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Abstract: Software defect prediction is a promising approach aiming to improve software quality and
testing efficiency by providing timely identification of defect-prone software modules before the actual
testing process begins. These prediction results help software developers to effectively allocate their
limited resources to the modules that are more prone to defects. In this paper, a hybrid heterogeneous
ensemble approach is proposed for the purpose of software defect prediction. Heterogeneous
ensembles consist of set of classifiers of different learning base methods in which each of them has its
own strengths and weaknesses. The main idea of the proposed approach is to develop expert and
robust heterogeneous classification models. Two versions of the proposed approach are developed
and experimented. The first is based on simple classifiers, and the second is based on ensemble ones.
For evaluation, 21 publicly available benchmark datasets are selected to conduct the experiments
and benchmark the proposed approach. The evaluation results show the superiority of the ensemble
version over other well-regarded basic and ensemble classifiers.

Keywords: software defect prediction; ensembles; clustering; segmentation; classification

1. Introduction

Individuals and society increasingly rely on advanced software systems. Because software is
intertwined with all aspects of our lives, it is essential to produce reliable and trustworthy systems
economically and quickly. In order to ensure the desired software quality at a lower cost, much effort
has been invested on software reliability and software quality assurance (SQA) [1,2]. With limited
resources, however, this is increasingly being challenged by the rapid growth in size and complexity
of today’s software. Defective software modules increase the development and maintenance costs and
cause customer dissatisfaction [3,4].

Software defect prediction is one of the SQA activities that aims to automatically predict
fault-prone software modules using historical software information from an earlier deployment
or identical objects, for example source code edit logs [5] and bug reports [6], before the actual testing
process begins. Effective defect prediction could help test managers locate bugs and facilitate the
allocation of limited SQA resources optimally and economically; thus, it has become an extremely
important research topic [7–12]. Commonly, a prediction model is used to predict the defective
software modules in one of the three categories: binary class classification of defects [13–16], number of
defects/defect density prediction [17–20], and severity of defect prediction [21,22].
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Among them, the binary class classification is the most frequently used types of prediction scheme,
where software modules having one or more defects are marked as defected and modules having
zero defects are marked as non-defected. In this type of defect prediction schema, researchers have
explored the use of various classification techniques, including statistical techniques such as Naïve
Bayes (NB) [23] and Logistic Regression [24]; supervised techniques such as Decision Tree (DT) [25],
Support Vector Machine (SVM) [26], ensemble methods [16,27–29], and Case Based Reasoning [30];
semi supervised techniques such as Expectation Maximization (EM) [31]; and unsupervised techniques
such as K-means clustering [32] and Fuzzy clustering [33]. Most of the studies in the literature have
used statistical and supervised learning techniques [34].

Although a large number of studies have been conducted to build and evaluate defect prediction
models using different classification techniques in the context of binary class classification, still the
prediction accuracy of defect prediction techniques is found to be considerably low, with a high
misclassification rate [26,34–36]. Looking at these results, one questions the dependability of these
techniques for software defect prediction [34,37]. Therefore, it will be important to design more
advanced techniques to improve the performance of defect prediction models [34,38].

In this work, a hybrid heterogeneous ensemble approach is proposed for improving the accuracy
of software defect prediction. The core argument for this approach is to develop expert and
robust classification models of different natures based on groups of similar points. In other words,
the classification models are of different machine learning types like lazy classifiers, decision trees,
naïve bayes, and ensembles. While on the other hand, similar points refer to a group of points that
are as close as possible according to a similarity measure like the euclidean measure. These groups of
data are generated using a clustering stage. Unlike most of the previous works that generate general
models for all data, this work aims to develop several expert models based on the characteristics
of the data. Two versions of the proposed approach are developed and experimented. The first is
based on simple classifiers (i.e., k-Nearest Neighbour (k-NN), NB, and DT), and the second is based
on ensemble ones (i.e., Bagging, Adaptive Boosting (AdaBoost), Random Forest (RF), and XGBoost
(XGB)). Extensive experiments based on 21 well-known benchmark datasets are conducted to evaluate
the proposed approach.

The remainder of this article is organized as follows: The next section presents related work
on defect prediction. The preliminaries of the algorithms utilized in the proposed approach are
given in Section 3. Section 4 presents the proposed hybrid heterogeneous ensemble approach for
software defect prediction. Section 5 discusses the model evaluation metrics, and Section 6 presents the
benchmark datasets specifications. Section 7 is devoted to the benchmarking experiments and discusses
their respective results. Finally, Section 8 draws conclusions and describes promising directions for
future work.

2. Related Work

During the last two decades, software defect prediction problem became a noteworthy research
topic, increasingly catching the interest of researchers. A software defect prediction model can be used
to classify software modules into defected or non-defected (binary class classification), to predict the
number of defects in a software module, or to predict the severity of the defects. In the context of binary
class classification, hundreds of different defect prediction models have been published. To build
these models, researchers have used various classification techniques to build the defect prediction
models such as Logistic Regression [24], NB [23], SVM [26], ANN [39], Genetic Programming [40],
Ant Colony Optimization [14], Particle Swarm Optimization [41], RF [42], Case Based Reasoning [30],
DT [25], ensemble methods [16,28,29,43,44], EM [31], Fuzzy clustering [33], K-means clustering [32],
Association Rule Mining [45], and the Artificial Immune Systems [46,47].

In these techniques, researchers have applied several statistical and machine learning techniques to
predict fault proneness models and reduce software development and maintenance costs. Among them,
the machine learning technique is the most popular [1]. The majority of software defect prediction
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techniques build models using metrics and faulty data from an earlier deployment or identical objects
and then use the models to predict whether the modules presently under development contain defects,
which is called a supervised learning approach [7]. Among the supervised learning techniques, ANN is
one of the most popular, having received a great deal of attention) [39,48,49]. It should be pointed out
that the ANN technique has some drawbacks in application for software defect prediction, the most
important being the difficulty in determining the best neural network architecture in each application
domain [49]. In contrast, there are other approaches, for example, clustering [33], which do not use
previous data; these approaches are called unsupervised learning approaches. It is worth pointing out
that some researchers, for example [50], classify software defect prediction techniques into descriptive
and predictive techniques.

The usage of machine learning algorithms has increased in the last decade and is still one of the
most popular methods for defect prediction [51,52]. Challagulla et al. [53] conducted an empirical
assessment to evaluate the performance of various machine learning techniques and statistical models
for predicting software quality. The experiments on four different real-time software defect datasets
using different predictor models revealed that the 1R rule-based classification learning algorithm and
Instance-based learning along with Consistency-based subset evaluation technique is more consistent
in achieving accurate predictions as compared with other models. Based on their results, the authors
presented a high-level design of an intelligent software defect analysis tool for defect assessment and
dynamic monitoring of software modules. Catal and Diri [54] investigated the effects of data size,
metrics, and feature selection techniques on software defect prediction. Nine classifiers were examined
to explore which classifier performs best before and after applying feature reduction. They showed that
NB is the best prediction algorithm for small datasets while Random Forests gives the best prediction
performance for large datasets. Kaur and Pallavi [55] discussed the utilization of numerous machine
learning approaches—for example, association mining, classification, and clustering in software defect
prediction—but did not provide a comparative performance analysis of the techniques. Kumar and
Gopal [56] proposed a binary classifier referred as LSTSVM which is the Least Square variant of
Twin Support Vector Machine. The experiments showed that LSTSVM has comparable classification
accuracy to Twin Support Vector Machine (TSVM) but with considerably lesser computational time.
Agrawal and Tumar [57] proposed a feature selection based on the LSTSVM model for software defect
prediction. A comparative analysis of various classification approaches against four PROMISE datasets
showed the superiority of the proposed predictive model over other models, i.e., SVM and DT, in three
datasets. Again, Tumar and Agrawal [58] developed a software defect prediction system using a
weighted LSTSVM to consider misclassification cost of defective software modules. A comparison
has been performed between the proposed approach and nine of the existing approaches using
different performance measures. The results on eight datasets demonstrated the effectiveness of the
proposed approach. Shukla and Verma [59] reviewed and analysed various literature studies on defect
prediction area, investigated recent advancement in this area, and drew various conclusions. Dwivedi
and Singh [60] analysed and compared various data mining classification and prediction techniques
such as NN, NB, and k-NN for the software defect prediction models. The results showed that NN
can outperform other two classifiers with the average accuracy of 91.54%. Wang et al. [8] proposed
to leverage the directly learned semantic features to build machine learning models for predicting
defects. The results on ten open source projects showed that the automatically learned semantic
features using Deep Belief Network (DBN) improved within-project defect prediction on average by
14.7% in precision, 11.5% in recall, and 14.2% in F1. To reduce the complexity of metric selection and
defect prediction, Huda et al. [61] proposed a framework for finding significant metrics to build and
evaluate an automated software defect prediction model, using a hybrid combination of wrapper and
filter techniques. Experimental results with eight NASA software datasets showed that the proposed
hybrid approaches can select the most significant metrics with high prediction accuracy compared
with conventional wrapper or filter approaches in some of the datasets. The highest accuracy achieved
by the hybrid approach was almost 91% at different subset of metrics. Recently, Bowes et al. [62]
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performed a sensitivity analysis for the prediction uncertainty produced by four different classifiers.
Their results showed that classifier ensembles with decision-making strategies that are not based on
majority voting are likely to perform best. Zhou et al. [38] proposed a new deep forest model to
build the defect prediction model (DPDF). Their results on 25 open source projects from four public
datasets showed that the DPDF increased AUC value by 5% compared best traditional machine
learning algorithms.

3. Preliminaries

In this section, we briefly describe each of the algorithms utilized in the proposed approach.

3.1. NB

NB is a statistical probability-based classifier based on the Bayes theorem. NB is a family of
algorithms based on a common principle, which assumes that all of the predictors are equally important
and independent of each other [63]. In other words, when the class variable is given, it assumes the
presence or absence of a particular feature is not related to the presence or absence of any other
feature [64]. Instead of simple classification, NB reports the probability of an instance belonging to
each individual class. In our case, the class with the highest posterior probability is the outcome of
prediction that predicts whether a software module is defective or non-defective.

3.2. k-NN

k-NN is an instance-based learning method that classifies instances within a dataset by assigning
the label of the closest neighbour to each new pattern during the testing phases. If the instances are
tagged with a classification label, then the majority class of the closest k neighbours is assigned to the
unclassified instance. Although the power of k-NN has been proven in a number of real domains,
they have large storage requirements and their performance is sensitive to the choice of the k.

3.3. DT

DT is a logic-based learning method that classifies instances by sorting them based on feature
values. The main idea underlying DT for classification tasks is the recursive partition of the data
space; thus, a DT can be equivalently expressed as a set of rules. DT utilizes a tree-like data structure
where each node in the tree represents a feature in an instance to be classified, whereas each branch
represents a value that the node can assume [65]. The classification of instances starts at the root node,
and instances are sorted based on their feature values. The most well-known algorithm in the literature
for building tree is the C4.5, which is an extension of the ID3 algorithm. Although DT can effectively
deal with nonlinear relationships, it is sensitive to noisy data and also may lead to overfitting.

3.4. Adaboost

AdaBoost is a widely used boosting algorithm that constructs an ensemble by performing multiple
iterations each time with different instance weights and adjusts adaptively to the errors returned by
classifiers from previous iterations [66,67]. Changing the weights of training instances in each iteration
forces the learning algorithms to put more emphasis on instances that were incorrectly classified
previously and less emphasis on instances that were correctly classified previously. In other words,
weights of misclassified instances are increased, whereas weights of correctly classified instances are
decreased. This will ensure misclassification errors for these misclassified instances count more heavily
in the next iterations. AdaBoost uses the predictions of multiple weak classifiers and gives a final
prediction through combined voting on techniques. Weak classifiers as originally defined by Freund
and Schapire are classifiers that perform a little better than random guessing [68].
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3.5. Bagging

Bagging is an ensemble technique that is used to improve the stability and accuracy of machine
learning algorithms by combining the prediction of multiple weak classifiers [69]. Bagging works
better for unstable learning algorithms where a little change in the training set results in large changes
in predictions (i.e., ANN, DT). Bagging predicts an outcome several times from different training sets
that are combined either by voting or with uniform averaging [70]. To describe the bagging algorithm,
consider a dataset with N instances and a binary class label. The following steps summarize the
Bagging algorithm:

1. Generate a random training set of size N with replacement from the data.
2. Train the random training set using any classification technique.
3. Assign a class to each node.
4. Repeat steps 1 to 3 many times.
5. Use voting to predict the class label.

3.6. RF

The RF classifier is a special case of Bagging consisting of a collection of tree-structured classifiers.
RF selects random features in order to create bootstrap models using decision trees [71]. To do so,
it creates a random forest of multiple decision trees by selecting data and variables randomly. A subset
of instances is chosen randomly from the selected attributes and assigned to the learning algorithm.
The forest selects the classification that has the most votes over all the trees in the forest. RF relies
on aggregating the output from many “shallow” trees (called stumps), which are tuned and pruned
without much analysis, so that the errors from many stumps will disappear when aggregated and lead
to a more accurate prediction. Randomization in RF appears in two places:

1. Each tree is trained using a random sample with replacement from a training set.
2. When training individual trees, a random subset of features is used for searching for

splits. The randomization reduces the correlations among trees, which improves the
predictive performance.

3.7. XGB

XGB is a decision-tree-based supervised learning algorithm that implements a process called
Gradient Boosting to construct an ensemble learner [72]. XGB optimises a collection of weak decision
tree learning models to build an accurate and reliable predictor, decision tree ensemble, which uses
the output of the weak learners in the final prediction. XGB improves upon the base Gradient
Boosting Machines (GBMs) framework through algorithmic enhancements (i.e., Regularization,
Sparsity Awareness, Weighted Quantile Sketch) and software and hardware optimization techniques
(i.e., Parallelization, Tree Pruning). These improvements yield superior results using less computing
resources in the shortest amount of time.

3.8. K-Means Clustering

K-means clustering is one of the most popular unsupervised learning methods. The main goal of
K-means is to group similar data instances together and find patterns in the given datasets. To achieve
this goal, K-means defines number of clusters (K) and then groups the similar elements into these
clusters. It starts by selecting the centriods, which are the starting points of the clusters. In the next step
it assigns the instances to the closest centroid and then updates the positions of the centroids iteratively
until the centroids are stabilized or the predefined maximum number of iterations is reached.
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Given a dataset of n instances S = {x1, . . . , xn} ∈ Rd, and an integer number K, K-means
algorithm aims to find C = {c1, . . . , cK}, the set of centroids with respect to the following error function:

E(C) = ∑
x∈S

min
i=1,...,K

‖x− ci‖2 (1)

As mentioned before, K-means assigns instances to one of the specified clusters according to the
similarity between them. To measure the similarity, it usually uses the Euclidean distance between the
instance and the centroids.

4. Proposed Approach

In this paper, we propose an approach for software defect classification where models are
developed based on clustered patterns. The approach is composed of three main phases: In the
first phase, a clustering process is applied on the training data to segment it into a set of groups of
similar instances. In the second phase, different classifiers are trained based on the generated groups
from the first phase. The third phase evaluates the developed models and uses them for predicting
unrepresented instances. These three phases are illustrated in Figure 1 and described in details in the
following three subsections.

Dataset

Testing 
dataset

Training 
dataset

For each instance in testing data:
● Measure the distance with 

centroids of Cluster 1, Cluster 
2, and Cluster N.

● Assign the instance to the 
classifier of the closest cluster.

● Record the prediction for this 
instance

C
ross-validation

Final 
ensem

ble 
m

odel

Best 
classifier

Best 
classifier

Best 
classifier

Classifier 1

Classifier 2

Classifier 3

Classifier 1

Classifier 2

Classifier 3

Classifier 1

Classifier 2

Classifier 3

Clustering 
algorithm

Training 
cluster NTraining 

cluster 2

Training 
cluster 1

C
lustering phase

Figure 1. Proposed methodology for software defect prediction.

4.1. Clustering Phase

The clustering phase is the first phase of the hybrid algorithm. The idea is to start a preprocessing
step to prepare the data for developing the classification algorithms. The data is split into two parts:
the training part, which is the only part that is used in this stage for clustering, and a testing part,
which is used to evaluate the performance of the trained models. During this preprocessing step,
we start by clustering training data into a set of predefined number of clusters. We can use any
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clustering technique, but in our work one of the most popular clustering techniques, the k-means
algorithm, will be used.

4.2. Models Development Phase

After segmenting the training data into a set of clusters, the next step is to develop a classification
model for each cluster. To do that, several classification algorithms are trained and evaluated on
each cluster using the cross-validation methodology. The goal is to find the most suitable and expert
model for each cluster. For example, suppose we have three classification algorithms called X, Y,
and Z. All algorithms will be trained and evaluated based on each cluster. For example, if algorithm
Y produced the highest average accuracy over the cross-validation process based on a given cluster,
then Y will be assigned to this cluster for future predictions because it showed higher prediction power
than algorithms X and Z. It is important to note that when there is a cluster of only one class the
classifier works as one class classification algorithm. So, it trains based on one class in the training
phase and detects the other class in the testing phase as outlier. After finishing this phase, each cluster
will have its own expert model. Note that the best classifier can be different from one cluster to another.
Figure 2 gives an example of this phase with three different classifiers trained on three clusters, and it
shows how the classifiers in the final model are selected.

In this work, two types of classifiers are implemented to produce two versions of the proposed
approach. In the first version, basic classifiers are used. This version will be referred to as
K-Means/Basic classifiers (KMB). In the second version, ensemble classifiers will be utilized. The latter
version will be referred to as K-Means/Ensemble classifiers (KME).

Cluster 1

Classifier 
Y

Classifier 
X

Classifier 
Z

Cluster 2
Classifier 

Y

Classifier 
X

Classifier 
Z

Cluster 3
Classifier 

Y

Classifier 
X

Classifier 
Z

Acc = 90%

Acc = 95%

Acc = 80%

Acc = 80%

Acc = 70%

Acc = 75%

Acc = 90%

Acc = 80%

Acc = 96%

Classifier Y is assigned 
to Cluster 1

Classifier X is assigned 
to Cluster 2

Classifier Z is assigned 
to Cluster 3

Final model

Figure 2. Example of the model development phase of the proposed approach.

4.3. Testing Phase

In the testing phase, we are concerned with the testing data generated in the first phase. For each
instance in the testing data, we must specify to which cluster it belongs by calculating the distance
between the instance and each centroid of the clusters. As a result, the instance will belong to the
closest cluster (most similar), and it will be given to the model that has been assigned to the cluster
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in the training phase for final prediction. To determine the similarity, we use the Euclidean distance
between the testing instance I and the centroid C, which can be defined as follows:

d(I, C) =

√√√√ d

∑
i=1

(Ii − Ci)2 (2)

where d is the number of input features in the dataset.
After classifying all instances in the testing data, we can use the predictions against the actual

values of classes to evaluate the performance of the given hybrid algorithm. The procedure of the
algorithm is explained in Algorithm 1.

Algorithm 1: Ensemble with clustering.
input :D = {x1, x2, ..., xn}//Training dataset, D, which contains a set of training instances and

their associated class labels.

Select F classifiers { f1, f2, ..., fi}
Set k //k number of clusters.
Split data into training data (λ) and testing data (Γ)
Cluster λ into k clusters = > {C1, C2, ..., Ck}
//Training phase.
foreach classifier fi in F do

for j← 1 to k do
Split Cj to cv folds//inner cross-validation
cvError = 0
for l ← 1 to cv do

Train fi on cv− 1 folds
compute error El on the held out fold
cvError = cvError+El

avgErrori = cvError/cv
For each Cj select fi with the lowest avgError
//Testing phase.
foreach instance I in Γ do

Calculate the distance between I and each Cj
Find the closest Cj to I and its corresponding fi
Prediction [I] = fi(I)

5. Model Evaluation Metrics

To evaluate the proposed software defect prediction model, we refer to the confusion matrix
shown in Table 1, which is the primary source for accuracy estimation in classification problems.
Based on this confusion matrix, the following criteria are used for evaluation:

1. Recall: is the fraction of relevant instances that have been retrieved over the total amount of
relevant instances (i.e., coverage rate). It can be expressed by the following equation:

Recall =
TP

TP + FN
(3)

2. Precision: is the ratio of relevant instances among the retrieved instances. It can be given by the
following equation:

Precision =
TP

TP + FP
(4)
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3. G-mean: is the geometric mean of the recalls of each class and it can be measured by the
following equation:

G−mean =

√
TP

TP + FN
× TN

TN + FP
(5)

Table 1. Confusion matrix.

Actual

Defect No Defect

Predicted defects TP FP
Predicted non-defects FN TN

6. Datasets Description

To facilitate the replication and verification of our experiments, the proposed approach is applied
to a series of 21 well-studied public and available online software defect benchmark datasets with
various attributes and instances. Eleven of the studied datasets are obtained from the NASA corpus
while ten from the PROMISE software engineering corpus [73]. However, the NASA corpus is
a known-to-be noisy corpus [74,75]. To avoid the effect of such noisy data on the results of our
experiments, we use the cleaned version of the NASA corpus as provided by [74], which is available
online (https://figshare.com/articles/MDP_data_sets_D_and_D_-_zipped_up/6071675). The NASA
datasets were collected from real software projects from different domains by NASA and have various
software modules developed in several different programming languages including, C, C++, and Java,
various scales of lines of code, and various types of software metrics. For instance, in the cleaned
version of the NASA corpus, the JM1 dataset consists of 7782 instances (1672 defective/6110 defect-free)
where each instance includes a total of 22 attributes, of which five are different lines of code measures,
three are McCabe metrics, four are base Halstead measures, eight are derived Halstead measures,
one is a branch-count, and one is a decision attribute that indicates whether a particular instance is
defective or non-defective. The PROMISE datasets were collected from open source software projects
developed in a variety of settings (e.g., Apache, GNU) which provides different metrics than the NASA
corpus does. Table 2 shows information and some general statistics of each dataset.

Table 2. Datasets specifications.

Datasets Attributes Instances Defects Non-Defects Defects% Non-Defects %

cm1 38 327 42 285 12.8 87.2
jm1 22 7782 1672 6110 21.5 78.5
kc1 22 1183 314 869 26.5 73.5
kc3 40 194 36 158 18.6 81.4
mc1 39 1988 46 1942 2.3 97.7
mw1 38 253 27 226 10.7 89.3
pc1 38 705 61 644 8.7 91.3
pc2 37 745 16 729 2.1 97.9
pc3 38 1077 134 943 12.4 87.6
pc4 38 1287 177 1110 13.8 86.2
pc5 39 1711 471 1240 27.5 72.5

ant-1.7 21 745 166 579 22.3 77.7
camel-1.6 21 965 188 777 19.5 80.5

ivy-2.0 21 352 40 312 11.4 88.6
jedit-4.3 21 492 11 481 2.2 97.8
log4j-1.2 21 205 189 16 92.2 7.8

lucene-2.4 21 340 203 137 59.7 40.3
poi-3.0 21 442 281 161 63.6 36.4

tomcat-6 20 858 77 781 9 91
xalan-2.6 21 885 411 474 46.4 53.6
xerces-1.4 21 588 437 151 74.3 25.7

https://figshare.com/articles/MDP_data_sets_D_and_D_-_zipped_up/6071675
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7. Experiments and Results

The experiments was executed 30 independent time then the average of the results was calculated.
The experiments will be conducted in three steps:

• The best number of clusters is experimented for each dataset, and the best model for each cluster
is found.

• The proposed approach is experimented based on utilizing simple and common classifiers (NB,
k-NN, and DT).

• The proposed approach is experimented based on utilizing powerful ensemble classifiers (Bagging,
AdaBoost, RF, and XGB).

For k-NN, the number of neighbours is set to 3 as this value showed best performance based on
the training data compared to other values (i.e., 1, 5, 7, and 9). For the ensemble classifiers, the selected
base classifier is decision tree, and the ensemble size is set to 100. The latter settings yield the best
performance based on the training data with the least computation effort.

7.1. Finding the Best Number of Clusters and Their Corresponding Models

The number of clusters in our final model will be determined based on the G-mean results of
the training phase. Cross-validation approaches can help avoid overfitting in model selection [76].
Therefore, the training process is conducted based on two-folds cross-validation to avoid overfitting.
Four settings are experimented to determine the required number of clusters: 3, 5, 7 or 9. The number
of clusters that yield the highest G-mean value will be selected to be applied for the final model in the
testing phase. Tables 3 and 4 show the G-mean results of the cross-validation training phase of our
approach based on the basic classifiers and ensemble ones, respectively. As it can be seen in the tables,
the best number of clusters varies from one dataset to another. This confirms that the software defect
benchmark datasets are varied in their nature, where different groups can be identified, and these
groups have a number of similar patterns. Tables 3 and 4 also show the distribution of classes in each
cluster. It is important to note here that sometimes the clustering process produce clusters that contain
only class. For such cases, any new instance that is closer to the center of a one-class cluster will be
simply given the same class of the cluster.

For each cluster that results from the previous step, the best performing classifier is assigned.
Demonstrating the best performing models for KMB and KME, Figures 3 and 4 show the frequency
of the best models over all datasets. In the case of KMB, we can see that the DT is the most frequent
classifier in most of cases, followed by NB and k-NN. In the case of KME, Bagging is the most frequent
model, followed by XGB, RF and AdaBoost, respectively. This supports the idea that there is no
dominating classifier for all the data patterns, and each group of similar patterns needs a model that
fits its particular characteristics.
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Table 3. G-mean results of two-folds cross-validation for the proposed approach based on the basic classifiers.

Datasets
KMB

Best # of Clusters Distribution of Classes Defects:Non-Defects
1C 3C 5C 7C 9C

cm1 0.518 0.608 0.723 0.744 0.845 9 7.7:92.3, 12.8:87.2, 14.3:85.7, 22.2:77.8, 50:50, 0:100, 0:100, 66.7:33.3, 13.8:86.2
jm1 0.615 0.622 0.631 0.625 0.621 5 16.6:83.4, 23.2:76.8, 49.6:50.4, 12.2:87.8, 100:0
kc1 0.628 0.594 0.722 0.625 0.592 5 17.8:82.2, 69.4:30.6, 50:50, 15:85, 44.2:55.8
kc3 0.685 0.546 0.441 0.423 0.464 1 21.6:78.4
mc1 0.385 0.559 0.340 0.680 0.716 9 5.6:94.4, 0:100, 3.5:96.5, 0:100, 2.6:97.4, 2:98, 0:100, 0:100, 50:50
mw1 0.593 0.519 0.532 0.517 0.526 1 7.9:92.1
pc1 0.556 0.603 0.548 0.414 0.453 3 13.5:86.5, 11.7:88.3, 2.3:97.7
pc2 0.658 0.575 0.897 0.658 0.837 5 0:100, 0.8:99.2, 6.3:93.7, 0:100, 5.4:94.6
pc3 0.633 0.549 0.565 0.534 0.538 1 11.9:88.1
pc4 0.634 0.606 0.691 0.471 0.234 5 5.3:94.7, 5.8:94.2, 9.8:90.2, 12.1:87.9, 31.4:68.6
pc5 0.671 0.641 0.617 0.653 0.559 1 26.1:73.9

ant-1.7 0.574 0.460 0.427 0.486 0.639 9 2.8:97.2, 43.1:56.9, 5.8:94.2, 12.7:87.3, 86.7:13.3, 15:85, 16.7:83.3, 13.1:86.9, 40:60
camel-1.6 0.619 0.588 0.611 0.540 0.562 1 17.3:65.4

ivy-2.0 0.589 0.671 0.633 0.630 0.564 3 13.8:86.3, 5.6:94.4, 7.1:92.9
jedit-4.3 0.826 0.458 0.458 0.633 0.650 1 0.8:99.2
log4j-1.2 0.773 0.500 0.874 0.975 0.989 9 80:20, 93.1:6.9, 100:0, 87:13, 50:50, 100:0, 100:0, 100:0, 100:0

lucene-2.4 0.734 0.822 0.720 0.592 0.548 3 51.9:48.1, 40.4:59.6, 67.8:32.2
poi-3.0 0.817 0.653 0.526 0.551 0.567 1 60.2:39.8

tomcat-6.0 0.640 0.666 0.726 0.346 0.513 5 37:63, 8.6:91.4, 2.3:97.7, 5.4:94.6, 9.6:90.4
xalan-2.6 0.756 0.635 0.723 0.710 0.644 1 45.9:54.1
xerces-1.4 0.843 0.864 0.843 0.886 0.759 7 89.3:10.7, 50:50, 92.1:7.9, 48.3:51.7, 90.5:9.5, 78.6:21.4, 100:0
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Table 4. G-mean results of two-folds cross-validation for the proposed approach based on the ensemble classifiers.

Datasets
KMB

Best # of Clusters Distribution of Classes Defects : Non-Defects
1C 3C 5C 7C 9C

cm1 0.417 0.653 0.758 0.748 0.845 9 21.4:78.6, 5.9:94.1, 50:50, 0:100, 0:100, 41.7:58.3, 0:100, 13:87, 40:60
jm1 0.505 0.585 0.596 0.612 0.606 7 19.7:80.3, 18.6:81.4, 50.6:49.4, 11.3:88.7, 100:0, 34.7:65.3, 68.2:31.8
kc1 0.562 0.597 0.746 0.633 0.623 5 13.2:86.8, 42.9:57.1, 58.3:41.7, 26.2:73.8, 21.1:78.9
kc3 0.759 0.569 0.481 0.447 0.491 1 25.8:74.2
mc1 0.373 0.504 0.315 0.696 0.718 9 1.2:98.8, 1.6:98.4, 8.2:91.8, 0.9:99.1, 0:100, 0:100, 1.2:98.8, 13.6:86.4, 0:100
mw1 0.661 0.526 0.539 0.522 0.524 1 8.7:91.3
pc1 0.565 0.642 0.497 0.429 0.484 3 21.6:78.4, 11.2:88.8, 7.9:92.1
pc2 0.402 0.484 0.913 0.672 0.840 5 0:100, 1.7:98.3, 2.3:97.7, 4.5:95.5, 16.7:83.3
pc3 0.671 0.492 0.665 0.573 0.589 1 13.6:86.4
pc4 0.695 0.664 0.697 0.503 0.229 5 10.1:89.9, 25.9:74.1, 2.6:97.4, 1:99, 19.6:80.4
pc5 0.688 0.690 0.564 0.701 0.577 7 38.5:61.5, 21.8:78.2, 29.1:70.9, 36.7:63.3, 24.4:75.6, 72.7:27.3, 16.8:83.2

ant-1.7 0.603 0.554 0.461 0.536 0.726 9 26.3:73.7, 35:65, 8.3:91.7, 11.9:88.1, 4.8:95.2, 10.3:89.7, 92.3:7.7, 57.1:42.9, 21.9:78.1
camel-1.6 0.500 0.496 0.607 0.524 0.594 5 11.5:88.5, 20.1:79.9, 3.8:96.2, 27.6:72.4, 21.6:78.4

ivy-2.0 0.657 0.861 0.719 0.681 0.636 3 15.4:84.6, 0:100, 18.7:81.3
jedit-4.3 0.716 0.323 0.475 0.608 0.627 1 1.6:98.4
log4j-1.2 0.667 0.472 0.890 0.977 0.987 9 91.7:8.3, 100:0, 100:0, 100:0, 100:0, 100:0, 100:0, 85.7:14.3, 90.5:9.5

lucene-2.4 0.809 0.869 0.781 0.633 0.591 3 42.5:57.5, 66:34, 51.1:48.9
poi-3.0 0.838 0.741 0.625 0.635 0.639 1 61.1:38.9

tomcat-6.0 0.651 0.703 0.706 0.367 0.549 5 12.3:87.7, 5.1:94.9, 11.6:88.4, 0:100, 4.3:95.7
xalan-2.6 0.793 0.736 0.774 0.767 0.727 1 46.2:53.8
xerces-1.4 0.915 0.969 0.950 0.945 0.775 3 54.1:45.9, 93.2:6.8, 95.9:4.1
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Figure 3. Frequency of the basic classifiers in K-Means/Basic classifiers (KMB) for different numbers
of clusters.
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Figure 4. Frequency of the ensemble classifiers in K-Means/Ensemble classifiers (KME) for different
numbers of clusters.

7.2. KMB vs. Basic Classifiers

In this part of the experiments we verify the performance of the KMB version of our proposed
approach by experimenting it based on the 21 benchmark datasets and comparing it with the basic
classifiers NB, k-NN, and DT.

Because all of the datasets are highly imbalanced, considering the accuracy ratio for evaluation
is misleading. Therefore, other metrics (i.e., recall, precision, and G-mean) should be examined.
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The results of precision, recall and G-mean values are shown in Table 5. According to the results,
we can see that KMB hits the best or very competitive precision and recall values for most of the
datasets. The results of the G-mean evaluation measure reveal that KMB has better performance
in 21 datasets, followed by NB and k-NN respectively, where NB achieved best results only in two
datasets, and k-NN in one dataset.

For better visualization of the results, radar Figures 5–7 are plotted for KMB and the
basic classifiers.

Table 5. Precision, Recall, and G-mean for the basic classifiers and KMB.

Datasets
NB k-NN DT KMB

Pre Rec G-Mean Pre Rec G-Mean Pre Rec G-Mean Pre Rec G-Mean

cm1 0.404 0.312 0.525 0.406 0.300 0.517 0.379 0.285 0.501 0.527 0.437 0.630
jm1 0.504 0.207 0.442 0.511 0.209 0.444 0.510 0.210 0.445 0.716 0.728 0.804
kc1 0.592 0.389 0.591 0.601 0.395 0.596 0.596 0.388 0.590 0.713 0.694 0.787
kc3 0.482 0.581 0.690 0.480 0.562 0.681 0.479 0.578 0.688 0.733 0.798 0.848
mc1 0.029 0.880 0.594 0.029 0.870 0.596 0.030 0.877 0.598 0.693 0.660 0.794
mw1 0.081 0.338 0.480 0.085 0.433 0.540 0.083 0.417 0.529 0.578 0.675 0.722
pc1 0.250 0.329 0.540 0.275 0.356 0.564 0.266 0.338 0.550 0.661 0.721 0.823
pc2 0.093 0.872 0.789 0.089 0.861 0.779 0.088 0.844 0.772 0.424 0.516 0.555
pc3 0.144 0.908 0.406 0.146 0.920 0.409 0.144 0.907 0.405 0.680 0.720 0.827
pc4 0.270 0.723 0.727 0.281 0.754 0.745 0.282 0.749 0.745 0.800 0.785 0.870
pc5 0.535 0.213 0.443 0.537 0.217 0.448 0.535 0.215 0.446 0.760 0.775 0.836

ant-1.7 0.413 0.787 0.745 0.433 0.763 0.751 0.433 0.755 0.748 0.708 0.682 0.795
camel-1.6 0.315 0.205 0.428 0.330 0.212 0.436 0.333 0.218 0.442 0.687 0.695 0.796

ivy-2.0 0.593 0.580 0.732 0.580 0.557 0.716 0.611 0.574 0.731 0.709 0.572 0.684
jedit-4.3 0.300 0.244 0.269 0 0 0 0 0 0 0.716 0.885 0.933
log4j-1.2 0.961 0.962 0.749 0.963 0.970 0.765 0.962 0.970 0.756 0.973 0.979 0.600

lucene-2.4 0.799 0.600 0.695 0.800 0.589 0.690 0.786 0.593 0.685 0.835 0.837 0.801
poi-3.0 0.915 0.626 0.749 0.902 0.601 0.728 0.901 0.607 0.732 0.906 0.917 0.867

tomcat-6.0 0.436 0.418 0.620 0.461 0.438 0.637 0.456 0.431 0.631 0.686 0.747 0.848
xalan-2.6 0.864 0.513 0.688 0.878 0.527 0.700 0.876 0.512 0.690 0.851 0.855 0.859
xerces-1.4 0.934 0.698 0.783 0.942 0.632 0.756 0.943 0.626 0.754 0.972 0.964 0.935
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Figure 5. Precision for the basic classifiers and KMB.
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Figure 6. Recall for the basic classifiers and KMB.
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Figure 7. G-mean for the basic classifiers and KMB.

7.3. KME vs. Ensemble Classifiers

Here we experiment the KME version of the proposed algorithm, which combines ensemble
classifiers instead of simple classifiers in an attempt to boost the predictive power of the approach.
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For precision and recall, Table 6 shows that KME is dominating the top rates especially in regard to
precision. Considering the G-mean results in Table 6, we can see that KME hits the best results in
19 datasets out of 21. For better visualization of the obtained results, radar Figures 8–10 are plotted
for KME and the ensemble classifiers. By comparing the performance of KMB and KME in terms of
G-mean results, Table 7 shows that the KMB achieves better results in 14 datasets out of 21 indicating
that it is not necessary to apply the KME in all cases. This could be explained by the fact that KMB
is a type of ensemble classification and it combines weak classifiers which could prevent overfitting.
This is unlike the case of KME which combines powerful classifiers.

Table 6. Precision, Recall, and G-mean for the ensemble classifiers and KME.

Datasets
Bagging AdaBoost RF XGB KME

Pre Rec G-Mean Pre Rec G-Mean Pre Rec G-Mean Pre Rec G-Mean Pre Rec G-Mean

cm1 0.392 0.295 0.511 0.404 0.300 0.516 0.400 0.295 0.511 0.397 0.289 0.507 0.783 0.623 0.775
jm1 0.505 0.207 0.441 0.505 0.208 0.443 0.505 0.209 0.444 0.506 0.207 0.441 0.846 0.669 0.780
kc1 0.592 0.388 0.590 0.604 0.393 0.595 0.598 0.391 0.593 0.589 0.388 0.590 0.808 0.663 0.758
kc3 0.464 0.556 0.674 0.480 0.567 0.684 0.488 0.576 0.691 0.478 0.543 0.672 0.832 0.792 0.862
mc1 0.029 0.870 0.596 0.030 0.892 0.605 0.029 0.863 0.595 0.03 0.885 0.601 0.866 0.628 0.761
mw1 0.087 0.438 0.544 0.086 0.433 0.542 0.085 0.433 0.539 0.078 0.396 0.513 0.729 0.519 0.594
pc1 0.263 0.335 0.547 0.246 0.313 0.527 0.265 0.345 0.556 0.247 0.315 0.529 0.828 0.659 0.803
pc2 0.094 0.886 0.795 0.088 0.836 0.771 0.092 0.886 0.792 0.095 0.883 0.796 0.901 0.417 0.619
pc3 0.145 0.916 0.409 0.144 0.909 0.404 0.145 0.909 0.409 0.145 0.911 0.412 0.776 0.546 0.726
pc4 0.280 0.736 0.739 0.276 0.739 0.738 0.280 0.742 0.741 0.283 0.749 0.745 0.881 0.727 0.840
pc5 0.529 0.211 0.441 0.536 0.215 0.446 0.533 0.212 0.443 0.542 0.218 0.450 0.832 0.730 0.811

ant-1.7 0.438 0.770 0.756 0.434 0.756 0.749 0.434 0.768 0.753 0.436 0.760 0.752 0.801 0.635 0.780
camel-1.6 0.320 0.210 0.433 0.325 0.214 0.438 0.336 0.225 0.449 0.333 0.219 0.443 0.841 0.621 0.746

ivy-2.0 0.616 0.569 0.728 0.618 0.584 0.737 0.606 0.553 0.717 0.595 0.556 0.718 0.858 0.703 0.828
jedit-4.3 0 0 0 0 0 0 0 0 0 0 0 0 0.919 0.885 0.938
log4j-1.2 0.961 0.969 0.752 0.961 0.969 0.751 0.962 0.967 0.753 0.962 0.969 0.761 0.969 1.000 0.325

lucene-2.4 0.802 0.583 0.689 0.794 0.588 0.687 0.798 0.594 0.691 0.797 0.592 0.691 0.862 0.853 0.831
poi-3.0 0.906 0.593 0.726 0.896 0.592 0.721 0.904 0.602 0.73 0.906 0.603 0.732 0.929 0.925 0.895

tomcat-6.0 0.441 0.412 0.617 0.441 0.426 0.626 0.447 0.431 0.630 0.449 0.436 0.635 0.788 0.567 0.743
xalan-2.6 0.879 0.521 0.697 0.873 0.508 0.687 0.877 0.513 0.691 0.880 0.514 0.693 0.878 0.820 0.857
xerces-1.4 0.937 0.626 0.750 0.941 0.623 0.751 0.941 0.638 0.758 0.942 0.626 0.753 0.976 0.982 0.923

Table 7. G-mean for KMB and KME.

Datasets
G-Mean

KMB KME

cm1 0.630 0.775
jm1 0.804 0.780
kc1 0.787 0.758
kc3 0.848 0.862
mc1 0.794 0.761
mw1 0.722 0.594
pc1 0.823 0.803
pc2 0.555 0.619
pc3 0.827 0.726
pc4 0.870 0.840
pc5 0.836 0.811

ant-1.7 0.795 0.780
camel-1.6 0.796 0.746

ivy-2.0 0.684 0.828
jedit-4.3 0.933 0.938
log4j-1.2 0.600 0.325

lucene-2.4 0.801 0.831
poi-3.0 0.867 0.895

tomcat-6.0 0.848 0.743
xalan-2.6 0.859 0.857
xerces-1.4 0.935 0.923
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Figure 8. Precision for the ensemble classifiers and KME.
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Figure 9. Recall for the ensemble classifiers and KME.

The boxplots for KMB and KME represented in Figures 11 and 12. These boxplots are created for
reporting the G-mean of 30 independent runs for all datasets. The figures show that KMB and KME
are very competitive and stable in most of the datasets. It can be noted that for few datasets KMB and
KME exhibit more sensitive performance than the other datasets. Examples of these datasets are cm1,
mc1, mw1 and pc2. This sensitivity can be due to the high imbalance ratio in these datasets, that is,
misclassifying one instant from the rare class will highly impact the G-mean measure. For jedit-4.3
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dataset, the single classifier approach failed to classify the rare instances therefore its recall is 0 and
consequently the G-mean is 0. On the other hand, for the log4j-1.2 dataset, performance of of KMB
and KME was worse than the other classifiers which could be reasoned to the clustering step which
produced clusters that are harder for KMB and KME to cluster.
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Figure 10. G-mean for the ensemble classifiers and KME.

Although the purposed approaches have been compared with the best traditional machine
learning algorithms, we also compare the proposed KME with the results of one of the most recent
sophisticated approaches called defect prediction based on deep forest (DPDF) [38]. Specifically,
we used the common datasets used in their published results and in our approach, 13 datasets,
to compare our approach against in terms of precision and recall as shown in Table 8. The results show
that KME outperforms the DPDF in all datasets except for pc2 and tomcat-6.0.

Table 8. Comparison between defect prediction based on deep forest (DPDF) [38] and KME.

Datasets
Pre Rec

DPDF KME DPDF KME

mc1 0.290 0.866 0.020 0.628
mw1 0.630 0.729 0.430 0.519
pc1 0.250 0.828 0.130 0.659
pc2 0.980 0.901 0.720 0.417
pc3 0.260 0.776 0.070 0.546
pc4 0.770 0.881 0.210 0.727
pc5 0.610 0.832 0.370 0.730

ant-1.7 0.640 0.801 0.480 0.635
camel-1.6 0.460 0.841 0.120 0.621
lucene-2.4 0.690 0.862 0.820 0.853

poi-3.0 0.840 0.929 0.820 0.925
tomcat-6.0 0.840 0.788 0.120 0.567
xalan-2.6 0.760 0.878 0.680 0.820
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Figure 11. Boxplot representing the G-mean of KMB and KME for NASA datasets.

7.4. Statistical Test

A nonparametric statistical test—The Friedman test—of multiple group measures is usually used
to approve the null hypothesis that the multiple group measures have the same variance using a precise
level of significance. Alternatively, rejecting the null hypothesis approves that they have different
variance values. We analyze the execution of the Algorithms using the Friedman test in SPSS and
we run the test 21 times using different datasets. For each experiment we used H0 that there is no
difference in the execution between the Algorithms and H1 that there is a difference in the execution of
the Algorithms. We reject H0 for p < α: as α = 0.05 is used as the significance level in this hypothesis
testing. The results of Friedman test are shown in Table 9. From the results, we can see that the Mean
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ranks differ quite a lot in favor of the KME Algorithm and for the KMB Algorithm in almost all the
experiments. The Chi-Square test statistics mainly summarize how differently our Algorithms were
rated in a single number. The degrees of freedom in our experiments, 9 (Algorithms) variables − 1
= 8 degrees of freedom. The results show that there is a significant difference the execution of the
Algorithms for all the experiments Since the p-value (Asymp. Sig.) < 0.05, and we cannot accept the null
hypothesis of equal population distributions. Moreover, the whole table illustrates which Algorithm
was ranked best versus worst. In other words, the Friedman test points out that our Algorithms were
rated differently, Chi-Square values with a p-value ≤ 0.0000 for all experiments.
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Figure 12. Boxplot representing the G-mean of KMB and KME for PROMISE datasets.
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Table 9. Friedman test ranking.

Mean Rank (df = 8, N = 30)

KME KMB Ada Bag RF XGB NB Knn DT Chi-Square Asymp. Sig.

cm1 8.870 7.000 4.700 4.000 4.130 3.850 4.450 4.330 3.670 98.860 0.000
jm1 8.000 9.000 4.100 3.570 4.300 3.770 4.030 3.930 4.300 129.751 0.000
kc1 8.100 8.670 4.130 3.530 4.000 3.900 4.080 4.650 3.930 121.136 0.000
kc3 8.350 7.920 4.070 3.870 4.300 3.720 4.450 4.080 4.250 103.455 0.000
mc1 7.933 8.433 4.650 3.850 3.767 4.517 3.783 4.033 4.033 107.854 0.000
mw1 6.100 7.730 4.670 4.770 4.830 4.220 3.530 4.680 4.470 48.230 0.000
pc1 8.430 8.570 3.380 4.270 4.350 3.320 3.920 4.600 4.170 132.182 0.000
pc2 2.750 3.380 4.620 6.530 6.050 6.080 5.650 5.080 4.850 51.709 0.000
pc3 8.100 8.900 3.650 4.250 3.880 4.550 3.730 4.120 3.820 129.866 0.000
pc4 8.080 8.920 3.580 3.880 4.170 4.270 2.970 4.630 4.500 135.484 0.000
pc5 8.200 8.800 3.870 3.730 3.630 4.230 3.830 4.570 4.130 129.298 0.000

ant-1.7 6.630 7.530 4.270 4.970 4.700 4.420 3.720 4.320 4.450 49.926 0.000
camel-1.6 8.200 8.767 4.080 3.630 4.850 4.250 3.220 3.800 4.200 132.108 0.000

ivy-2.0 7.930 3.430 5.520 4.900 4.050 4.580 4.970 4.600 5.020 50.490 0.000
jedit-4.3 8.630 8.130 3.850 3.850 3.850 3.850 5.130 3.850 3.850 213.087 0.000
log4j-1.2 1.067 2.533 5.700 5.850 5.783 6.250 5.550 6.267 6.000 112.974 0.000

lucene-2.4 8.730 8.230 3.800 3.920 3.930 4.120 4.420 4.230 3.620 127.274 0.000
poi-3.0 8.700 8.300 3.200 3.480 3.930 4.000 5.280 3.850 4.250 137.046 0.000

tomcat-6.0 7.700 9.000 3.630 3.650 3.880 4.520 3.900 4.500 4.220 122.274 0.000
xalan-2.6 8.400 8.600 3.520 4.700 3.880 4.020 3.500 4.600 3.780 131.768 0.000
xerces-1.4 8.370 8.630 3.030 3.580 3.970 3.470 6.430 3.850 3.670 155.979 0.000

8. Conclusions

In this paper, a hybrid classification approach for software defect prediction was proposed.
The main idea of this approach was to develop expert and robust classification models based on groups
of similar patterns. Two versions were developed and experimented on. The first was based on simple
classifiers, whereas the second was based on ensemble ones. After extensive experiments based on
21 well-known benchmark datasets, the evaluation results showed that the ensemble version of the
proposed approach can significantly boost the prediction power compared to the other ensemble and
basic classifiers in most of the datasets. The reason for this superior performance is that the proposed
approach develops models that fit specific patterns that have similar behaviours.

For future work, two areas could be researched for improvement. The first is to explore more
advanced clustering algorithms, and the second is to investigate techniques that can automatically
determine the best number of clusters for each dataset.
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