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Abstract: Investigating the trends in the major climatic variables over the Upper Indus Basin (UIB)
region is difficult for many reasons, including highly complex terrain with heterogeneous spatial
precipitation patterns and a scarcity of gauge stations. The Weather Research and Forecasting (WRF)
model was applied to simulate the spatiotemporal variability of precipitation and temperature over
the Indus Basin from 2000 through 2015 with boundary conditions derived from the Climate Forecast
System Reanalysis (CFSR) data. The WRF model was configured with three nested domains (d01–d03)
with horizontal resolutions increasing inward from 36 km to 12 km to 4 km horizontal resolution,
respectively. These simulations were a continuous run with a spin-up year (i.e., 2000) to equilibrate
the soil moisture, snow cover, and temperature at the beginning of the simulation. The simulations
were then compared with TRMM and station data for the same time period using root mean squared
error (RMSE), percentage bias (PBIAS), mean bias error (MBE), and the Pearson correlation coefficient.
The results showed that the precipitation and temperature simulations were largely improved from
d01 to d03. However, WRF tended to overestimate precipitation and underestimate temperature in
all domains. This study presents high-resolution climatological datasets, which could be useful for
the study of climate change and hydrological processes in this data-sparse region.
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1. Introduction

The Himalaya-Karakoram-Hindukush (HKHK) region has significant strategic importance due
to large amounts of snow and glacial ice [1]. Often referred to as Earth’s “third pole” [2] (to indicate
its massive ice and snow storage comparable to the North and South poles), it provides freshwater
supply for agriculture, energy production, and drinking purposes for 1.5 billion people living in its
catchments [3]. The HKHK region is also hydrologically important due to the presence of major rivers
such as the Indus, Ganges, and Brahmaputra.

The Indus Basin Irrigation System (IBIS) is one of the largest irrigation systems in the world,
which supports not only over 90% of Pakistan’s agricultural production [3], but also the majority of the
water needs for Pakistan [4]. Over the catchment area up to the Tarbella Reservoir (known as UIB),
the contribution from snow and glacier melt runoffs accounts for about 70–80%, and the Karakoram
Mountains alone contribute to more than 50% of runoff [3]. Despite the hydrological importance, there
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is no consensus on the assessment of the stability of the glaciers in the region. Previous studies have
shown conflicting results for glaciers located in the Karakoram ranges, concluding that they are stable,
retreating, or even advancing (the so-called Karakoram Anomaly [5,6]). The Indus River Basin (IRB)
has experienced increasing temperatures and features immense spatial variability in climate [7].

Because the Indus River is largely dependent on cryosphere melt, it is highly vulnerable to climate
change [8]. The Global Climate Risk Index (CRI) 2018 [9] has ranked Pakistan in the top ten countries
most affected by climate change. Global climate models (GCMs) are the basic tools to simulate and
project climate change, but their low spatial resolution makes them unable to resolve mesoscale flow
patterns [10]. Several studies have downscaled GCM simulations over the IRB (for example, [11–13]);
they found that temperature will continue to increase, but precipitation will be highly uncertain over
this region. In addition, GCMs do not have the capability to resolve the orographic precipitation in
complex mountainous regions such as UIB. This uncertainty in projected changes in climatic variables,
especially precipitation, causes substantial uncertainty in runoff estimations.

In addition, the UIB is a data-scarce region where very few rain gauges are installed. These gauges
are unevenly distributed and primarily at low-elevation valley locations, raising concerns about their
representativeness of higher elevation orographic effects [14]. The lack of sufficient meteorological
observations is usually the most challenging for flood forecasting and water resources management
over this region. Complex topography, coupled with the challenges of field study in this region, has
led to considerable uncertainty in assessing glacial mass balance and even meteorological trends.
Moreover, the available global reanalysis datasets are useful to assess the large scale flow patterns over
this region, but their coarse resolution cannot effectively characterize the complex orography and other
local dynamics [14,15].

Regional climate models such as the Advanced Research Weather Research & Forecasting model
(ARW-WRF; hereafter WRF) can be applied to simulate climatic parameters in complex terrain at high
resolution. High-resolution atmospheric modeling can fill the gap of observational data scarcity to
advance the understanding of atmospheric variability. The WRF model has successfully been applied
worldwide [16–20] and to the Tibetan Plateau [21–25]. Gao et al. [25] applied the WRF model to
perform 32 years (1979–2011) of simulations over the Tibetan Plateau at 30 km grid cell resolution,
but this resolution is still somewhat coarse for capturing orographic precipitation patterns [23].
Maussion et al. [14] also used the WRF model to perform 11 years (October 2000–September 2011) of
simulations over the Tibetan Plateau at 30 km and 10 km grid cell resolution in the outer and inner
domain, respectively. Norris et al. [15] emphasized the importance of finer grid cell resolution over this
region to simulate climatic variables, especially precipitation. However, investigating the long-term
high-resolution meteorological variability (at 4 km) over the Karakoram Mountain Range is lacking,
which is very important for the glaciological and hydrological communities.

In view of the above, we used the WRF model Version 3.8.1 [26] to dynamically downscale 16
years (2000–2015) over the Indus Basin. Our purpose in this study is to investigate spatiotemporal
variability in the climate over the UIB and to assess the ability of WRF to capture observed variations
using an analysis of correlation, bias, and trend. Potential issues with robustness stemming from
record length are captured in our results via rigorous significance testing on all trends. The WRF model
has been configured with three nested domains (d01–d03) with the boundary conditions derived from
the National Oceanic and Atmospheric Administration (NOAA) National Center of Environmental
Prediction (NCEP) 6 hourly Climate Forecast System Reanalysis (CFSR) data [27], which has a 38 km
horizontal resolution. This study provides an analysis of the WRF model’s applicability over the
complex terrain of the UIB at an annual and seasonal scale.
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2. Materials and Methods

2.1. Study Area

This study had three domains with different scales and grid cell resolutions. The northern parts
of the Indus River consist of high mountains, including the HKHK mountain ranges, whereas its
southern parts consist of flat plains. The inner domain (d03) covered the whole Indus Basin (Figure 1),
but this study is focused on the Upper Indus Basin (UIB). The climate in the northern parts (UIB) is
largely influenced by western disturbances, and this region receives most of the precipitation (i.e.,
up to 2000 mm) in the winter season [28,29]. However, the precipitation in the Lower Indus Basin
(southern parts) is driven by the monsoon precipitation in the summer season, which ranges from 100
to 500 mm [30,31]. In the UIB, the mean monthly temperature varies from 2 to 49 ◦C, whereas in the
Lower Indus Basin, the mean monthly temperature varies from 14 to 44 ◦C [30]. The elevation of this
study region varies from 0 to 8550 m above sea level, which has been derived from a 90 m resolution
digital elevation model (DEM) from the Shuttle Radar Topography Mission (SRTM) project. The UIB
is a high altitude and complex mountainous area wherein the Karakoram Mountain Ranges and the
Hindu Kush and Himalayan Mountains are located. Typically, three major factors may influence the
climate over this region: the winter westerlies, the summer monsoon, and a high-pressure system
formed over high Asia [32]. Most of the precipitation over this region occurs in winter and spring and
is influenced by winter westerly flow [33].
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Figure 1. Configuration of the WRF model domain and topography. The study has three nested
domains (d01–d03) with horizontal resolutions increasing inward from 36 km to 12 km to 4 km grid
cell resolution, respectively. The elevation of the study region was derived from a 90 m resolution
SRTM DEM.
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2.2. WRF Model Configuration

The Advanced Research Weather Research & Forecasting model (ARW-WRF, hereafter WRF)
Version 3.8.1 [26] was used to downscale 16 years (2000–2015) of CFSR data dynamically [27], which
have approximately a 38 km horizontal grid resolution. These simulations were a continuous run
with a spin-up year (i.e., 2000) to equilibrate the soil moisture, snow cover, and temperature at the
beginning of the simulation. The motivation for using CFSR data in this study was taken from Bao
and Zhang [34], wherein they evaluated several datasets over the Tibetan Plateau. They found CFSR
and the Interim European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis datasets
(ERA-Interim) to simulate atmospheric changes effectively. They showed that both datasets presented
smaller RMS error and mean bias. The main reason for selecting the CFSR dataset, specifically in
this study, was its resolution. The CFSR dataset had a higher spatial resolution (0.5◦ by 0.5◦) than
ERA-Interim (0.75◦ by 0.75◦).

The WRF model used in this study was configured with three nested domains with gradually
increasing horizontal resolution from 36 km through 12 km to convection-permitting 4 km so that the
innermost domain did not rely on a cumulus parameterization. The model configuration presented in
Figure 1 was specifically chosen to limit the influence of boundary conditions on the results by assuring
large margins between the nested domains. In addition, the relaxation zone of five points used in
this study was very small compared to the domain sizes. The choice of the innermost domain size
stemmed from work by Norris et al. [15], who emphasized that a fine grid cell resolution was required
to resolve orographic precipitation in this region. The detailed model strategy and parametrization
schemes used in this study are given in Table 1.

Table 1. Model strategy. d01, Domain 01.

A. Physical parameterization schemes

Land surface model (LSM) Noah multi-parameterization (Noah-MP) [35]
Planetary boundary layer (PBL) Yonsei University (YSU) scheme [36]

Microphysics Thompson microphysics scheme [37]
Longwave radiation Rapid radiative transfer model (RRTM) [38]
Shortwave radiation Dudhia scheme [39]

Surface Layer Revised MM5 scheme [40]
Cumulus parameterization Kain–Fritsch scheme [41] in d01 and d02

B. Grids and Nesting Strategy

Nesting Two-way nesting;
Nested in a cascade approach (d01-d02-d03)

Horizontal grid cell resolution
d01 36 km resolution (146 × 115)
d02 12 km resolution (270 × 219)
d03 4 km resolution (526 × 403)

Map projection Lambert conformal
Number of vertical layers 38

Top-level pressure 10,000 Pa
Center point of domains 30.75◦N, 76.00◦E

Timestep Parent time step ratio of 1:3
120 s in d01, 40 s in d02, and 13.33 s in d03

Size of domains
Outer domain (d01) has 146 by 115 grid spaces;

middle domain (d02) has 271 by 220 grid spaces;
inner domain (d03) has 526 by 403 grid spaces

C. Sensitivity Analysis

Simulation 1 Thompson and Noah-MP
Simulation 2 Morrison and Noah-MP
Simulation 3 Goddard and Noah-MP
Simulation 4 Thompson and CLM4
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Research showed that WRF was highly sensitive to the selection of the land surface model (LSM)
and cloud microphysical scheme [15]. Based on limited computational resources, four simulation
experiments (Table 1. Section C) were performed for the year 2004 with a combination of three
cloud microphysical schemes (Thompson, Morrison, and Goddard) and two land surface models
(Noah-multi-parameterization (Noah-MP) and (Community Land Model version 4 (CLM4)) over
the UIB. The RMS error and Pearson’s r between WRF, stations, and TRMM data were estimated at
Skardu station for the year 2004. The results showed that the RMS error between the WRF and station
data was lower in all three domains in Simulation 1. In addition, Pearson’s r between the WRF and
station data in Simulation 1 was slightly higher than the other three simulations. Therefore, the results
suggested that out of the tested configuration, Simulation 1 (Thompson and Noah-MP) offered the
best performance. This was also consistent with Norris et al. [15], wherein they performed sensitivity
analysis over the same region for selected summer and winter days.

2.3. Model Validation

We evaluated the WRF temperature and precipitation output with the station meteorological data
collected from the Pakistan Meteorological Department (PMD) and Water and Power Development
Authority (WAPDA) (details of the stations are given in Table 2). We evaluated the WRF temperature
with the available data of ten stations (Table 2) for the time period of 2001 through 2010. Similarly,
the stations’ data for precipitation were not available for the entire simulation period. Because of the
limited availability of station data, we also assessed the WRF precipitation output with the Tropical
Rainfall Measuring Mission (TRMM) 3B42 Version 7 gridded precipitation data [42] at a monthly
temporal scale. The TRMM 3B42V7 data were available on a 0.25◦ by 0.25◦ latitude-longitude grid at 3
hourly temporal resolution. TRMM 3B42V7 data were collected from remote sensing and adjusted
based on the monthly gauge data. Despite its coarse resolution and other limitations, TRMM 3B42V7 is
considered to be one of the reliable gridded precipitation datasets [4,15]. Krakauer et al. [4] compared
different precipitation datasets with the available stations’ data over the Indus Basin and found the
TRMM dataset to perform best among the remote sensing datasets. Similarly, Ali et al. [43] evaluated
the TRMM Multi-satellite Precipitation Analysis (TMPA) precipitation products (3B42V6, 3B42V7, and
3B42RT) with gauge stations over the Hunza Basin in Karakoram Mountainous range. They also found
3B42V7 reasonably better than the other two products. Several studies have also evaluated the WRF
precipitation with the TRMM dataset (for example, [14,15]).

The WRF precipitation output was evaluated by the root mean squared error (RMSE), percentage
bias, and Pearson correlation coefficient (r), whereas WRF temperature output was evaluated by RMSE,
mean bias, and Pearson correlation coefficient. The expressions of RMSE, percentage bias (PBIAS), and
mean bias for n grid points or n stations are:

RMSE =

√√
1
n

n∑
i=1

(Mi −Oi)
2, (1)

PBIAS =
1
n

n∑
i=1

((Mi −Oi)/Oi) ∗ 100, (2)

mean bias =
1
n

n∑
i=1

(Mi −Oi) (3)

where Mi and Oi represent model simulations and observed data, respectively.
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Table 2. PMD stations, their locations, elevation, and the respective domain. PMD, Pakistan
Meteorological Department; WAPDA, Water and Power Development Authority. P and T represent
precipitation and average temperature, respectively.

Station Lat Lon Station Elevation (m) Data Data Range Source

Astore 35.33 74.90 2168 P, T 2000–2014 PMD
Bunji 35.67 74.63 1372 P, T 2000–2014 PMD

Chillas 35.42 74.10 1250 P, T 2000–2014 PMD
Chitral 35.85 71.83 1497 P, T 2000–2014 PMD
Gilgit 35.92 74.33 1460 P, T 2000–2014 PMD
Gupis 36.17 73.40 2156 P, T 2000–2014 PMD
Hunza 36.32 74.65 2156 P, T 2007–2014 PMD
Skardu 35.30 75.68 2317 P, T 2000–2014 PMD

Khunjerab 36.85 75.40 4707 P, T 2000–2015 WAPDA
Rama 35.36 74.81 3140 P, T 2000–2012 WAPDA
Rattu 35.15 74.82 2920 P, T 2000–2015 WAPDA

Ushkore 36.03 73.40 3353 P 2000–2015 WAPDA
Yasin 36.37 73.30 3353 P 2000–2015 WAPDA
Ziarat 36.83 74.42 3688 P 2000–2015 WAPDA
Naltar 36.13 74.18 2810 P 2000–2015 WAPDA
Ganji 35.45 74.31 1576 P 2000–2015 WAPDA

Daggar 34.51 72.49 732 P 2005–2015 WAPDA
Kachura 35.45 75.42 2340 P 2005–2015 WAPDA
Kandia 35.47 73.15 858 P 2005–2015 WAPDA

Karimabad 36.33 74.70 3048 P 2005–2015 WAPDA
Phulra 34.31 73.08 915 P 2005–2015 WAPDA
Yugo 35.18 76.10 2469 P 2005–2015 WAPDA

Besham Qila 34.93 72.88 580 P 2005–2015 WAPDA

2.4. Trend Analysis

In this study, we performed a trend analysis using the Mann–Kendall (MK) significance test [44,45].
It is a non-parametric test and less affected by the extreme values, which is also widely used to detect
trends in hydrologic time series [46,47].

3. Results

In this section, we evaluate the simulated precipitation in the three domains using the PMD
meteorological data and TRMM data. However, the simulated temperature was evaluated only using
the PMD meteorological data.

3.1. Station-averaged Precipitation Trends

This section describes the extent to which WRF was accurate in reproducing the spatio-temporal
variability of precipitation in the three domains. The annual and seasonal mean precipitation trends
for WRF, TRMM, and station data for all domains are shown in Figure 2. In addition, the Pearson
correlation coefficient was computed between WRF and both observed datasets.
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Figure 2. Time series comparisons between WRF (red), TRMM (green), and the mean of stations
(“observed”; blue) for Domain 01 (d01; left column), Domain 02 (d02; middle column), and Domain
03 (d03; right column). From top to bottom, the five rows correspond to winter (DJF), spring (MAM),
summer (JJA), autumn (SON), and annual. The straight lines are least-squares linear regressions.

There were twenty-three stations (given at Table 2) operated by PMD and WAPDA above Tarbella
Reservoir, and WRF and TRMM data were interpolated at these stations. When WRF, TRMM, and
gauge data at these stations were averaged and compared in d01, WRF tended to overpredict the total
annual precipitation relative to TRMM (115%) and the gauge data (132%) (left column, Figure 2). In
addition, the results showed that the winter season had more bias (PBIAS—206%; RMSE—214 mm)
and the summer season had less bias (PBIAS—70%; RMSE—91 mm) to the stations’ data in the outer
domain. For seasonal precipitation variation from 2001 to 2015, WRF showed a positive correlation with
TRMM and station data for all seasons (Table 3). Similarly, WRF annual precipitation was significantly
correlated with TRMM and gauge data (p < 0.05). However, trend analyses for WRF, TRMM, and gauge
stations located in d01 did not show any statistically significant trends except the summer season,
where station data showed a statistically significant trend. Moreover, the annual TRMM showed a
statistically significant trend.
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Table 3. Mean RMSE (mm), percentage difference (%), and Pearson correlation coefficient (r; unitless)
of precipitation between WRF, stations, and TRMM in d01, d02, and d03.

d01 d02 d03

Winter (DJF)
RMSE (mm) btw WRF and Station (WRF and TRMM) 214 (235) 81 (101) 53 (69)
PBIAS (%) btw WRF and Station (WRF and TRMM) 206 (282) 73 (116) 39 (74)

Pearson Correlation coefficient (r) btw WRF and Station (WRF and TRMM) 0.67 (0.69) 0.7(0.53) 0.59 (0.55)

Spring (MAM)
RMSE (mm) btw WRF and Station (WRF and TRMM) 169 (169) 89 (77) 78 (67)
PBIAS (%) btw WRF and Station (WRF and TRMM) 119 (112) 55 (50) 38 (34)

Pearson Correlation coefficient (r) btw WRF and Station (WRF and TRMM) 0.08 (0.41) 0.34 (0.58) 0.22 (0.44)

Summer (JJA)
RMSE (mm) btw WRF and Station (WRF and TRMM) 91 (72) 42 (59) 36 (62)
PBIAS (%) btw WRF and Station (WRF and TRMM) 70(21) 3 (−26) −10 (−36)

Pearson Correlation coefficient (r) btw WRF and Station (WRF and TRMM) 0.51 (0.39) 0.67 (0.63) 0.7 (0.75)

Autumn (SON)
RMSE (mm) btw WRF and Station (WRF and TRMM) 95 (90) 39 (39) 25 (29)
PBIAS (%) btw WRF and Station (WRF and TRMM) 138 (117) 47(34) 23 (12)

Pearson Correlation coefficient (r) btw WRF and Station (WRF and TRMM) 0.79 (0.67) 0.82 (0.64) 0.69 (0.65)

Annual
RMSE (mm) btw WRF and Station (WRF and TRMM) 525 (497) 185 (160) 111 (91)
PBIAS (%) btw WRF and Station (WRF and TRMM) 132 (115) 45 (35) 23 (15)

Pearson Correlation coefficient (r) btw WRF and Station (WRF and TRMM) 0.66 (0.52) 0.74 (0.63) 0.67 (0.59)

When WRF and TRMM data were interpolated at the twenty-three gauge locations in d02 and
compared, WRF still overpredicted total annual precipitation compared with the TRMM (35%) and
gauge data (45%) (middle column, Figure 2). In addition, the results showed that the winter season had
more bias (73%) and the summer season had less bias (3%) to the stations’ data in the middle domain.
WRF was significantly correlated with TRMM and gauge stations (p < 0.05) in all seasons except spring,
where WRF was positively, but not significantly correlated with the station data. However, trend
analyses for WRF, TRMM, and gauge stations located in d02 did not show any statistically significant
trends except the summer season, where station data showed a statistically significant trend. Moreover,
the annual TRMM showed a statistically significant trend.

When WRF and TRMM data were interpolated at the twenty-three gauge locations in d03 and
compared, WRF still overpredicted total annual precipitation compared with TRMM (15%) and gauge
data (23%) (right column, Figure 2). In addition, the results showed that the winter season had more
bias (39%) and the summer season has less bias (−10%) to the stations’ data in the inner domain
(Table 3). Moreover, WRF was significantly correlated with TRMM and gauge stations (p < 0.05) in
all seasons except spring, where WRF was positively, but not significantly correlated with the station
and TRMM data. However, trend analyses for WRF, TRMM, and gauge stations located in d03 did
not show any statistically significant trends except the summer season, where station data showed a
statistically significant trend. Moreover, the annual TRMM showed a statistically significant trend.

The station-wise comparison of PBIAS (Table 4) also showed that most of the precipitation
simulations were largely improved from d01 to d03 at all stations. Besham Qila is located at the lowest
elevation, and it had a low PBIAS value (−13%) in the d03; the increase of the resolution did not make
any significant difference in the bias value. However, the highest elevated station was Khunjerab,
where the precipitation simulations were improved from d01 (bias 350%) to d03 (bias 251%), but this
station also had one of the largest biases. Among five high-elevation stations (Khunjerab, Ziarat,
Ushkore, Yasin, and Karimabad), Karimabad, Ushkore, and Khujerab stations had the largest bias
in d03. Low-elevation stations showed overall smaller biases. Among four low-elevation stations
(Besham Qila, Daggar, Kandia, and Phulra), only Kandia showed a high bias (239%), whereas the other
three had smaller biases (less than 20%).
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Table 4. PBIAS of precipitation and mean bias (◦C) of T2 after lapse rate correction between WRF and
stations in d01, d02, and d03 at an annual time scale.

PBIAS Mean Bias (◦C)

Station d01 d02 d03 d01 d02 d03

Astore 135 54 42 −3.4 −1.5 0.76
Bunji 329 47 −3.5 −9.8 −2.6 4.7

Chillas 213 19 24 −13.6 −4.0 −0.2
Chitral 111 27 −3 −12.8 −6.8 −3.7
Gilgit 447 141 42 −12.2 −7.1 0.4
Gupis 257 103 184 −14.9 −11.9 −14.0
Hunza 876 409 132 - - -
Skardu 185 −4 −10 −12.4 −3.7 0.6

Khunjerab 350 509 251 −1.3 −3.4 −2.6
Rama 56 1 12 −2.6 −0.8 1.6
Rattu 137 33 18 −6.9 −3.7 −1.7

Ushkore 162 201 123 - - -
Yasin 116 9 34 - - -
Ziarat 521 177 32 - - -
Naltar 56 −28 14 - - -
Ganji 315 82 71 - - -

Daggar −49 −33 −19 - - -
Kachura 510 245 157 - - -
Kandia 531 326 239 - - -

Karimabad 1967 725 536 - - -
Phulra −10 9 13 - - -
Yugo 783 280 213 - - -

Besham Qila 9 −0.5 −13 - - -

3.2. Station-Averaged Temperature Trends

This section examines the extent to which WRF was accurate in reproducing the spatio-temporal
variability of temperature in the three domains. There were only ten stations’ data available for the
10 year time period (i.e., 2001 through 20110). The WRF output was compared with the station data by
performing a lapse rate correction to adjust vertically from the WRF grid point elevation to the station
elevation, as detailed below (Figure 3). For all three domains, WRF underpredicted the average annual
and seasonal temperatures in all seasons. WRF showed a positive correlation with the station data
(Table 5) in all seasons. However, most of these trends for temperature were not statistically significant.
The important feature was how the simulated temperature and bias changed as the resolution increased.
The results showed that RMSE and mean bias were noticeably changed from d01 to d03 in all seasons.
This showed that WRF tended to underestimate the 2 m air temperature in d01 (annual mean bias of
−7.7 ◦C), d02 (annual mean bias of −3.4 ◦C), and d03 (annual mean bias of −0.24 ◦C), respectively.

Figure 4 shows the change in the mean lapse rate with altitude in all three domains. The average
lapse rate for d01, d02, and d03 across the simulated period was estimated to be −6.9167, −6.7863, and
−6.8111◦C/km, respectively. These lapse rates were used to interpolate the simulated temperature
time series vertically to the actual heights of the stations. For each station, the difference between the
station height and WRF height was computed, multiplied by the average lapse rate, and added to the
simulated temperature values (Table 6). The station-wise comparison of the mean bias (Table 4) showed
that most of the temperature simulations were greatly improved from d01 to d03 at all stations. The
results showed that Astore, Chillas, Gilgit, and Skardu stations had the lowest bias in d03. However,
Bunji, Chitral, and Gupis had the highest bias in d03.
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Table 5. Mean RMSE (◦C), mean bias (◦C), and Pearson correlation coefficient (r; unitless) between
station-averaged and WRF interpolated lapse rate corrected 2 m air temperature (T2) in d01, d02,
and d03.

d01 d02 d03

Winter (DJF)
RMSE (◦C) 8.4 3.6 0.94

Mean bias (◦C) −8.3 −3.5 0.23
Pearson correlation coefficient (r) 0.36 0.6 0.6

Spring (MAM)
RMSE (◦C) 8.2 3.3 0.69

Mean bias (◦C) −8.2 −3.3 −0.49
Pearson correlation coefficient (r) 0.89 0.91 0.91

Summer (JJA)
RMSE (◦C) 6.1 2.4 0.84

Mean bias (◦C) −6.1 −2.3 −0.51
Pearson correlation coefficient (r) 0.68 0.73 0.73

Autumn (SON)
RMSE (◦C) 8.3 4.3 1.2

Mean bias (◦C) −8.2 −4.3 −1.1
Pearson correlation coefficient (r) 0.08 0.18 0.53

Annual
RMSE (◦C) 7.7 3.4 0.78

Mean bias (◦C) −7.7 −3.4 −0.24
Pearson correlation coefficient (r) 0.7 −0.44 −0.4

Table 6. Stations and the interpolated 2 m air temperature (T2) with lapse rate correction at an annual
time scale.

Station
Station

Elev.
(m)

WRF
Elev.

(m) in
d01

WRF
Elev.

(m) in
d02

WRF
Elev.

(m) in
d03

Diff.
(d01)

Diff.
(d02)

Diff.
(d03)

Interpolated
T2 (◦C) in d01

Interpolated
T2 (◦C) in d02

Interpolated
T2 (◦C) in d03

T2 = T0 −
0.0069167

T2 = T0 −
0.0067863

T2 = T0 −
0.00681

Astore 2168 3824 3705 3500 −1656 −1537 −1332 11.4541 10.43 9.071
Bunji 1372 3454 2638 1634 −2082 −1266 −262 14.4006 8.591 1.784

Chillas 1250 3097 1932 1397 −1847 −682 −147 12.7751 4.628 1.001
Chitral 1497 3469 2767 2507 −1972 −1270 −1010 13.6397 8.619 6.878
Gilgit 1460 3360 2892 1905 −1900 −1432 −445 13.1417 9.718 3.03
Gupis 2156 4034 3862 4317 −1878 −1706 −2161 12.9896 11.58 14.72
Skardu 2317 3971 3106 2493 −1654 −789 −176 11.4402 5.354 1.199

Khunjerab 4707 3971 5015 5040 736 −308 −333 −5.0907 2.09 2.268
Rama 3140 3749 3627 3394 −609 −487 −254 4.21227 3.305 1.73
Rattu 2920 3925 3572 3403 −1005 −652 −483 6.95128 4.425 3.289

4. Discussion and Conclusions

The WRF model was applied to simulate the spatiotemporal variability of precipitation and
temperature over the Indus Basin from 2000 through 2015 using boundary conditions derived from
the CFSR reanalysis dataset. We found that most of the precipitation trends in WRF, TRMM, and
station precipitation at gauge locations were not statistically significant, which was consistent with
Ahmad et al. [48], Khattak et al. [49], and Norris et al. [23].

The critical aspect was how the simulated precipitation amount and bias changed as resolution
increased. The precipitation simulations were significantly improved from d01 (36 km) to d03 (4 km).
The annual PBIAS between WRF and stations’ data was decreased from d01 (132%) to d03 (23%). These
results seemed broadly consistent with the previous studies [14,15,23,50,51], which also showed a
positive influence of increasing resolution on precipitation over complex regions. Moreover, the WRF
was significantly correlated with TRMM and station data in most of the seasons (except spring season)
in all domains. WRF was able to capture the precipitation trends in most of the seasons, but tended to
overestimate precipitation in all domains, which may reflect an underestimation of precipitation by the
observed datasets as discussed earlier. Many researchers have revealed that the existing observation
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dataset network including TRMM 3B42V7 underestimates precipitation amounts by 66% to 300% over
the UIB [52–54]. The gauges in the UIB in Pakistan suffer from undercatch for winter precipitation,
especially snowfall (Norris et al. [15]), which could cause a significant amount of wet bias in this
season. However, precipitation occurs in the form of rain in spring and summer seasons over this
region, which the rain gauges measure more accurately. This contributed to less discrepancy between
WRF precipitation and station observations in the summer season. However, the WRF simulations for
temperature were much better than those of precipitation. The mean bias was noticeably reduced with
the increasing resolution. The WRF model showed an underestimation of 2 m air temperature in all
domains and seasons, which was consistent with prior studies [23] over this region.

The higher resolution simulations show a significantly improved representation of the climatic
variables. Therefore, the spatial grid spacing resolution of the inner domain (d03) is high enough to
capture the orographic effects in this area. Moreover, the results show that both precipitation and
temperature output are largely improved with the increase of the resolution.

Some future research possibilities arise from this discussion. One is that an in-depth sensitivity
analysis with different physical parameterization schemes (microphysics, LSM, PBL, and cumulus)
may be beneficial in this region. In addition, we used the WRF model to simulate the spatiotemporal
variability of precipitation and temperature over the Indus Basin from 2000 through 2015 with boundary
conditions derived from the Climate Forecast System Reanalysis (CFSR) data. The CFSR data have been
shown to capture the trends overall. However, it would be potentially useful to assess the alternative
global reanalysis data products (such as ERA-Interim) to derive the boundary conditions over this
region. It is possible that some of those alternative global reanalysis datasets may produce even better
results. In this study, we have used the station data and TRMM 3B42V7 dataset to validate the WRF
output. However, employing multiple gridded datasets such as GPCC, CRU, and MODIS snow cover
product to assess the WRF output would be recommended.

Knowing the limitations of GCMs over complex and rugged terrain, regional climate models were
the best available tools to simulate climate change. This study did not intend to analyze the climatic
processes that influence the precipitation and temperature, but provided an overview of the ability
of WRF to simulate spatiotemporal variability of precipitation and temperature over the UIB. These
analyses could provide a better understanding of the limitations and reliability of WRF simulations.
In addition, this study presented high-resolution climatological datasets, which could be useful for
climate change and other hydrological studies in this region.
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