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Abstract: The most common evasive maneuver among motorcycle riders and one of the most
complicated to perform in emergency situations is braking. Because of the inherent instability of
motorcycles, motorcycle crashes are frequently caused by loss of control performing braking as an
evasive maneuver. Understanding the motion conditions that lead riders to start losing control is
essential for defining countermeasures capable of minimizing the risk of this type of crashes. This
paper provides predictive models to classify unsafe loss of control braking maneuvers on a straight
line before becoming irreversibly unstable. We performed braking maneuver experiments in the
field with motorcycle riders facing a simulated emergency scenario. The latter involved a mock-up
intersection in which we generated conflict events between the motorcycle ridden by the participants
and an oncoming car driven by trained research staff. The data collected comprises 165 braking trials
(including 11 trials identified as loss of control) with 13 riders representing four categories of braking
skill, ranging from beginner to expert. Three predictive models of loss of control events during braking
trials, going from a basic model to a more advanced one, were defined using logistic regressions as
supervised learning methods and using the area under the receiver operating characteristic (ROC)
curve as a performance indicator. The predictor variables of the models were identified among the
parameters of the vehicle kinematics. The best model predicted 100% of the loss of control and 100% of
the full control cases. The basic and the more advanced supervised models were adapted for loss of
control identification with time series data, and the results detecting in real-time the loss of control
events showed excellent performance as well as with the supervised models. The study showed that
expert riders may maintain stability under dynamic conditions that normally lead less skilled riders
to a loss of control or falling events. The best decision thresholds of the most relevant kinematic
parameters to predict loss of control have been defined. The thresholds of parameters that typically
characterize the loss of control such as the yaw rate and front-wheel lock duration were dependent
on the rider skill levels. The peak-to-root-mean-square ratio of roll acceleration was the most robust
parameter for identifying loss of control among all skill levels.

Keywords: motorcycle safety; braking; loss of control; rider stability; supervised learning; powered
two wheelers

1. Introduction

Braking is the most frequent evasive maneuver and one of the most complicated to perform by
motorcycle riders because of the inherent instability and the complex driving dynamics of motorcycles.
During emergency braking, while considering the variations occurring in load distribution between
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the two wheels [1] and the variations in the tire-road adherence conditions, riders require simultaneous
optimal management of the front and rear brakes to achieve maximum deceleration. This complexity
makes riders frequently lose control and fall when performing braking to avoid a collision [2]. In order
to enhance the rider’s safety maintaining the stability of the vehicle and to avoid loss of control events
leading to fall during emergency braking, two different approaches can be pursued: designing active
systems that support the braking maneuver under stable conditions, and improving the braking skills
of the riders. In both cases, it is necessary to understand the process and the motion conditions that
lead riders to start losing control.

Previous research analyzed several factors leading to more efficient braking maneuvers, namely
the optimum braking from the theoretical perspective with multi-body models and simulations [1,3,4],
the braking patterns during different maneuvers [5] and the potential improvements in designing
vehicle stability control systems [6,7]. Concerning autonomous braking applications, the stability
of riders of powered-two-wheelers (PTWs) under moderate automatic deceleration was assessed
with motion captured and EMG data using a motorcycle mock-up mounted on a sled [8] and with
qualitative observations in a field trial [9]. Few studies using experimental measures in the field have
developed fall detection models. Such studies used the data from several race riders running in a race
circuit [10,11] or of a stuntman reproducing fall and near fall scenarios [12,13]. The study focused
on race competitions [10] defined a method based on the accelerations and angular rates of both the
rider and the motorcycle to represent a falling ‘risk index’ (for which no equations were defined)
during the execution of racing maneuvers. The work with a stuntman rider defined a fall detection
algorithm based on a certain threshold [13] and multivariate cumulative sum control charts [12] for the
values of the norm of the tri-axial gyroscopes and the norm of the tri-axial accelerometers. The few
existing fall detection models have focused on loss control events with unavoidable falls to develop
passive safety systems such as airbags. However, a momentary loss of control does not always lead
to a fall event if the unstable conditions are not maintained or are corrected in time. Loss of control
may be limited to the occurrence of instability and of unsafe behaviors and not necessarily to total
loss of control [14]. Concerning braking, safe braking may be defined as a maneuver that allows the
vehicle to stop in an upright position, with small oscillations, where the driver maintains control of the
handlebars with smooth movements [15]. In the literature, we could find only one single example of
a definition of algorithms which can be to detect critical braking events (defined as potential loss of
control cases with locked wheel) [15]. The parameters of those algorithms were optimized by using
virtual data reproducing emergency braking maneuvers and calibrated by six ‘near missed’ accident
cases of naturalistic riding data. Given the importance of this topic and the ambition to increase riders’
safety during hard braking, more research to understand the riders’ response under loss of control
conditions is necessary.

To contribute to this, in this study we proposed the development of predictive models of the riders’
responses in safety-critical situations, validated with consistent experimental data and including riders
who cover all riding skill levels. This paper provides a method to classify unsafe loss of control during
hard braking maneuvers on a straight line before becoming irreversibly unstable in order to: (a) support
safety active systems developments; and (b) improve riders’ skills braking through braking training. The
first hypothesis of our study is that unstable scenarios can be predicted using kinematic parameters using
a supervised method of machine learning such as binary logistic regression. The second hypothesis is that
different skill levels require different kinematic thresholds to identify loss of control.

2. Materials and Methods

2.1. Participants

Thirteen volunteers (11 male, 2 female) aged 23 to 47 years (mean 32.3; SD 8.9), with various levels
of riding expertise were recruited by contacting riding schools and local racetracks, reaching out to
groups through social media and posting flyers at the University of Florence. All participants were
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required to have held a motorcycle license for more than 3 months and to ride regularly (minimum
once per week). The participants were grouped by 4 level skills according to their braking performance
(1 beginner, 4 intermediate, 6 advanced and 2 experts) [16].

2.2. Equipment and Data Collection

The experimental PTW used was a 300cc Piaggio Beverly scooter with automatic power transmission
and standard brakes independently actuated-no anti-lock braking system (ABS) or combined braking
system (CBS)-by two hand levers. The scooter was instrumented with an X-Sens inertial measurement
unit (IMU) with an integrated GPS to measure vehicle tri-axial acceleration and gyro, pitch, roll and yaw
angles, position and speed. The speed of each wheel was measured using phonic wheels to identify
lock-up events. Steering angle was measured using a rotational transducer with a range of 120◦ and an
accuracy of 0.3◦. All signals were sampled at a rate of 100 Hz. In addition, the experiment was registered
by three video cameras: one on the front of the scooter, one facing the rider and one on a tripod placed
adjacent to the mock-up intersection to record the lateral view of scooter braking.

2.3. Protocol of the Experiment

We performed braking maneuver experiments using a mock-up of an intersection to simulate a
Left Turn Across Path/Opposite Directions scenario (LTAP/OD) with a real car in a closed test track on
dry road surface. Figure 1 provides a view of the mock intersection, in which a car approaching from
one end could either continue straight through the intersection or make a left turn. Participants were
instructed to reach speeds of 50 km/h on approach to the intersection and to brake and stop the PTW
as quick and as hard as possible while maintaining balance and control only if they perceived that the
car would turn across their path. In this controlled environment, riders’ responses were similar to that
of a real emergency event [16] (e.g., pressing abruptly the brakes experimenting high jerks or locking
wheels). The original goal of the experiment was to test whether a real-world emergency braking task
could be used to examine PTW riders’ abilities to avoid a collision by rapidly decelerating. A thorough
explanation of the protocol can be found in Reference [16]. The protocol of the experiment received
approval from an institutional human research ethics committee.
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Each participant had to complete 24 trials, including 12 braking trials, with the opponent car
turning across their path. Trials in which poor synchronization between PTW and a car were achieved
and were repeated once. Finally, this study comprises 165 braking trials to be analyzed.

2.4. Loss of Control Predictive Model Development

2.4.1. Loss of Control Identification by Video Analysis

Loss of control cases were identified through video analyses of each braking trial by a first coder.
The braking trials were rated with the binary variable Z, giving the value of 0 if the rider showed

safe full-control or 1 if the rider showed signs of loss of control: oscillating noticeably or suddenly
putting down one or both feet in case of unsteadiness that was difficult to control, see Figure 2.
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A subset of 45 braking trial videos was rated independently by four coders. Inter-rater reliability
(IRR) tests evaluated the degree to which coders provided consistent ratings of loss of control across
braking trials. To compensate for the prevalence problem of unbalanced distribution of classes [17] the
subset included all loss of control cases identified by the first coder except for two cases that were used
as a reference for the new three coders. To compute the IRR of both the individual coders’ ratings and
the mean ratings from multiple coders, we used a two-way mixed, consistency, average-measures and
a single-measures Intraclass Correlation Coefficient (ICC) [18].

The final rates of the subset cases were categorized according to the average-rating, which
considered the controllability of a trial as loss of control when the previously defined loss of control
signs were identified by two or more coders. In the case of a high IRR, the full control rates of the first
coder for the remaining trials outside of the 45 trials subset were assumed as being valid rates.

2.4.2. Selection of Predictor Variables

In order to detect the heavy oscillations of the vehicle body and front wheel lock events, we used
as input features (predictors) the signals of lateral acceleration, gyro (X, Y, Z), roll, yaw and pitch angle,
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steering position, vehicle speed as well as rear and front wheel speed. Sensor data were low-pass
filtered with 10 Hz cut-off. The selected parameters, to characterize the signals during the braking trials,
were the maximum or peak value (Max), the root-mean-square value (RMS) and the peak-to-RMS ratio.

2.4.3. Regression Model Algorithm

Among the different supervised machine learning methods, binary regression models were
selected for the prediction task because they have less risk of overfitting and they are a
straightforward method to understand the association between the predictor variables and the
output (controllability/loss-of-control). The regression model uses the linear function shown in
Equation (1):

Y = β0 + β1X1 + β2X2 + . . . βkXk (1)

where β0 is the constant and βk are the population regression coefficients and Xk are the independent
variables or predictors.

The logistic function shown in Equation (2) computes the probability P that a case belongs to the
target group loss of control (Z = 1):

P (Z = 1 | X) =
1

1 + e−Y =
1

1 + e−(β0+β1X1+β2X2+... βkXk )
(2)

where X is the vector of predictors, Y is the linear function of the logistic regression and e is the
exponential function.

For the predictive model, we created three algorithms with three different approaches with
increasing complexity with respect to the possibility to be computed in a real-time assessment.
Consequently, Model-1 with less predictors to add to the model is the most ‘basic’ and the most robust,
exclusively using predictors coming from the signals collected by the sensors. This model does not
require computing the differential of the variables, so it is more robust, faster, and less sensitive to
unfiltered noise.

• Model-1: ‘basic’ model with maximum and RMS parameters as input variables from the signals
collected, including the instantaneous magnitude of the resultant gyro vector (Gyro Norm), that is
estimated by computing the square root of the sum of the squares of the three gyro components X,
Y and Z.

• Model-2: ‘extended’ model with input variables from Model-1 adding maximum and RMS from
the computed differentials for the gyro and steering angle signals.

• Model-3: ‘advanced’ version of Model-2, which also contains as input the peak-to-RMS ratio for
each of the signals. For real-time assessment, this model requires more computation time for
the differential of the signals and for extracting the ratio of two parameters that needed to be
calculated previously.

For all three models, the selection of the predictors was done following the forward stepwise
Wald method with entry testing based on the significance of the score statistic, and removal testing
based on the probability of the Wald statistic [19]. The logistic regression model was fitted using IBM
SPSS statistics 25.

In case models present large regression coefficients with large variances, regularization with
least absolute shrinkage and selection operator (lasso) was performed to make decision boundaries
smoother and to reduce the possibility of overfitting. Lasso methods were used to balance the well
performance and the magnitude of the coefficients. Lasso regularization produces a set of coefficient
estimates whose values depend on the different values of the weight reduction factor λ. We determined
the best value for λ by using cross-validation, and was defined as the λ with minimum cross-validated
deviance plus one standard deviation. The regularization was performed using the Statistics and
Machine Learning Toolbox of Matlab 2018b.
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2.4.4. Performance of the Model (ROC and AUC)

As the true instances (loss of control) are uncommon, the classes in our sample were not balanced.
Therefore, in addition to accuracy metric, we used receiver operating characteristic (ROC) curve
analysis as a robust metric to assess the ability of the model to classify or predict the loss of control. The
optimal cut-point (decision threshold) that determined if the rider had full control of the vehicle during
the braking event was established with the highest Youden index, varying the compromise between
the false negative and false positives probabilities, i.e., the threshold with the highest ‘sensitivity +

specificity’ value [20].
The area under an ROC curve (AUC) measures the performance of a diagnostic test, using a

combination of the values of sensitivity (proportion of actual positives or loss of control cases that
are correctly identified as such) and specificity (proportion of actual negatives or full control cases
that are correctly identified as such). AUC is a typical performance indicator in machine learning
and statistics [21]. The possible values of AUC range from 0.5 (no diagnostic ability) to 1.0 (perfect
diagnostic ability). Additionally, we used Hosmer-Lemeshow as inferential goodness-of-fit test.

2.4.5. Performance of the Single Predictors (ROC and AUC)

Additionally, the AUC performance of the best single predictors were analyzed individually
to define the parameters working better as loss of control predictors. The best threshold for each
parameter was also defined with the highest Youden index. While considering the correlation between
the predictors, we used regularization to understand the independent contribution of each feature.

This involved fitting a model with all the predictors, but where the estimated coefficients are
shrunken towards zero. The key features are the ones whose coefficients are the last to vanish.

2.5. Loss of Control Detection Model for Time Series

Times series analysis for loss of control prediction was done to check if the predictive models
‘1’ and ‘3’ developed may also be applied successfully to detect in real-time the loss of control events.
The features of the models are related to RMS and peak values of the braking event that need to be
computed in relation to a specified time interval. Thus, we have proceeded in the following way to
define the corresponding features FMax(Xt), FRMS(Xt) and Fpeak-to-RMS ratio(Xt) at each t from the time
series of the braking event. Rather than use the whole series, we selected intervals of the series. For the
features related to maximum values of variables during the braking event, to consider the temporal
dynamic behavior of the variables, we obtained Maxt(Xt) computing the peak value of the last 40 ms
(sliding window [tt-40ms, . . . , t]):

FMax(Xt) = Max(Xt-4, Xt-3, Xt-2, Xt-1, Xt) for a sampling rate of 10 ms. (3)

For the RMS value at each instant t, RMS was calculated using intervals of the series corresponding
to the time window [tpreBrake, tpreBrake +1, . . . , t-1, t], where tpreBrake is the instant corresponding to 500
ms before the start of the first brake activation (tpreBrake = tBrakeOnset – 500ms).

FRMS(Xt) =

√√√√
1
N

t∑
i=tpreBrake

X2
i (4)

where N is number of samples in the time window [tpreBrake - t]

Fpeak to RMS ratio(Xt) =
FMax(Xt)
FRMS(Xt)

. (5)
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The two models were compared in terms of accuracy and capacity to detect the loss of control in
the shortest time. A repeated measures ANOVA was conducted to compare the effect of the type of
model on detection time, and related to that on the PTW speed at which loss of control was detected.

3. Results

3.1. Consistency of the Loss of Control Rating

From the final 11 cases of the sample identified as loss of control, two cases correspond to the
reference cases used to train the additional three coders and nine cases were identified by the multiple
coders in the subset selected to analyse the consistency of the ratings. The resulting ICC with the
subset of 45 trials was 0.783 for single and 0.913 for average (excellent agreement is considered for
0.90 and above and fair agreement in the range 0.70–0.79 [22]), indicating that coders had a high
degree of agreement and suggesting that loss of control was rated similarly across coders. The high
ICC suggests that a minimal amount of identification error was introduced by the average-rating
and the independent coders. Thus, loss of control ratings were considered to be suitable for use in the
supervised model of loss of control prediction of the present study.

3.2. Selection of Input Features

3.2.1. Preliminary Analysis

After a preliminary analysis of the dynamics of the time-series data with a subsample of full
control and loss of control braking trials, we decided to include the differential of the collected signals
roll rate, yaw rate and steering angle (i.e., roll and yaw acceleration and steering rate), as input features
of the model. Figure 3 shows two examples of both full control and loss of control emergency braking
representing the speed, the steering and roll angle and the yaw and roll rate.
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Figure 3. Example of braking trials: (a) full control case; (b) loss of control case.

3.2.2. Descriptive Analysis

A descriptive analysis across controllability classes (full control vs. loss of control) was conducted
to identify typical ranges, to search for evident kinematic thresholds and to assess the relevance of
the predictors of the models. Boxplots of Figure 4 display the interquartile range of the data set, the
median accuracy and possible outliers. Results showed that despite the different distributions by
controllability levels, there are no evident thresholds for any variable, able to classify without errors.
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Thus, it was necessary to explore machine learning methods with multiple variables to predict actual
loss of control of the riders with maximum accuracy.
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Descriptive analysis of the variable by rider (see examples in Figure 5) showed that expert riders
performing the straight emergency braking trials were able to manage extreme kinematics (i.e., Gyro
Norm Max higher than 0.6 rad/s, and front wheel locking events longer than 0.15 seconds) without
evident signs of losing control.
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3.3. Predictive Models

Results of the three logistic regressions models indicated that there was a significant association
between kinematic parameters of the PTW vehicle and the likelihood of loss of control (Model-1: χ2(3)
= 62.256; p < 0.001, Nagelkerke R2 = 0.812; Model-2: χ2(2) = 72.090; p < 0.001, Nagelkerke R2 = 0.914;
Model-3̂: χ2(2) = 80.827; p < 0.001, Nagelkerke R2 = 1.00). Table 1 includes the test of significance for
each of the coefficients in the logistic regression models. As we can see, the two predictors are not
significant in Model 3.

Table 1. Logistic Regression Analysis of 165 braking trials for loss of control cases classification.

β Coeff. Std. Error Wald p-Values

MODEL-1

Gyro Norm RMS −36.9 19.2 3.619 0.057
Lat Accel Max 2.8 1.1 6.420 0.011
Gyro-Z_Max 20.6 7.9 6.595 0.010

Intercept −6.3 2.152 9.110 0.003

MODEL-2

Roll Acc Max 6.9 4.4 2.710 0.100
Roll Acc RMS −29.3 19.0 2.613 0.106

Intercept −5.7 3.3 3.287 0.070

MODEL-3̂

Roll Acc peak-to-RMS 203.5 3356.0 0.004 0.952
Yaw Acc Max 24.6 504.8 0.002 0.961

Intercept −1147.9 19010.4 0.004 0.952

The expressions of the predictive models developed at this stage are shown in Equations (6)–(8).
The probability of loss of control event (P) predicted by the models is computed following Equation (2).

Y(Model_1) = −6.3 + (−36.9) Gyro Norm RMS
(

rad
s

)
+ (20.6) Gyro Z Max

(
rad
s

)
+(2.8) Lat Accel Max

(
m
s2

) (6)

Y(Model_2) = −5.7 + (− 29.3)Roll Acc RMS
(

rad
s2

)
+ (6.9)Roll Acc Max

(
rad
s2

)
(7)

Y
(
Model_3̂

)
= −1147.9 + (203.5) Roll Acc ratio

(
peak
rms

)
+ (24.6) Yaw Acc Max

(
rad
s2

)
. (8)

In Model-1 and Model-2, the negative coefficient for Gyro Norm RMS and Roll Acc RMS indicates
that for a fixed value of the rest of predictors, a braking trial with higher Gyro Norm RMS (in Model-1)
and trial with a higher Roll Acc RMS (in Model-2) is less likely to have a loss of control event than a
lower value. This is due to the fact that RMS are linked to the skill level of the riders, and expert riders
can handle control under high demanding dynamic behavior that could cause a loss of control for less
skill riders. In average RMS values of Gyro for expert riders are higher than for less skilled riders. As
an example, the average Gyro Norm RMS for expert riders was 0.23 rad/s (SD = 0.11) compared to
the average of 0.12 rad/s for intermediate riders (SD = 0.05). The increase of the rest of predictors is
positively related to a higher probability of loss of control.

The large coefficients of Model-3̂ together with the high p-values presented are signs of risk of
collinearity and overfitting. The presence of collinearity does not affect the reliability of the prediction
model, but does affect the assessment of the actual contribution of each variable as predictor. Lasso
regularization of Model-3̂ using 10-fold cross-validation was done to limit the magnitude of the
estimated coefficients and to reduce their variability.
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Figure 6 shows cross-validated deviance of various levels of regularization. As λ increases
(moving from right to left on the x-axis), the coefficients shrink towards zero. The green and blue
circle indicate the value of λ (lambda) at the minimum cross-validated deviance and the point with
minimum cross-validated deviance plus one standard deviation. The values of the coefficients selected
for the final Model-3 (see Equation (6)) corresponds with the λ with minimum cross-validated deviance
plus one standard deviation (λ =0.0087; deviance = 14.45; SE = 4.25).

Y(Model_3) = −12.37 + 1.99 Roll Acc ratio
(

peak
rms

)
+ 0.32 Yaw Acc Max

(
rad
s2

)
(9)
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Figure 6. Ten-fold cross-validation on the simulated data sets. Red line: mean deviance; Blue line:
bounds for deviances within one standard error.

The classification accuracies achieved by the three models for identifying cases of loss of control
are showed in Table 2. The ‘advanced’ model Model-3 was found to be the best model (AUC = 1.00),
predicting correctly 100% (n = 11) and 100% (n = 154) of loss of control and full control cases, respectively.
The ‘basic’ and ‘extended’ models obtained very high accuracy (AUC = 0.988 for Model-1 and AUC =

0.998 for Model-2), correctly predicting 90.9% and 100% of loss of control cases and 99.4% and 98.1% of
full control cases, respectively. The p-values for the Hosmer-Lemeshow tests (ranged between 0.648 to
1.00) also indicated good fit of all models. Table 2 also shows the best decision threshold determined
by the Youden index for each model, e.g., for Model-1, a probability higher than 0.442 will classify the
braking case as loss of control.

Table 2. Prediction Performance and best thresholds for the models.

Predictor Threshold Specificity Sensitivity AUC (CI) Hosmer-Lemeshow Test

Model-1 0.442 0.994 0.909 0.988 (0.968–1.00) χ2(8) = 5.991; p = 0.648
Model-2 0.157 0.981 1 0.998 (0.994–1.00) χ2(8) = 0.449; p = 1.00;
Model-3 0.275 1 1 1.00 (1.00–1.00) χ2(8) = 0.000; p = 1.00

Figures 7–9 show the ROC curve and the scatter plot of loss of control probability by subject
and skill level for the 165 braking trials in each the three models; the green area of the scatter plots
corresponds to the values considered by each respective model as full control and the controllability
markers (green and red) the binary rating of the coders (full control and loss of control).
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3.4. Performance of the Single Predictors

In order to understand the prediction capabilities of the different kinematic parameters, we defined
the best threshold to detect loss of control and computed the performance (Table 3). Figure 10 shows
how the best predictor (peak-to-RMS ratio of roll acceleration) with the best AUC performance and
with the 100% of sensitivity may be a robust indicator independent of the rider skill effect.

Table 3. Prediction Performance and best thresholds for the feature input.

Predictor Threshold Specificity Sensitivity AUC (CI)

Roll Acc peak-to-RMS 4.49 0.974 1 0.996 (0.989–1.00)
Steering rate Max (◦/s) 39.5 0.945 1 0.980 (0.960–1.00)

Gyro-Z Max (rad/s) 0.269 0.922 0.909 0.970 (0.930–1.00)
Yaw Acc Max (rad/s2) 5.6 0.994 0.818 0.943 (0.859–1.00)
Lat Accel Max (m/s2) 1.85 0.955 0.909 0.911 (0.766–1.00)

Gyro Norm Max (rad/s) 0.773 0.987 0.818 0.887 (0.728–1.00)
Lock front-wheel (s) 0.09 0.903 0.455 0.673 (0.513–0.833)
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3.5. Loss of Control Predictive Model for Time Series data

Equations (3) and (6), respectively for Model-1 (simplest model) and Model-3 (best performance)
were applied to each instant to predict the time series loss of control probability (see Equations (6) and
(9) with the functions FMax(Xt), FRMS(Xt) and Fpeak-to-RMS ratio (Xt) defined in Section 2.5.

Yt (model-1) = µ0 + µ1* FRMS(Gyro Normt) + µ2* FMax(Gyro Zt) + µ3* FMax (Lat Accelt) (10)

Yt (model-3) = β0 + β1* FMax(Yaw_Acct) + β2* Fpeak-to-RMS ratio(Roll_Acct) (11)

where µk and βk are the coefficients estimated previously for the Model-1 and Model-3, respectively.
Time series predictive model based on ‘advanced’ model Model-3 predicted all 11 loss of control

cases (100% accuracy) and the model based on ‘basic’ model Model-1 predicted 10 cases (90.9%),
corresponding to the same performance achieved off-line. Model-3 detected loss of control cases 19
ms earlier than Model-1 in average (SD = 93 ms), but no significant differences were found (Wilks’
Lambda = 0.992, F(1,9) = 0.072, p = 0.561). No differences were found in the vehicle speed at which
loss of control was detected for each model (mean of 21.3 and 21.1 km/h for Model-1 and Model-3,
respectively; Wilks’ Lambda = 0.995, F(1,9) = 0.047, p = 0.833). Figure 11 shows examples of four
riders performing braking trials with the real-time loss of control predictors adapted from Model-1
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and Model-3. Each example of Figure 11 from (a) to (d) includes three plots: the upper plot shows the
loss of control (LC) probability for Model-1 and Model-3 and the vehicle and wheel speed; the middle
plot shows the LC probability for Model-1 and its two most significant predictor variables; the lower
plot shows the LC probability for Model-3 and its two predictor variables. The left y-axis represents
the LC probability defined by the models and right y-axis represents the magnitude of speed for the
upper plot and of the predictor variables for the rest.
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Figure 11. (a) full control braking trial with 0% of LC probability for Model-1 and Model-3; (b) loss of
control detected only by Model-3 (LC probability for Model-1 = 0%); (c) loss of control detected earlier
by Model-3; (d) loss of control detected earlier by Model-1.

4. Discussion

This study aimed to provide a method to identify loss of control events in braking maneuvers on
a straight line before they become irreversibly unstable to support motorcycle crash reduction through
active systems developments and training initiatives. Using experimental data, we analyzed hard
braking maneuvers in an emergency scenario to identify loss of control conditions during the braking
performance with riders from low to high braking skill levels. The results provide a measure of the
motorcycle dynamics variability in emergency braking maneuvers associated with riders of different
skill levels.

Three predictive models with 100%, 99.8% and 98.8% of area under the ROC curve (AUC) were
developed using the kinematics of the vehicle as an input. The effectiveness of the supervised models
for real-time applications, adapted for times series of data as input, was satisfactory in all two of the
tested models. The study also revealed that the thresholds based on typical parameters characterizing
the kinematics of the vehicle (maximum or RMS) to predict loss of control are dependent of the
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rider skill levels. Expert riders may maintain stability (i.e., handle the controllability) under dynamic
conditions that would normally bring less skilled riders to loss of control or falling events.

The results of our study are comparable with the work in Reference [6] and Reference [13], which
defined threshold for the lock front-wheel duration and the maximum of the gyro norm (Gyro Norm
Max) respectively as predictors of falling events. Gail et al. [6] determined that after 0.4 seconds of
front wheel locked, the instability conditions lead to a fall. Our tests were performed with standard
brakes (no ABS), and in many trials during the hard braking, the tires started to lock. We found that for
less skilled riders, front wheel locking longer than 0.1s is linked to some kind of loss of control. Yet the
two expert skilled riders in three trials were able to keep stability with front wheel lock events lasting
more than 0.4s. Boubezoul et al. [13] in their test performing falls with a stunt defined a threshold of
Gyro Norm Max of 2 rad/s to identify falling events. Our study, focused on loss of control events not
necessarily leading to falls, set the threshold for the best AUC performance to a lower level (0.77 rad/s).
However, we also found that in one case, expert riders avoided the falling (not the loss of control) with
an absolute gyro rate slightly higher than those 2 rad/s. Our results, presenting Gyro-Z (yaw rate) as one
of the predictors of loss of control, are consistent with [10], which found correlation between low-side
fall and high yaw rate. However, our study revealed that the peak-to-RMS ratio of roll acceleration is
the most robust parameter for identifying loss of control for braking maneuvers performed by riders of
every skill levels. Results from previous studies aiming to detect falling events after loss detection
were focused on passive safety applications. The present study, which proposed predictive models
to detect loss of control events before they irreversibly lead to a fall, has applications for active safety
technologies. Additionally, our findings indicate that previous falling detection algorithms (typically
linked to activation of passive safety systems, e.g., airbags) may produce false positive cases for highly
skilled riders who can handle the vehicle in extreme conditions.

Some limitations have to be considered. Predictive models defined based on a small sample of
loss of control cases have the risk of overfitting. The most important predictor (peak-to-RMS ratio of roll
acceleration) is computed with the differential of a collected measure (Gyro-X), so the values may be
sensitive to noise and the filter methods applied to reduce it. Additionally, the high accuracy achieved
by the proposed models applies to braking events in specific conditions on a straight line and velocities
of around 50 km/h using a 300 cc scooter. To reduce overfitting, we adopted the following measures:
we developed three different models with low complexity (logistic regression models); we reduced
the number of predictors to a maximum of three; we selected our data in order to consider loss of
control cases with riders of different skills and finally, when required, using regularization methods to
make decision boundaries smoother to reduce coefficient variability. Despite this, the 100% accuracy
obtained with Model-3 is expected to decrease for a broad sample of cases at the limit of loss of control
(close to the decision boundaries of the model). Further research is warranted to confirm the accuracy
of the proposed models, using these models on loss of control scenarios due to braking events that are
different from those analyzed in this experiment such as naturalistic near-crash events or the more
common straight line hard braking without an opponent vehicle. It would also be important to assess
the effectiveness of the proposed approach for braking maneuvers under a broader set of conditions.

The study presented provides valuable information on the stability capabilities of the riders under
a braking maneuver close to emergency scenarios and help to understand the process and the motion
conditions that lead rider to start losing control. The loss of control predictive models developed
may provide support to: (a) active safety systems developments; and (b) training actions aiming to
improve rider’s skills with objective indicators of the controllability of the braking maneuver. The new
development of active safety technologies are rider-in-the-loop-systems whose efficiency depends on
understanding the response of the riders. The predictive models and kinematic thresholds identified
in this work can be used in cases of emergency braking to improve the triggering algorithms used by
active stability control systems (e.g., cable steering systems [23] or gyro-stabilization systems [24]).
Furthermore, the models can also be applied for acceptance assessment of new advanced riding
assistance systems such as motorcycle autonomous emergency braking system [25] by classifying the
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riding controllability/instability during the activation of these systems and providing information
about the riders’ performance capabilities. Regarding the actions to improve the riders’ braking
skills, our predictive models may be a helpful tool for rider instructors to understand and assess the
trainee performance limits using indicators. This may support training programs for assigning the
appropriate level of demand for improvement without exceeding the safety limits. The findings of
this study contribute to a better understanding of the riding responses for the development of future
countermeasures to reduce motorcycle crashes.

Author Contributions: “conceptualization, P.H.-L., G.S., N.B. and M.P.; methodology, P.H.-L., G.S., N.B. and M.P.;
software, P.H.-L.; validation, P.H.-L., G.S., N.B. and M.P.; formal analysis, P.H.-L.; investigation, P.H.-L.; resources,
M.P., P.H.-L. and G.S.; data curation, P.H.-L.; writing—original draft preparation, P.H.-L.; writing—review and
editing, P.H.-L.; G.S. and N.B.; visualization, P.H.-L.; supervision, N.B. and G.S.; project administration, M.P., G.S.
and P.H.-L.; funding acquisition, M.P. and G.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the 7th Framework Program of the European Commission within the
Marie Curie Actions (MOTOrcycle Rider Integrated SafeTy, grant number 608092).

Acknowledgments: We thank Simon Rosalie, Marilee Nugent and Cosimo Lucci (Università degli Studi di
Firenze) for their support in the development of the experimental tests.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cossalter, V.; Lot, R.; Maggio, F. On the braking behavior of motorcycles. SAE Trans. 2004, 18, 2004.
2. Fredriksson, R.; Sui, B. Powered two-Wheeler accidents in Germany with severe injury outcome-Accident

scenarios, injury sources and potential countermeasures. In Proceedings of the IRCOBI Conference, Malaga,
Spain, 14–16 September 2016; Available online: http://www.ircobi.org/wordpress/downloads/irc16/pdf-files/
11.pdf (accessed on 2 March 2020).

3. Corno, M.; Savaresi, S.M.; Tanelli, M.; Fabbri, L. On optimal motorcycle braking. Control. Eng. Pract. 2008,
16, 644–657. [CrossRef]

4. Sharp, R.S. Limit braking of a high-performance motorcycle. Veh. Syst. Dyn. 2009, 47, 613–625. [CrossRef]
5. Baldanzini, N.; Huertas-Leyva, P.; Savino, G.; Pierini, M. Rider Behavioral Patterns in Braking Maneuvers.

Transp. Res. Procedia. 2016, 14, 4374–4383. [CrossRef]
6. Gail, J.; Funke, J.; Seiniger, P.; Westerkamp, U. Anti Lock Braking And Vehicle Stability Control For

Motorcycles-Why or Why Not? In Proceedings of the 21st ESV Conference, Stuttgart, Germany, 15–18 June
2009.

7. Seiniger, P.; Schröter, K.; Gail, J. Perspectives for motorcycle stability control systems. Accid. Anal. Prev. 2012,
44, 74–81. [CrossRef] [PubMed]

8. Symeonidis, I.; Kavadarli, G.; Erich, S.; Graw, M.; Peldschus, S. Analysis of the stability of PTW riders in
autonomous braking scenarios. Accid. Anal. Prev. 2012, 49, 212–222. [CrossRef] [PubMed]

9. Savino, G.; Pierini, M.; Thompson, J.; Fitzharris, M.; Lenné, M.G. Exploratory field trial of motorcycle
autonomous emergency braking (MAEB): Considerations on the acceptability of unexpected automatic
decelerations. Traffic Inj. Prev. 2016, 17, 855–862. [CrossRef] [PubMed]

10. Bellati, A.; Cossalter, V.; Lot, R.; Ambrogi, A. Preliminary investigation on the dynamics of motorcycle fall
behavior: Influence of a simple airbag jacket system on rider safety. In Proceedings of the 6th International
Motorcycle Conference, IFZ Institute for Motorcycle Safety, Cologne, Germany, 9–10 October 2006.

11. Cossalter, V.; Aguggiaro, A.; Debus, D.; Bellati, A.; Ambrogi, A. Real cases motorcycle and rider race data
investigation: Fall behavior analysis. In Proceedings of the International Technical Conference on the
Enhanced Safety of Vehicles (ESV) National Highway Traffic Safety Administration (No. 07-0342), Lyon,
France, 18–21 June 2007.

12. Attal, F.; Boubezoul, A.; Oukhellou, L.; Cheifetz, N.; Espie, S. The Powered Two Wheelers fall detection using
Multivariate CUmulative SUM (MCUSUM) control charts. In Proceedings of the 17th International IEEE
Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 8–11 October 2014.

13. Boubezoul, A.; Espié, S.; Larnaudie, B.; Bouaziz, S. A simple fall detection algorithm for powered two
wheelers. Control. Eng. Pract. 2013, 21, 286–297. [CrossRef]

http://www.ircobi.org/wordpress/downloads/irc16/pdf-files/11.pdf
http://www.ircobi.org/wordpress/downloads/irc16/pdf-files/11.pdf
http://dx.doi.org/10.1016/j.conengprac.2007.08.001
http://dx.doi.org/10.1080/00423110802331567
http://dx.doi.org/10.1016/j.trpro.2016.05.359
http://dx.doi.org/10.1016/j.aap.2010.11.018
http://www.ncbi.nlm.nih.gov/pubmed/22062339
http://dx.doi.org/10.1016/j.aap.2011.07.007
http://www.ncbi.nlm.nih.gov/pubmed/23036398
http://dx.doi.org/10.1080/15389588.2016.1155210
http://www.ncbi.nlm.nih.gov/pubmed/27028899
http://dx.doi.org/10.1016/j.conengprac.2012.10.009


Appl. Sci. 2020, 10, 1754 16 of 16

14. Shinar, D. Traffic Safety and Human Behavior; Elsevier: Oxford, UK, 2007.
15. Giovannini, F.; Baldanzini, N.; Pierini, M. Development of a Fall Detection Algorithm for Powered Two

Wheelers Application. SAE Tech. Pap. 2014. [CrossRef]
16. Huertas-Leyva, P.; Nugent, M.; Savino, G.; Pierini, M.; Baldanzini, N.; Rosalie, S. Emergency braking

performance of motorcycle riders: Skill identification in a real-life perception-action task designed for
training purposes. Transp. Res. Part. F Traffic Psychol. Behav. 2019, 63, 93–107. [CrossRef]

17. Hallgren, K.A. Computing Inter-Rater Reliability for Observational Data: An Overview and Tutorial. Tutor.
Quant. Methods Psychol. 2012, 8, 23–34. [CrossRef] [PubMed]

18. Mcgraw, K.O.; Wong, S.P. Forming inferences about some intraclass correlation coefficients. Psychol. Methods
1996, 1, 30–46. [CrossRef]

19. Bursac, Z.; Gauss, C.H.; Williams, D.K.; Hosmer, D.W. Purposeful selection of variables in logistic regression.
Source Code Biol. Med. 2008, 3, 1–8. [CrossRef] [PubMed]

20. Krzanowski, W.J.; Hand, D.J. ROC Curves for Continuous Data; Chapman and Hall/CRC: New York, NY,
USA, 2009.

21. Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [CrossRef]
22. Cicchetti, D.V. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment

instruments in psychology. Psychol. Assess. 1994, 6, 284–290. [CrossRef]
23. Marumo, Y.; Katagiri, N. Control effects of steer-by-wire system for motorcycles on lane-keeping performance.

Veh. Syst. Dyn. 2011, 49, 1283–1298. [CrossRef]
24. Lot, R.; Fleming, J. Gyroscopic stabilisers for powered two-wheeled vehicles. Veh. Syst. Dyn. 2019, 5,

1381–1406. [CrossRef]
25. Savino, G.; Giovannini, F.; Baldanzini, N.; Pierini, M.; Rizzi, M. Assessing the potential benefits of the

motorcycle autonomous emergency braking using detailed crash reconstructions. Traffic Inj. Prev. 2013, 14,
S40–S49. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.4271/2014-32-0022
http://dx.doi.org/10.1016/j.trf.2019.03.019
http://dx.doi.org/10.20982/tqmp.08.1.p023
http://www.ncbi.nlm.nih.gov/pubmed/22833776
http://dx.doi.org/10.1037/1082-989X.1.1.30
http://dx.doi.org/10.1186/1751-0473-3-17
http://www.ncbi.nlm.nih.gov/pubmed/19087314
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1037/1040-3590.6.4.284
http://dx.doi.org/10.1080/00423114.2010.515030
http://dx.doi.org/10.1080/00423114.2018.1506588
http://dx.doi.org/10.1080/15389588.2013.803280
http://www.ncbi.nlm.nih.gov/pubmed/23905921
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Participants 
	Equipment and Data Collection 
	Protocol of the Experiment 
	Loss of Control Predictive Model Development 
	Loss of Control Identification by Video Analysis 
	Selection of Predictor Variables 
	Regression Model Algorithm 
	Performance of the Model (ROC and AUC) 
	Performance of the Single Predictors (ROC and AUC) 

	Loss of Control Detection Model for Time Series 

	Results 
	Consistency of the Loss of Control Rating 
	Selection of Input Features 
	Preliminary Analysis 
	Descriptive Analysis 

	Predictive Models 
	Performance of the Single Predictors 
	Loss of Control Predictive Model for Time Series data 

	Discussion 
	References

