experiment, 2–6 classes defined by R & K criteria were selected as class labels. Features from
two channels were analyzed separately or in combination. From one channel, 3000 features (i.e., 100
Hz × 30 s) were extracted. For performance evaluation, five-fold cross-validation was conducted. The
results obtained using our method are compared with the results acquired using other state-of-the-art
methods in. In this Table 3, it can be seen that our method with 6000 features from two channels
(Pz_Oz and Fpz_Cz) outperformed all other methods in the classification of 6 to 2 classes.

Table 3. Performance comparison on Sleep-EDF dataset (R & K criteria, 2–6 classes).

Method Length of Epoch (s) # of Epochs # of Classes Accuracy (%)

Nakamura et al. 2017 30 126,699

6 86.60

5 88.60

4 91.00

3 94.50

2 97.40

Yildirim et al. 2019 [22] 30 127,512

6 89.43

5 90.48

4 92.24

3 94.23

2 97.85

Our method (Pz_Oz) 30 127,663

6 90.17

5 91.42

4 92.24

3 94.36

2 97.79

Our method (Fpz_Cz) 30 127,663

6 89.70

5 88.57

4 90.02

3 92.69

2 97.13

Our method
(Pz_Oz and Fpz_Cz) 30 127,663

6 90.77

5 91.73

4 92.82

3 94.41

2 97.88

3.2. Classification of Sleep-EDF Dataset Expanded (197 Recordings)

The results of applying our method against the latest, extended version of the Sleep-EDF database,
show that in contrast to the first version of the database which consisted of 61 recordings (version 1),
the latest version consists of 197 recordings (version 2, released in 2018). It has been studied in many
recent papers (e.g., [27,28], however, because of its large size, it is rarely studied as a whole (many
papers which classified it are using only a small subset of it). Therefore, it is hard to compare the
performance on it under the same or similar conditions. Instead of comparing performances, in this
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subsection we mainly analyzed the relationship between classification performance and the balance
of classes.

Table 4 contains the result of the classification experiment using our method. “SC” and “ST”
found in the recording ID. The prefixes “SC” and “ST” stand for “Sleep Cassette” and “Sleep
Telemetry”, respectively. In this experiment, ten-fold cross validation was conducted for each recording.
The average, highest, and lowest accuracies were 87.84%, 96.54%, and 37.03%, respectively. Since
the accuracies are greatly affected by the degree of sample distribution among the classes in each
recording, a large discrepancy exists between the highest and lowest accuracies. For example, in the
recording SC4201, which achieved the highest accuracy, the AWA class occupies ~73% of the recording.
In contrast, the lowest accuracy was achieved by ST7151 with a more even distribution between the
classes (AWA:REM:S1:S2:S3:S4 = 104:143:78:304:142:126). This is even more clearly demonstrated in
Figure 4, where we show the relationship between accuracy and degree of class imbalance (represented
in this experiment by the standard deviation of class sizes in a recording). There appears to be an
almost linear relationship (correlation coefficient was 0.9857).

Table 4. Performance of classification for each recording in Sleep-EDF database (version 2).

ID Accuracy (%) ID Accuracy (%) ID Accuracy (%) ID Accuracy (%)

SC4001 94.17 SC4252 92.77 SC4522 94.24 SC4812 91.26

SC4002 92.49 SC4261 89.25 SC4531 89.22 SC4821 92.67

SC4011 94.27 SC4262 92.43 SC4532 92.68 SC4822 89.17

SC4012 93.43 SC4271 90.37 SC4541 93.68 ST7011 75.56

SC4021 94.11 SC4272 91.59 SC4542 90.28 ST7012 81.39

SC4022 92.86 SC4281 91.27 SC4551 90.97 ST7021 83.62

SC4031 95.88 SC4282 91.42 SC4552 94.29 ST7022 79.29

SC4032 94.44 SC4291 91.54 SC4561 84.57 ST7041 58.73

SC4041 90.51 SC4292 91.67 SC4562 90.25 ST7042 65.79

SC4042 91.58 SC4301 91.48 SC4571 89.66 ST7051 43.61

SC4051 95.29 SC4302 92.94 SC4572 92.47 ST7052 84.77

SC4052 92.51 SC4311 91.99 SC4581 89.89 ST7061 80.09

SC4061 95.33 SC4312 89.40 SC4582 88.17 ST7062 85.53

SC4062 94.27 SC4321 88.92 SC4591 91.41 ST7071 79.06

SC4071 93.71 SC4322 92.26 SC4592 85.54 ST7072 81.05

SC4072 93.70 SC4331 91.51 SC4601 92.68 ST7081 83.10

SC4081 92.56 SC4332 94.24 SC4602 86.79 ST7082 81.77

SC4082 90.92 SC4341 89.21 SC4611 87.08 ST7091 75.45

SC4091 91.59 SC4342 96.42 SC4612 93.10 ST7092 77.99

SC4092 90.59 SC4351 94.34 SC4621 84.74 ST7101 80.34

SC4101 93.38 SC4352 90.59 SC4622 91.20 ST7102 75.67

SC4102 94.84 SC4362 92.08 SC4631 91.06 ST7111 82.40

SC4111 92.12 SC4371 91.13 SC4632 93.04 ST7112 83.43

SC4112 95.32 SC4372 86.79 SC4641 94.62 ST7121 79.76

SC4121 92.54 SC4381 93.39 SC4642 92.58 ST7122 82.65

SC4122 91.56 SC4382 93.23 SC4651 89.64 ST7131 85.80

SC4131 92.97 SC4401 91.94 SC4652 85.62 ST7132 76.47

SC4141 95.12 SC4402 93.40 SC4661 85.77 ST7141 75.50
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Table 4. Cont.

ID Accuracy (%) ID Accuracy (%) ID Accuracy (%) ID Accuracy (%)

SC4142 95.31 SC4411 92.92 SC4662 88.53 ST7142 72.74

SC4151 92.97 SC4412 89.87 SC4671 91.07 ST7151 37.03

SC4152 93.25 SC4421 95.23 SC4672 93.35 ST7152 79.94

SC4161 90.29 SC4422 92.07 SC4701 88.10 ST7161 48.93

SC4162 91.04 SC4431 91.50 SC4702 92.39 ST7162 74.06

SC4171 92.20 SC4432 92.08 SC4711 88.52 ST7171 79.37

SC4172 86.52 SC4441 88.84 SC4712 93.23 ST7172 77.20

SC4181 92.34 SC4442 90.77 SC4721 83.95 ST7181 82.92

SC4182 91.00 SC4451 91.24 SC4722 87.05 ST7182 54.30

SC4191 90.25 SC4452 90.94 SC4731 88.42 ST7191 47.16

SC4192 91.21 SC4461 94.06 SC4732 87.96 ST7192 87.10

SC4201 96.54 SC4462 93.78 SC4741 92.12 ST7201 66.16

SC4202 95.04 SC4471 90.90 SC4742 90.71 ST7202 69.62

SC4211 92.40 SC4472 85.81 SC4751 94.07 ST7211 79.40

SC4212 93.67 SC4481 90.11 SC4752 87.98 ST7212 77.28

SC4221 88.17 SC4482 93.31 SC4761 92.82 ST7221 82.95

SC4222 89.88 SC4491 93.88 SC4762 89.00 ST7222 82.78

SC4231 93.08 SC4492 92.37 SC4771 90.33 ST7241 65.62

SC4232 86.76 SC4501 91.16 SC4772 90.19 ST7242 62.94

SC4241 92.30 SC4502 93.77 SC4801 91.42

SC4242 94.92 SC4511 90.53 SC4802 91.43

SC4251 96.34 SC4512 92.85 SC4811 91.79

Figure 4. Plot of accuracy and standard deviation of class sizes in each recording.
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4. Discussions and Conclusions

In order to improve the performance of sleep stage classification, previous work has mainly
focused on the following points:

• More effective methods of feature extraction from the original EEG signal (e.g., wavelet transform)
• Application of filters (e.g., band-pass filter) and noise reduction algorithms
• Identification of better classifier algorithms (e.g., random forest, adaptive boosting, and

convolutional neural network)
• Improvement of class imbalance by under- and/or over-sampling (e.g., SMOTE)

In contrast, we have demonstrated in this paper that fully utilizing thousands of FFT features
extracted from single- and multi-channel EEG signals in combination with simple feature selection
is an effective means of improving the performance of automated sleep stage classification. In our
experiment on 6- to 2-class classification against the Sleep-EDF dataset, our method outperformed
other recent and advanced methods.

Additionally, we demonstrated the result of application of our method to the classification of the
recording included in the latest version of Sleep-EDF database. We clearly showed that accuracy in
classifying a recording is highly influenced by the degree of class imbalance.

The differences between the amounts of the majority class and the minority class in the datasets
leads to an imbalanced dataset. In other words, balanced class distributions are essential in supervised
learning as standard classification. One of the methods for solving this problem is by doing oversampling
and it aims to achieve a balanced class distribution by creating an artificial data. SMOTE (synthetic
minority over-sampling technique) is an over-sampling method that is typically used to balance
an imbalanced data as a part of machine learning. New instances are created as minority class
instances from minority class neighbors that performed like the original instances of the minority
class [29]. Related to sleep stage classification, our experimental results suggested that by combining our
method with under- and/or over-sampling methods like SMOTE, we may achieve better classification
performance of the recordings in the latest Sleep-EDF database.

One of the disadvantages in our method is the intensive computational requirements in memory
and processor. However, it also means that if the available resource of computing is rich, its performance
can be further improved. In addition to the analysis of relationship between the number of features
and performance, we need to conduct future work on the effectiveness of our method in other datasets.
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