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Abstract: In an unbalanced linear three-phase electrical system, there are inefficient powers that
increase the apparent power supplied by the network, line losses, machine malfunctions, etc. These
inefficiencies are mainly due to the use of unbalanced loads. Unlike a three-wire unbalanced system,
a four-wire system has zero sequence currents that circulate through the neutral wire and can be
compensated by means of compensation equipment, which prevents it from being delivered by the
network. To design a compensator that works with unbalanced voltages, it is necessary to consider
the interactions between it and the other compensators used to compensate for negative-sequence
currents and positive-sequence reactive currents. In this paper, through passive compensation, a new
method is proposed to develop the zero sequence current compensation equipment. The method does
not require iteration algorithms and is valid for unbalanced voltages. In addition, the interactions
between all compensators are analyzed, and the necessary modifications in the calculations are
proposed to obtain a total compensation. To facilitate the application of the method and demonstrate
its validity, a case study is developed from a three-phase linear four-wire system with unbalanced
voltages and loads. The results obtained are compared with other compensation methods that also
use passive elements.

Keywords: unbalanced power; reactive power; negative-sequence current; zero-sequence
current; compensation

1. Introduction

Low voltage electrical systems usually operate unbalanced, especially in four-wire supply
networks where three-phase and single-phase loads coexist. These imbalances are attributable to both
the loads and the voltages; this imbalance manifests as an increase of the total apparent power with
respect to the ideal power of a balanced system, which is characterised by the positive sequence active
power. The difference with three-phase three-wire systems is that there exists a zero sequence of the
line current or current flowing through the neutral wire. These unbalanced powers that appear can be
studied from Buchholz’s apparent power [1] expressed as a function of its symmetric components [2].

The first reactive power compensator was developed by Steinmetz in 1917 [3]. Subsequently
research continued, until relatively recently, in the investigation of reactive compensation giving rise to
several research papers (those worth mentioning include [4–6]). However, imbalances are responsible
for increases in the total apparent power that the generator must deliver, increased line losses [7],
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heating [8], machine malfunctions [9], protection malfunctions [10], etc. These unbalanced apparent
powers have already been established in the IEEE-Std 1459-2010 [11].

A three-phase four-wire system powered by an infinite short-circuit power generator would have
negative- and zero-sequence voltages that generate unbalanced powers, which cannot be efficiently
compensated for. However, there are regulatory standards on the quality of the electricity supply that
limit the unbalanced voltages [12,13].

The unbalanced currents are directly attributable to the characteristics of the load, although in
systems with unbalanced voltages and balanced loads, unbalanced currents are also generated. From
the above, the need to study the mechanisms to eliminate these inefficiencies is clear.

There have been more papers aimed at eliminating inefficient apparent powers in three-phase
three-wire systems than in four-wire systems. In this work, the three-phase four-wire systems are
analyzed and a new methodology for the elimination of said powers is proposed, since in a previous
work [14] the authors already resolved this problem for three-phase three-wire systems through
passive compensators.

It is clear that active filters are more effective than passive compensators. However, active filters
are much more expensive and less robust than passive compensators. Nevertheless, the reactive power
compensators remain valid solutions for applications in consumer and electricity distribution in those
situations when the criterion regarding the costs of installing and operating the equipment is more
important than the ones related to the reaction speed or the control accuracy. This is also the case of the
equipment for power factor improvement and load balancing in a three-phase distribution network.
Of the works aimed at three-phase four-wire systems, it is worth mentioning the ones discussed below.

Lee and Wu [15] developed three-phase three-wire systems based on an earlier article by
Gyugyi [16]. At first, they assumed that the voltage system was unbalanced, but it really used balanced
voltage, much like Gyugyi.

De Oliveira et al. [17], also working off Gyugyi, extended the method to four-wire systems. They
added the desired power factor to the equations of the compensators. However, their method was only
valid for balanced voltages and presented infinite solutions.

Li and Wang [18] presented a methodology to obtain a compensator for negative- and zero-sequence
currents, and positive-sequence reactive currents. The compensator is only formed by capacitors.
For this, they assumed the load to be very inductive. They based this on the theory of instantaneous
reactive power (Akagi) and used Clarke’s transform matrix. However, it is only applicable to
three-phase systems with balanced voltages. It is also necessary to know the value and characteristics
of the load.

León [19] presented an equivalent circuit that represented the inefficiency of the zero-sequence
current which also becomes a compensator of said current when the sign is changed to that of the
reactances. Like the previous studies, it is also only valid for balanced systems.

In 2015, Czarnecki and Haley [20] extended their previous work for three-wire systems [21,22]
to four-wire systems. They showed that the unbalanced power in four-wire systems is due to a
negative-sequence current and a zero-sequence current. To compensate for these currents, it was
necessary to use at least two compensators. This conclusion was also reached earlier by León-Martinez
and Montañana-Romeu [19] and in the current study.

Finally, in 2018, Pana et al. [23] developed a mathematical model that they call the balanced
capacitive compensator (BCC). The algorithm eliminated the positive reactive power, as well as the
negative-sequence and zero-sequence currents. They used single-phase capacitor banks. To implement
the mathematical model, the nature and values of the loads need to be known and several computer
programs are necessary. However, as in all previous papers, it is only valid for systems with
balanced voltages.

From the analysis of the methods mentioned above it was observed that they have limitations. This
is mainly because they are designed to work with balanced voltages. In addition, they consider that
the imbalances of the voltages are due to the load of the analyzed system and not to the characteristics
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of the network itself. These types of limitations are resolved in the compensation proposal presented in
this work. That is, it is valid for unbalanced voltages and independent of the values and characteristics
of the load.

The present work shows the development of a compensating circuit for the zero-sequence
current (ZSCC) that consumes the load in a three-phase four-wire system with unbalanced voltages
and unbalanced currents. This compensator, together with the compensating circuits of the
negative-sequence currents (NSCC) and the positive-sequence reactive component (SVC) for three-wire
networks, developed by Blasco and colleagues [14], constitute a procedure of total compensation
for the inefficient currents. Therefore, the present study is a continuation of said work, and gives a
solution to the interactions between the sequence currents caused by each compensator in four-wire
electrical systems.

The compensating circuits are connected in parallel to the load in the bus, so that the network in
the bus only provides a positive-sequence active currents system. The current flowing through the
neutral wire is zero. This procedure provides maximum efficiency downstream of the bus (i.e., the unit
for the power factor).

Thus, a procedure of total optimization of an electrical system is presented, which, given the
characteristics of passive compensators, makes it effective when the loads are stationary or of low
variability over time. The described procedure allows adaptability to hybrid compensation systems,
thus increasing their versatility. In addition, it provides great robustness and low cost compared to
active or hybrid systems.

This entails great benefits, since the network will always provide a balanced system of
positive-sequence currents in the bus, even if the load is single-phase. No current will flow through
the neutral wire, and the losses in the network will be minimal.

To determine the values of the reactances that make up the compensation circuits, it is enough to
know the line-to-neutral voltages and the line currents in the bus, not the characteristics and the way
of connecting the load. It is also not necessary to know the state of the network upstream of the bus,
since the compensators adapt to the voltage and current values obtained in the bus at all times.

The remainder of this article is structured as follows. In Section 2, the expressions of the powers
to be used in this paper are established. In Section 3, the expressions that will give rise to the
values of the reactances to be placed in the zero-sequence current compensator are developed. Three
cases of three-phase four-wire systems fed with different voltage systems are analyzed: balanced,
unbalanced only in modules, and unbalanced in modules and angles. In addition, the interaction
between the different compensators is analyzed to eliminate the different inefficient apparent powers
and a calculation sequence of the different compensators is proposed. An example with unbalanced
loads and voltages is presented in Section 4, where the compensators are applied to verify the proposed
method. In addition, the results obtained are compared with other existing compensation methods.
Finally, in Section 5 the results obtained are analyzed and conclusions are established.

2. Analysis of the Unbalanced Powers in a Three-Phase Four-Wire Linear System

Figure 1 shows a linear unbalanced load that is connected to a three-phase four-wire system with
unbalanced voltages.
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The apparent power in the bus is determined by Equation (1).

S = Sa + Sb + Sc (1)

where

• S is the complex apparent power of the system defined in the classical theories.
• Sa, Sb and Sc are the complex powers in each of the phases.

In contrast, the total apparent power of Buchholz ST of a three-phase four-wire system, which
is expressed in symmetrical components and related to the apparent power S, is determined by
Equation (2).

ST = 3
√(

V2
+ + V2

−
+ V2

0

) (
I2
+ + I2

−
+ I2

0

)
=

√
S2 + S2
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√

P2 + Q2 + S2
uT (2)

where SuT is the unbalanced apparent power caused by voltages and currents of different sequences.
Its value is obtained from Equation (3).

S2
uT = S−u+

2 + S0
u+

2 + S+
u−

2 + S0
u−

2 + S+
u0

2 + S−u0
2
− 2(P+P− + P+P0 + P−P0)−

2(Q+Q− + Q+Q0 + Q−Q0)
(3)

Here,

• P+, P− and P0 are the positive-, negative- and zero-sequence active power, respectively.
• Q+, Q− and Q0 are the positive-, negative- and zero-sequence reactive power, respectively.

The values of these unbalanced apparent powers are calculated from Equations (4)–(9),
for z = {a, b, c}.

S−u+ = 3V+I− (4)

S0
u+ = 3V+I0 (5)

S+
u− = 3V−I+ (6)

S0
u− = 3V−I0 (7)

S+
u0 = 3V0I+ (8)

S−u0 = 3V0I− (9)

The powers S−u+, S0
u+, S0

u−, S−u0, Q+, Q− and Q0 can be cancelled in the bus, if we compensate for
negative-sequence currents, zero-sequence currents, and the imaginary part of the positive sequence
current that consumes the load. In contrast, P− and P0 will become P+ to keep the total active power
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consumed by the load constant. S+
u− and S+

u0 cannot be compensated, since in an infinite short-circuit
power network, negative-sequence voltages and zero-sequence voltages are imposed by the network
itself, although its value will change depending on the new values of positive-sequence currents.

3. Compensation of Unbalanced Three-Phase 4-Wire Linear Systems

In a three-phase four-wire system with unbalanced loads connected to an infinite short-circuit
power network, the voltages are fixed and imposed by the network. The currents are unbalanced;
therefore, there are positive-sequence currents, negative-sequence currents, and zero-sequence currents.
Figure 2 shows our compensation proposal for an unbalanced four-wire system. We have used three
passive compensators constituted from capacitors and/or coils. The SVC compensator (static VAR
Compensator) and the NSCC compensator (negative sequence current compensator) allow us to
compensate for the imaginary part of the positive-sequence current and the negative-sequence current
provided by the network to the bus; therefore, these devices will compensate for the reactive powers and
the unbalanced powers caused by these currents. These two compensators can be unified into one, as
proposed in the previous work of the same authors [14]. Finally, the zero-sequence current compensator
(ZSCC compensator) allows us to cancel the zero-sequence current provided by the network to the bus,
which will compensate for the unbalanced powers caused by zero-sequence currents.

The main objective of this study is the design of the ZSCC compensator, because the design of the
NSCC and SVC compensators was addressed by Blasco and colleagues [14]. However, as will be shown
below, the ZSCC compensator consumes negative-sequence currents and positive-sequence currents
that depend on whether the bus voltages are balanced or unbalanced. For this reason, the expressions
of the NSCC compensator and SVC compensator proposed by Blasco and co-worker [14] must be
modified to include these negative sequence currents and the positive sequence currents caused by the
ZSCC compensator.
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3.1. ZSCC Compensator with Balanced Voltages

Figure 3 shows the four-wire system proposed in Figure 2, but with only the ZSCC compensator
and the equivalent network load downstream of the bus. Supposing that the voltages in the bus are
balanced, the line-to-neutral voltages coincide with the positive-sequence voltages in Equation (10),
where a = e j120.

Van = Va+ = V+ Vbn = Vb+ = a2 V+ Vcn = Vc+ = a V+ (10)
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Using the Fortescue transformation matrix, the line currents of the load expressed in symmetric
components are determined by Equation (11).

IaL = IaL+ + IaL− + IaL0 IbL = IbL+ + IbL− + IbL0 IcL = IcL+ + IcL− + IcL0 (11)

In addition, it is known that IaL0 = IbL0 = IcL0.
The objective of the ZSCC compensator is to compensate for IaL0, IbL0 and IcL0, which are the

zero-sequence currents of the respective loads. Figure 4a shows the vector diagram corresponding to
phase A, where it is considered that the line-to-neutral voltage is Van = Vane j0 and that the zero-sequence
current of the load is IaL0 = IaL0e− jβaL0 . Therefore, the zero-sequence current to compensate will be
equal to the zero-sequence current of the load but with the opposite sign. As IaL0 is delayed with
respect to Van, the reactance Xaw of the compensator must be capacitive (capacitor), hence the current
of the compensator IaW is advanced +π

2 with respect to Van. Obviously, it is impossible to comply
with IaW = −IaL0, therefore, the compensator will consume an additional current I′aW , such that

I′aW = IaL0 e jβaL0 (see Figure 4b). It follows that IaW will be determined by Equation (12).

IaW = I′aW − IaL0 (12)
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If we consider phases B and C, taking into account that Vbn = Vbne− j120 and Vcn = Vcne j120 and
performing the same procedure as in phase A, it is observed that IbL0 is advanced with respect to Vbn,
therefore, the reactance Xbw to be placed in phase B of the ZSCC compensator is inductive (coil), as seen
in Figure 5a. On the other hand, IcL0 is delayed with respect to Vcn, therefore, the reactance Xcw to be
placed in phase C of the ZSCC compensator is capacitive (capacitor), as shown Figure 5b. That Xaw,
Xbw and Xcw do not have the same sign is evident since the arithmetic sum of the unbalanced powers
of the compensator must be zero.Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 22 
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In the same way as Equation (12), IbW and IcW are determined by Equation (13) and (14), respectively.

IbW = I′bW − IbL0 (13)

IcW = I′cW − IcL0 (14)

If we join the vector diagrams of the three phases, the diagram in Figure 6 is obtained. It shows
that currents I′aW , I′bW and I′cW form a system of negative-sequence currents. Therefore, at balanced

line-to-neutral voltages, currents IaW , IbW and IcW consumed by the ZSCC compensator are broken
down into a system of zero-sequence currents in the direction opposite to the zero-sequence currents
of the load, and a balanced system of negative-sequence currents is created, whose values are obtained
from Equations (15)–(17); where IaW−, IbW− and IcW− are the negative sequence currents consumed by
the compensator in phases A, B and C, respectively.

IaW− = I′aW =
(
IaL0

)∗
(15)

IbW− = I′bW = a IaW− (16)

IcW− = I′cW = a2 IaW− (17)
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Substituting Equations (15)–(17) in Equations (12)–(14) and generalizing for z = {a, b, c},
Equation (18) is obtained.

IzW = IzW− − IzL0 (18)

Considering Equations (15)–(17) and Equations (11)–(14), the neutral current InW of the ZSCC
compensator is determined by Equation (19) since IaW− + IbW− + IcW− = 0. This result is logical since
the objective of the ZSCC compensator is to compensate for the neutral current consumed by the load.
Therefore, in the bus, In = InW + InL = 0.

InW = IaW + IbW + IcW = −
(
IaL0 + IbL0 + IcL0

)
(19)

If we re-analyze the vector diagram in Figure 4, it can be seen that the angle between IaW and
Van is π

2 and the RMS value of IaW is determined by double the imaginary part of the zero-sequence
current of the load IaL0. In terms of power, these statements translate into the fact that the only power
consumed by the ZSCC compensator in phase A is reactive power QaW

an . Therefore, we affirm that the
reactive power consumed by the compensator in phase A is equal to twice the unbalanced reactive
power caused by the line-to-neutral voltage and the zero-sequence current of the load, obviously with
the opposite sign. Its value is determined by Equation (20).

QaW
an = −2 VanIaL0 sin(αan − βaL0) = −2 QaL0

an (20)

Similarly, for phases B and C from the vector diagrams of Figure 5, Equations (21) and (22)
are obtained.

QbW
bn = −2 VbnIbL0 sin(αbn − βbL0) = −2 QbL0

bn (21)

QcW
cn = −2 VcnIcL0 sin(αcn − βcL0) = −2 QcL0

cn (22)

If we generalize Equations (20)–(22) for z = {a, b, c}, we get Equation (23).

QzW
zn = −2 VznIzL0 sin(αzn − βzL0) = −2 QzL0

zn (23)

For each phase of the compensator, the reactances are given by

XzW =
QzW

zn

IzW2 (24)
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Considering Equations (23) and (24), the reactance value of the ZSCC compensator in each phase
can also be expressed from Equation (25); where, coil for XzW > 0 and capacitor for XzW < 0.

XzW = −2
QzL0

zn

IzW2 =
−(Vzn)

2

2 QzL0
zn

(25)

3.2. ZSCC Compensator with Unbalanced Voltages

If the voltages in the bus in Figure 3 are unbalanced, then in this case, two situations with different
behaviors are possible:

• When the modules of the line-to-neutral voltages are different, but their phase angles are offset
±120 degrees from each other.

• When the phase angles are not offset ±120 degrees from each other.

When the voltage imbalance is only because the modules of the line-to-neutral voltages in each
phase are not equal, the behavior of the ZSCC compensator is identical to that set out above for balanced
voltages. The decomposition of currents IaW , IbW and IcW into symmetric components, gives rise to
a system of zero-sequence currents and a system of negative-sequence currents. As with balanced
voltages, the ZSCC compensator does not consume positive-sequence currents. Therefore, the reactive
power in each phase consumed by the ZSCC compensator will also be equal to twice the reactive
power caused by the line-to-neutral voltage and zero-sequence current of the load, but of the opposite
sign. Hence, the values of the compensator reactances calculated from Equation (25) are perfectly valid
for this type of situation.

On the contrary, when the phase angles of the line-to-neutral voltages are not offset ±120 degrees,
regardless of the RMS value of the voltages, when decomposing the currents IaW , IbW and IcW ,
in addition to the system of zero-sequence currents and from the negative-sequence current system,
a positive-sequence current system is obtained that is not null. Therefore, the currents IzW consumed
by the compensator are determined by Equation (26). All this implies that Equation (18) is not valid
when the phase angles of the voltages are not compensated ±120 degrees from each other, and as a
consequence, Equation (25) is also not valid. Moreover, if we calculate the compensator reactances
at unbalanced voltages using Equation (25) and analyze the system, we observe that the value of
the zero-sequence current consumed by the ZSCC compensator is different from that necessary to
compensate for the load. A new zero-sequence current different from the desired one appears and must
be taken into account to perform the calculation again. This procedure will be performed iterating
indefinitely until a valid solution is obtained. The number of iterations required will depend on the
degree of voltage imbalance and the accuracy that is desired.

IzW = IzW+ + IzW− + IzW0 (26)

To solve this problem, the authors present an exact calculation procedure that makes it unnecessary
to use iterative methods. To do this, we will use the zero-sequence currents consumed by the load
with the opposite sign −IzL0 and the zero-sequence currents consumed by the ZSCC compensator
obtained from the values of the reactances according to Equation (25), which we will call IzW0(25) for

z = {a, b, c}. If we define the phasor of deviation of the zero-sequence current fW0 as the quotient
between the phasors of both currents, Equation (27) is obtained; where, A is the real part of fW0 and B
is the imaginary part of fW0. Obviously, fW0 is identical in each of the phases. When the angles of the
line-to-neutral voltages are ±120 degrees out of phase, then A = 1 and B = 0.

fW0 =
−IaL0

IaW0(25)
=
−IbL0

IbW0(25)
=
−IcL0

IcW0(25)
= A + jB (27)
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where IaW0(25) = IbW0(25) = IcW0(25) is given by Equation (28). Here, XaW(25), XaW(25) and XaW(25) are

the ZSCC compensator reactances calculated from Equation (25).

IzW0(25) =
1
3

 Van

XaW(25)
+

Vbn

XbW(25)
+

Vcn

XcW(25)

 (28)

Performing the same procedure for the positive-sequence current system and for the negative
sequence current system consumed by the ZSCC compensator, we define the phasor of deviation of
the positive-sequence current fW+ and the phasor of deviation of the negative-sequence current fW−
according to Equation (29). These phasors are equal to each other and in each of the phases; where,
C is the real part of both phasors and D is the imaginary part. When the angles of the line-to-neutral
voltages are ±120 degrees out of phase, then C = 1 and D = 0.

fW+ = fW− =
IzW+

IzW+(25)
=

IzW−

IzW−(25)
= C + jD (29)

Here
IaW+(25) = IW+(25) IbW+(25) = a2 IW+(25) IbW+(25) = a IW+(25) (30)

IaW−(25) = IW−(25) IbW−(25) = a IW−(25) IbW−(25) = a2 IW−(25) (31)

where

IW+(25) =
1
3

 Van

XaW(25)
+

Vbn

XbW(25)
a +

Vcn

XcW(25)
a2

 (32)

IW−(25) =
1
3

 Van

XaW(25)
+

Vbn

XbW(25)
a2 +

Vcn

XcW(25)
a

 (33)

If we define the global phasor of deviation of currents fWG consumed by the ZSCC compensator
as the ratio between any of the phasors ( fW+ or fW−) and the phasor fW0, Equation (34) is obtained.
It is observed that

• The real part of fWG is unity. This is because the values of the actual components of the sequence
currents that are obtained with the application of Equation (25) generate an active power of null
value. This must be so since the elements that make up the ZSCC compensator are reactive (coils
and capacitors). Then the real part of fWG must be the unit to maintain this proportion between
the currents of different sequences.

• The imaginary part of fWG is twice the imaginary part of fW+ or fW−. This is because in
Equation (25) the imaginary part of the zero-sequence component is multiplied by two, then
to maintain the same proportion they must also multiply for two the imaginary parts of fW+

and fW−.

fWG =
fW+

fW0
=

fW−

fW0
= 1 + j2D (34)

Knowing that the values of fW+ and fW− are calculated from known currents and considering
Equation (37), it is easy to determine A and B. Using trigonometric operations, the values of C and D
are determined from Equations (35) and (36), respectively.

C = A−
2B2

(1− 2A)
(35)
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D =
B

(1− 2A)
(36)

Therefore, fW+ or fW− are determined by Equation (37).

fW+ = fW− =

{
A−

2B2

(1− 2A)

}
+ j

{
2

B
(1− 2A)

}
(37)

From Equations (37) and (34), we will determine IzW+ and IzW− from Equations (38) and (39).
The zero-sequence currents consumed by the ZSCC compensator are the same as the zero sequence
currents of the load but with the opposite sign. Therefore, the currents per phase of the optimal solution
IzW consumed by the ZSCC compensator are given by Equation (40).

IzW+ = fW+ IzW+(25) (38)

IzW− = fW− IzW−(25) (39)

IzW = IzW+ + IzW− − IzL0 (40)

From Equation (40) and applying Ohm’s law, the values of the ZSCC compensator reactances are
determined by Equation (41).

XzW =
Vzn

IzW
(41)

Considering Equation (24), Equation (41) can be expressed in terms of reactive power according
to Equation (42); where, coil for XzW > 0 and capacitor for XzW < 0.

XzW =
QzW

zn

IzW2 =
QzW+

zn + QzW−
zn −QzL0

zn

IzW2 =
(Vzn)

2

QzW+
zn + QzW−

zn −QzL0
zn

(42)

As expected, when the voltages are balanced, Equation (42) coincides with Equation (25), since
QzW+

zn = 0 and QzW−
zn = −QzL0

zn .
Analyzing the active powers and reactive powers once the ZSCC compensator is included, we

highlight that:

• The total active system power P consumed by the network is the same with or without the
ZSCC compensator. The compensator does not consume active power, therefore, P will always
be constant. Since the compensator compensates for zero-sequence currents, the value of the
zero-sequence active power P0 is equal to zero. Therefore, the values of P+ and P− will be modified
so that P is constant.

• The total reactive power of the system Q will change its value. Now the zero-sequence reactive
power will be zero, Q0 = 0; on the other hand, the values of Q+ and Q− will be different from the
initial ones. Depending on the characteristics of the system, the power factor of the system will
improve or worsen.

In conclusion, to design the ZSCC compensator, it is only necessary to know the values of the
line-to-neutral voltages and the zero-sequence current in the bus.

In the next section, we will use the SVC compensator to compensate for the positive-sequence
reactive currents and the NSCC compensator to compensate for the negative-sequence currents.

3.3. Analysis and Application of SVC Compensator and NSCC Compensator to a Four-Wire System

As mentioned in the previous sections, by including the ZSCC compensator we know that:

• When the angles of the line-to-neutral voltages are offset ±120 degrees from each other, the ZSCC
compensator consumes a negative-sequence current, in addition to the zero-sequence current.
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• When the angles of the line-to-neutral voltages are not offset ±120 degrees from each other,
the ZSCC compensator consumes a positive-sequence current and a negative-sequence current,
in addition to the zero-sequence current.

Since the ZSCC compensator compensates for the zero-sequence currents of the load, the line
currents in the bus were modified and consist only of positive-sequence currents and negative-sequence
currents. In both cases, the new line currents will be the result of adding the currents consumed by the
load and the currents consumed by the ZSCC compensator.

These changes must be taken into account in the calculation expressions of the SVC and NSCC
compensators, since we must consider the set formed by the load plus the ZSCC compensator instead
of the initial load. Therefore, the sequence of calculation of the compensators is important to obtain a
total compensation of the inefficient currents. Thus, the ZSCC compensator must be designed first,
followed by the SVC compensator and then the NSCC compensator.

From Equation (43), the values of the SVC compensator reactances are obtained, where QzP+ is the
positive-sequence reactive power consumed by the SVC compensator and is given by Equation (44).
From Equation (45), the values of the reactances of the NSCC compensator are obtained, where Q−zF+ is
the unbalanced reactive power consumed by the NSCC compensator caused by the positive-sequence
voltage Vz+ and IzF− which is the negative-sequence current which consumes the NSCC compensator.
IzF− is determined by Equation (46) and calculated from the sum of the negative-sequence currents of
load IzL−, the ZSCC compensator IzW− and the SVC compensator IzP−.

XzP =
Vz+

2

QzP+
(43)

QzP+ =
(QzL− + QzW−) − (QzL+ + QzW+)

1− δ2
−

where δ− =
V−
V+

(44)

XzF = −2
Q−zF+

IzF−2 (45)

IzF− = IzL− + IzW− + IzP− (46)

In the same way as in another work [14], using the Kennelly–Rosen transformation,
the compensators (SVC and NSCC) can be joined in a single delta connected compensator. Figure 7
shows our compensation proposal using this delta connected compensator.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 22 

𝑄𝑧𝑃+ =
(𝑄𝑧𝐿− + 𝑄𝑧𝑊−) − (𝑄𝑧𝐿+ + 𝑄𝑧𝑊+)

1 − 𝛿−
2

      where 𝛿− =
𝑉−

𝑉+

  (44) 

𝑋𝑧𝐹 = −2
𝑄𝑧𝐹+

−

𝐼𝑧𝐹−
2  (45) 

𝐼𝑧𝐹− = 𝐼𝑧𝐿− + 𝐼𝑧𝑊− + 𝐼𝑧𝑃−  (46) 

In the same way as in another work [14], using the Kennelly–Rosen transformation, the 

compensators (SVC and NSCC) can be joined in a single delta connected compensator. Figure 7 shows 

our compensation proposal using this delta connected compensator. 

 

Figure 7. Unified proposal with compensator “SVC + NSCC” connected in delta. SVC = positive-

sequence reactive component; NSCC = negative-sequence currents. 

4. Practical Application 

In this section, a practical case study to verify all of the concepts discussed in the previous 

sections is developed. Consider the scheme in Figure 8 that shows an unbalanced four-wire three-

phase linear system connected to an infinite short-circuit power network with unbalanced voltages. 

The load is modeled at a constant impedance and its values are indicated in the same figure. The 

voltages are unbalanced and sinusoidal in PCC (Point of Common Coupling), in which 

𝑉𝑎𝑛 = 231.00 𝑒𝑗0      𝑉𝑏𝑛 = 240.00 𝑒−𝑗110      𝑉𝑐𝑛 = 195.00 𝑒𝑗90   

 

Figure 8. Proposed system for practical application. 

Figure 7. Unified proposal with compensator “SVC + NSCC” connected in delta. SVC =

positive-sequence reactive component; NSCC = negative-sequence currents.



Appl. Sci. 2020, 10, 1764 13 of 23

4. Practical Application

In this section, a practical case study to verify all of the concepts discussed in the previous sections
is developed. Consider the scheme in Figure 8 that shows an unbalanced four-wire three-phase linear
system connected to an infinite short-circuit power network with unbalanced voltages. The load is
modeled at a constant impedance and its values are indicated in the same figure. The voltages are
unbalanced and sinusoidal in PCC (Point of Common Coupling), in which

Van = 231.00 e j0 Vbn = 240.00 e− j110 Vcn = 195.00 e j90
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Using the ‘PSPICE V.9.2’ analysis software, the currents circulating in the load are obtained,
in which

Ia = 0.00 e− j0.00 Ib = 84.853 e− j155.00 Ic = 38.243 e j76.69

Figure 9 displays the waveform of line currents in each phase obtained from the simulation of the
system of Figure 8.
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Table 1. Positive-, negative-, and zero-sequence voltages.

Phases Vzn+ (V) Vzn- (V) Vzn0 (V)

z Mod. Ang. Mod. Ang. Mod. Ang.

a 212.891 −5.014 42.094 136.859 50.671 −11.585
b 212.891 −125.014 42.094 −103.141 50.671 −11.585
c 212.891 114.986 42.094 16.859 50.671 −11.585

Table 2. Positive-, negative-, and zero-sequence line currents.

Phases Iz+ (A) Iz- (A) Iz0 (A)

z Mod. Ang. Mod. Ang. Mod. Ang.

a 40.979 −36.959 25.938 111.747 23.141 178.647
b 40.979 −156.959 25.938 −128.253 23.141 178.647
c 40.979 83.041 25.938 −8.253 23.141 178.647

The total apparent power of Buchholz that supplied the network in the bus was determined by
Equation (2) and its value is as follows:

ST = 3
√
(212.8912 + 42.0942 + 50.672) (40.9792 + 25.9382 + 23.1412) = 35924.80 VA

Then, we proceeded to calculate the reactance values in each phase of the ZSCC, the SVC and
NSCC compensators as per the scheme of Figure 2. As described in the previous sections, it is very
important to calculate the compensators in the following order: first the ZSCC compensator, then the
SVC compensator, and finally the NSCC compensator.

4.1. Calculation of the ZSCC Compensator

The unbalanced reactive powers that are caused by line-to-neutral voltages and zero-sequence
currents in the load are given by:

QzL0
zn = VznIzL0 sin(αzn − βzL0)

For z = {a, b, c}, their values are as follows:

QaL0
an = −126.253 var QbL0

bn = 5262.245 var QcL0
cn = −4511.18 var

Substituting these values in Equation (25), XaW(25), XbW(25) and XcW(25) were obtained as follows:

XaW(25) = 211.325 Ω XaW(25) = 211.325e j90.00 Ω

XbW(25) = −5.473 Ω XbW(25) = 5.473e− j90.00 Ω

XcW(25) = 4.215 Ω XcW(25) = 4.215e j90.00 Ω

Using Equation (28), we determined the zero sequence current IzW0(25) given by:

IaW0(25) = IbW0(25) = IcW0(25) = 29.648e− j10.423 A

Comparing these values with those shown in Table 2, it is observed that this zero-sequence current
does not coincide with the zero-sequence current of the load with the opposite sign. This is because the
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line-to-neutral voltages are not offset ±120 degrees from each other, as indicated in Section 3.2. Thus,
considering Equation (27), the phasor of deviation of the zero-sequence current fW0 is given by:

fW0 = 0.771 + j0.123

Substituting fW0 in Equation (37), fW+ and fW− are given by:

fW+ = fW− = 0.827− j0.227

Therefore, considering Equations (38)–(40), the currents consumed by the ZSCC compensator are
as follows:

IaW = 9.61e j90.00 A IbW = 32.889e− j20.00 A IcW = 38.497e j0.00 A

Table 3 shows currents IaW , IbW and IcW in sequence values. Positive- and negative-sequence
currents are necessary in subsequent sections to calculate SVC and NSCC compensators. As expected,
the zero-sequence current is equal to the zero-sequence current of the load with the opposite sign.

Table 3. Positive-, negative-, and zero-sequence currents that consume the ZSCC compensator.

Phases IzW+ (A) IzW- (A) IzW0 (A)

z Mod. Ang. Mod. Ang. Mod. Ang.

a 8.806 160.868 16.502 153.863 23.141 −1.353
b 8.806 40.868 16.502 −86.137 23.141 −1.353
c 8.806 −79.132 16.502 33.863 23.141 −1.353

Substituting the values of IaW , IbW and IcW in Equation (24), the values of reactances in the ZSCC
compensator were obtained:

XaW =
231.00e j0.00

9.61e j90.00
= −24.04 Ω,

XbW =
240.00e− j110.00

32.889e− j20.00
= −7.297 Ω,

XcW =
195.00e j90.00

38.497e j0.00
= 5.065 Ω,

From their sign, XaW and XbW are capacitors and XcW is a coil.
Adding the line currents that consume the load and the ZSCC compensator, the new line currents

supplied by the network in the bus were obtained after including the ZSCC compensator. Their values
are given by:

Ia + IaW = 9.609e j90.00 A Ib + IbW = 65.841e− j134.316 A Ic + IcW = 59.346e j39.189 A

Table 4 shows these currents expressed in symmetric components. It is observed that the
zero-sequence current is null, therefore, the current in the neutral wire is also null.

Table 4. Positive-, negative-, and zero-sequence line currents in the bus after ZSCC collocation.

Phases Iz+ (A) Iz- (A) Iz0 (A)

z Mod. Ang. Mod. Ang. Mod. Ang.

a 32.706 −41.688 39.75 127.912 0.00 −26.565
b 32.706 −161.688 39.75 −112.088 0.00 −26.565
c 32.706 78.312 39.75 7.912 0.00 −26.565



Appl. Sci. 2020, 10, 1764 16 of 23

Table 5 compares the values of the active and reactive powers, before and after using the ZSCC
compensator. As expected, the active power P remains constant and P0 and Q0 are null.

Table 5. Comparison of powers, before and after including the ZSCC compensator.

P Q P+ Q+ P− Q− P0 Q0

Compen. (W) (var) (W) (var) (W) (var) (W) (var)

Before 21,712.50 15826.50 22,208.37 13,847.63 2965.86 1390.06 −3461.73 624.81
After 21,712.50 13256.39 16,753.88 12,475.74 4958.62 780.65 0 0

Considering Equation (2), Buchholz’s apparent power in the bus was determined by:

ST = 3
√
(212.8912 + 42.0942 + 50.672) (32.7062 + 39.752 + 0.002) = 34414.22 VA

If we compare this value of ST with the initial value, it is observed that it is slightly lower.

4.2. Star-Connected SVC Compensator Calculation

The unbalanced factor δ− is given by:

δ− =
V−
V+

= 0.1977

The reactive powers QzL+ and QzL− in the load are determined by the following expressions:

QzL+ = Vzn+IzL+ sin(∝zn+ −βzL+) = QaL+ = QbL+ = QcL+

QzL− = Vzn−IzL− sin(∝zn− −βzL−) = QaL− = QbL− = QcL−

If we substitute the values of Tables 1 and 2 in the above expressions, we obtain:

QaL+ = QbL+ = QcL+ = 4615.876 var

QaL− = QbL− = QcL− = 463.353 var

The reactive powers QzW+ and QzW− in the ZSCC are determined by the following expressions:

QzW+ = Vzn+IzW+ sin(∝zn+ −βzW+) = QaW+ = QbW+ = QcW+

QzW− = Vzn−IzW− sin(∝zn− −βzW−) = QaW− = QbW− = QcW−

If we substitute the values of Tables 2 and 4 in the above expressions, we obtain:

QaW+ = QbW+ = QcW+ = −457.297 var.

QaW− = QbW− = QcW− = −203.135 var.

Equation (44) determines the positive-sequence reactive power, which the SVC compensator
consumes, and its value is as follows:

QzP+ =
(463.353− 203.135) − (4615.876− 457.297)

1− 0.19772 = −4056.968 var.

Considering QzP+ in Equation (43), the reactances that the SVC compensator must have are
determined by:

XP = XaP = XbP = XcP =
212.8912

−4056.968
= −11.172 Ω.
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Therefore, XP = 11.172e− j90.00 Ω.
Considering the line-to-line voltages Vzz, where zz = {ab, bc, ca}, and applying the mesh currents

method, we determined the currents consumed by the SVC compensator:

IaP = 16.26e j93.211 A IbP = 22.597e− j31.453 A IcP = 18.986e− j166.40 A

Therefore, the new line currents supplied by the network in the bus after including the ZSCC and
SVC compensators are determined by:

Ia + IaW + IaP = 25.859e− j5.014 A
Ib + IbW + IbP = 64.678e− j125.014 A
Ic + IcW + IcP = 43.084e j114.986 A

Table 6 shows these currents expressed in symmetric components.

Table 6. Positive-, negative-, and zero-sequence line currents in the bus after ZSCC and SVC collocation.

Phases Iz+ (A) Iz- (A) Iz0 (A)

z Mod. Ang. Mod. Ang. Mod. Ang.

a 26.237 −6.057 39.341 133.341 0.00 0.00
b 26.237 −126.057 39.341 −106.659 0.00 0.00
c 26.237 113.943 39.341 13.341 0.00 0.00

Considering Equation (2), the total apparent power of Buchholz that supplies the network in the
bus is given by:

ST = 3
√
(212.8912 + 42.0942 + 50.672) (26.2372 + 39.3412 + 0.002) = 31613.58 VA

Comparing this value of ST with the previous values, it is observed that its value continues
to decrease.

4.3. Star-Connected NSCC Compensator Calculation

The values of Q−zF+ are determined by the following expressions:

Q−zF+ = Vzn+IzF− sin(∝zn+ −βzF−)

If we substitute the values of Tables 1 and 6 in the above expressions, we obtain:

Q−aF+ = −5565.414 Q−bF+ = −2637.477 Q−cF+ = 8202.891

Substituting the values of IzF− and Q−zF+ in Equation (45), the values of XzF are given by:

XaF = −2
−5565.414

39.3412 = 7.192 Ω XaF = 7.192e j90.00 Ω

XbF = −2
−2637.477

39.3412 = 3.408 Ω XbF = 3.408e j90.00 Ω

XcF = −2
8202.891
39.3412 = −10.60 Ω XcF = 10.60e− j90.00 Ω

Therefore, XaF is a capacitor, XbF is a coil, and XcF is a capacitor.
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Considering the line-to-line voltages Vzz, where zz = {ab, bc, ca}, and applying the mesh currents
method, we determined the currents consumed by the NSCC compensator:

IaF = 45.163e− j39.644 A IbF = 31.884e j76.923 A IcF = 42.051e− j176.944 A

Therefore, the new line currents supplied by the network in the bus after including the ZSCC,
SVC, and NSCC compensators are determined by:

Ia + IaW + IaP + IaF = 33.996e− j5.014 A
Ib + IbW + IbP + IbF = 33.996e− j125.014 A
Ic + IcW + IcP + IcF = 33.996e j114.986 A

Figure 10 displays the waveform of the line currents in each phase obtained from the simulation
after include compensation.
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It is observed that after compensation we obtained a system of balanced line currents. These same
results can be obtained by joining the SVC and NSCC compensators in delta connection according to
Figure 7. Using the star-delta transformations, the reactance values of the compensator “NSCC + SVC”
were obtained as follows:

XabC = 11.011 Ω XabC = 11.011e j90.00 Ω
XbcC = −8.952 Ω XbcC = 8.952e− j90.00 Ω
XcaC = −14.57 Ω XcaC = 14.57e− j90.00 Ω

Table 7 compares the values of active and reactive powers before and after compensation. It is
observed that the network supplies a positive-sequence active power equal to the active power that
the load demands. This achieves maximum efficiency in the transfer of electrical energy between the
network and the load in the bus.

Table 7. Comparison of powers, before and after total compensation.

P Q P+ Q+ P− Q− P0 Q0

Compen. (W) (var) (W) (var) (W) (var) (W) (var)

Before 21,712.50 15,826.50 22,208.37 13,847.63 2965.86 1390.06 −3461.73 624.81
After 21,712.50 0 21,712.50 0 0 0 0 0
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Considering Equation (2), the total apparent power of Buchholz that supplies the network in the
bus is given by:

ST = 3
√
(212.8912 + 42.0942 + 50.672) (34.9962 + 0.002 + 0.002) = 22728.17 VA

If we compare the final value of ST with the previous values, it is observed that the total apparent
power is practically equal to the total active power and the positive-sequence active power. This
small difference is due to the negative- and zero-sequence voltages that are imposed by the infinite
short-circuit power network.

Table 8 compares the results of the line currents that have been obtained from our proposal with
other existing methods and that have been cited in this work. It is observed that the line currents that
circulate in the bus or PCC after compensation, are only balanced when the proposed compensation
method is used. In addition, it can be seen that these currents are in phase with the positive-sequence
voltage (see Table 1). This implies that its sum is zero. Then, the negative-sequence and zero-sequence
currents and the reactive component of the positive-sequence current are removed. In the rest of the
methods, these line currents are still unbalanced, therefore they do not compensate for inefficient
currents. Obviously, these results are logical since the expressions used in each of the other methods
are only valid for three-phase systems with balanced voltages.

Table 8. Comparison of the proposed method with other existing methods.

Method
Ia (A) Ib (A) Ic (A)

Mod. Ang. Mod. Ang. Mod. Ang.

Proposed method 33.996 −5.014 33.996 −125.014 33.996 114.986
Classical method 36.438 7.389 37.814 −115.626 29.150 49.677
Leon [19] 39.527 −4.442 43.804 −102.403 11.226 91.381
Pana [23] 37.212 −0.121 32.645 −101.964 28.015 78.780

Table 9 compares the values of the line currents of the system in Figure 8, considering that the
voltages in the bus are balanced, where the RMS value of the voltage is V = 230 V. Under these conditions,
it is observed that the resulting line currents system is balanced with any of the methods used, including
the method proposed by us. Therefore, it is demonstrated that the proposed compensation method is
valid for three-phase systems with balanced and unbalanced voltages.

Table 9. Comparison of the proposed method with other methods with unbalanced voltages.

Method
Ia (A) Ib (A) Ic (A)

Mod. Ang. Mod. Ang. Mod. Ang.

Proposed method 33.910 0 33.910 −120 33.910 120
Classical method 33.910 0 33.910 −120 33.910 120
Leon [19] 33.910 0 33.910 −120 33.910 120
Pana [23] 33.910 0 33.910 −120 33.910 120

5. Conclusions

Electrical systems with unbalanced loads and voltages give rise to inefficient currents:
negative-sequence currents, zero-sequence currents, and positive-sequence reactive currents. This
produces inefficient powers, which causes an increase in the total apparent power that the generator or
network must supply in the bus.

In this work, a three-phase four-wire system connected to an infinite short-circuit power network
with unbalanced voltages and unbalanced currents was considered. A methodology for compensating
zero-sequence currents through the parallel connection of a compensating circuit (ZSCC) was developed.
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This compensator is formed by reactances. A simple analytical equation is provided to determine these
elements. This ensures that the network does not provide a zero sequence current in the bus. That is,
no current will flow through the neutral wire.

With this compensator (ZSCC), together with those developed by the authors in a previous work
for three-wire systems, the negative sequence current compensator (NSCC), and the positive sequence
reactive current compensator (SVC), we have formulated a procedure for the total compensation of
inefficient currents produced by the unbalanced load. This achieves maximum efficiency in the transfer
of electrical energy between the network and the downstream load of the bus.

It becomes clear that the active power consumed by the load remains constant, while the reactive
power has a null value. The value of Buchholz’s total apparent power is greatly diminished in the
bus. Only the inefficiencies due to the negative- and zero-sequence voltages that are not compensable
efficiently (since they are inherent in the network) will remain.

This is achieved without knowledge of the nature and characteristics of the load, only of the
voltages and currents measured in the bus.

The proposed equations can be used with active or hybrid filters in order to overcome the
inconvenience of passive filters. These are only useful in installations with a fairly stationary
consumption which need a staggering of the compensation reactances just like the current SVC.

Finally, a case study is developed and compared with three of the methods analyzed to show the
simplicity of the application of the proposed compensation methodology. The results obtained in each
step and the final result are analyzed. This shows that the classic models or the capacitors-based model
are not intended to work correctly in three-phase four-wire systems with unbalanced voltages.

On the other hand, the model proposed in this article does respond correctly. In addition, it is
not affected by the type and characteristics of the load connected downstream or those connected
upstream. This is because the model presented is adaptable, at all times, to the voltages and currents
that the network presents in the PCC. This validates the proposed compensation model, highlighting
the contributions of this work.

From the results obtained in this work, it is worth highlighting, as future research lines, the
extension of the model to non-linear systems and the integration with active or hybrid filters in order
to overcome the inconveniences of passive filters.
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Nomenclature

The following nomenclature is used in this manuscript:

fWG global phasor of deviation of currents
fW+ phasor of deviation of the positive sequence current
fW− phasor of deviation of the negative sequence current
fW0 phasor of deviation of the zero sequence current
Iz line current in each phase, z = {a, b, c}
I+ positive sequence current
I− negative sequence current
I0 zero sequence current
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IzL current consumed by the load in each phase, z = {a, b, c}
IzL+ positive sequence current consumed by the load in each phase, z = {a, b, c}
IzL− negative sequence current consumed by the load in each phase, z = {a, b, c}
IzL0 zero sequence current consumed by the load in each phase, z = {a, b, c}
IzW current consumed by the ZSCC compensator in each phase, z = {a, b, c}
IzW+ positive sequence current consumed by the ZSCC compensator in each phase, z = {a, b, c}
IzW− negative sequence current consumed by the ZSCC compensator in each phase, z = {a, b, c}
IzW0 zero sequence current consumed by the ZSCC compensator in each phase, z = {a, b, c}
IzF− negative sequence current consumed by the NSCC compensator in each phase, z = {a, b, c}
IzP− negative sequence current consumed by the SVC compensator in each phase, z = {a, b, c}
P active power
P+ positive sequence active power
P− negative sequence active power
P0 zero sequence active power
Q reactive power
Q+ positive sequence reactive power
Q− negative sequence reactive power
Q0 zero sequence reactive power
QzL+ positive sequence reactive power of the load in each phase, z = {a, b, c}
QzL− negative sequence reactive power of the load in each phase, z = {a, b, c}
QzW+ positive sequence reactive power of the ZSCC compensator in each phase, z = {a, b, c}
QzW− negative sequence reactive power of the ZSCC compensator in each phase, z = {a, b, c}
QzF+ positive sequence reactive power of the NSCC compensator in each phase, z = {a, b, c}
QzF− negative sequence reactive power of the NSCC compensator in each phase, z = {a, b, c}
QzP+ positive sequence reactive power of the SVC compensator in each phase, z = {a, b, c}

QzL
zn

reactive power of the load caused by the line-to-neutral voltage and the current in each
phase, z = {a, b, c}

QzL0
zn

reactive power of the load caused by the line-to-neutral voltage and the zero sequence
current in each phase, z = {a, b, c}

QzW
zn

reactive power of the ZSCC compensator caused by the line-to-neutral voltage and the
current in each phase, z = {a, b, c}

QzW+
zn

reactive power of the ZSCC compensator caused by the line-to-neutral voltage and the
positive sequence current in each phase, z = {a, b, c}

QzW−
zn

reactive power of the ZSCC compensator caused by the line-to-neutral voltage and the
negative sequence current in each phase, z = {a, b, c}

Q−zF+
unbalanced reactive power of the NSCC compensator caused by the positive sequence
line-to-neutral voltage and the negative sequence current in each phase, z = {a, b, c}

S apparent power in the classical theories
Sz apparent power in the classical theories in each phase, z = {a, b, c}
ST apparent power of Buchholz
S−+ apparent power due to positive sequence voltage and the negative sequence current
S0
+ apparent power due to positive sequence voltage and the zero sequence current

S+
−

apparent power due to negative sequence voltage and the positive sequence current
S0
−

apparent power due to negative sequence voltage and the zero sequence current
S+0 apparent power due to zero sequence voltage and the positive sequence current
S−0 apparent power due to by zero sequence voltage and the negative sequence current
Vzn line-to-neutral voltage in each phase, z = {a, b, c}
Vz+ positive sequence line-to-neutral voltage in each phase, z = {a, b, c}
XzW ZSCC compensator reactance in each phase, z = {a, b, c}
XzF NSCC compensator reactance in each phase, z = {a, b, c}
XzP SVC compensator reactance in each phase, z = {a, b, c}
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