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Featured Application: This method based on deep learning may be useful in the computer-aided
detection of multiple lesions on chest X-ray images.

Abstract: Automated detection of lung lesions on Chest X-ray images shows good performance to
reduce lung cancer mortality. However, it is difficult to detect multiple lesions of single image well
and truly, and additional efforts are needed to improve diagnostic efficiency and quality. In this paper,
a multi-label classification model combining attention-based neural networks and association-specific
contexts is proposed for the detection of multiple lesions on chest X-ray images. A convolutional
neural network and a long short-term memory network are first aligned by an attention mechanism to
take advantage of both image and text information for the detection, called CNN-ATTENTION-LSTM
(CAL) network. In addition, a mining method of implicit association strength to obtain an association
network of chest lesions (CLA) network is designed to guide the training of CAL network. The CLA
network provides possible clinical relationships between lesions to help the CAL network obtain
better predictions. Experimental results on ChestX-ray14 dataset show that our method outperforms
some state-of-the-art models under the metrics of area under curve (AUC), precision, recall, and
F-score and achieves up to 85.4% in the case of atelectasis and infiltration. It indicates that the method
may be useful in the computer-aided detection of multiple lesions on chest X-ray images.

Keywords: medical image; chest X-ray image; multi-label image classification; deep learning; neural
network; association mining

1. Introduction

Many chest lesions such as nodules and effusion [1,2] are early manifestations or complications
of lung cancer, the leading cause of cancer-related deaths among men. It is also possible for some
lung lesions to be related to other severe diseases, such as respiratory diseases and heart diseases [3,4].
Consequently, the early detection of lung lesions is essential for decreasing the number of deaths
around the world [5]. The chest X-ray is one of the most commonly accessible radiological examinations
for diagnosis of chest lesions because of its non-invasiveness, small radioactivity, and low cost [6].
However, radiologists must examine a large number of images manually, causing high stress from
work and low efficiency of diagnosis.

Computer-aided diagnosis (CAD) provides an automatic classification and computerized results
as suggestions for reference to improve the accuracy and efficiency of diagnosis. According to the
survey of related literature from 2014 to 2019, both traditional machine learning methods and deep
learning methods are used for the classification of medical images. Traditional machine learning
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includes support vector machine (SVM), K-nearest neighbor method (KNN), random forest, and so
on. Zhang et al. classified images on breast cancer datasets and retinal imagesets based on the single
class of kernel principal component analysis [7]. Zhang et al. performed classification of magnetic
resonance brain images (MRI) based on weighted Fractional Fourier Transform and non-parallel
support vector machines [8]. Agrawal et al. used artificial bee colony algorithm combining with
k-nearest neighbor algorithm and support vector machine to classify 271 computed tomography (CT)
images of cervical cancer [9]. The main disadvantage of traditional machine learning methods is the
relatively poor robustness because of the limited capacity of processing large amounts of images.
Another major disadvantage is that they need manual feature extractions instead of learning valid
features automatically. Thus, more researchers choose deep learning methods to process medical
images to overcome these shortcomings (e.g., [10–12]).

Deep learning is a kind of representation-learning method connecting layers and nonlinear
module to obtain multiple levels of representation automatically. As a deep-learning method,
deep convolutional neural networks (CNN) are widely used in image analysis because of the local
connectivity and shared weights. These two features not only maintain the affine invariance of
CNN, but also reduce the number of parameters, ensuring the capacity of complex data processing.
The basic architecture of CNN contains convolutional layers, pooling layers, and fully connected layers.
Convolutional layers are stacked to extract features from the previous layer; pooling layers behind are
designed to reduce computational complexity; and fully connected layers in the end are used to output
the classification result. Many robust CNN frameworks have been designed including VGGnet, Resnet,
and Densenet [13–16]. Recurrent neural network (RNN) shows the state-of-the-art performance in
many tasks about processing sequence data, such as speech recognition [17]. Taking word generation
as an example, it is necessary to use the information of the previous words to predict the next word
of a sentence, because words in a sentence are semantically linked. In the recurrent neural network,
the current output of a sequence is also related to the previous output [18], where implication relations
between words can be learned. As a a specific recurrent neural network architecture, long short-term
memory (LSTM) is designed to model temporal sequences and their long-range dependencies, making
it more accurate than conventional RNNs in some cases [19]. The duplicate module in conventional
RNN is as simple as a tanh layer, while it is much more complex in LSTM.

As the most popular method for image classifications, deep learning has been designed to detect
lesions from Chest X-ray images. Ørting et al. used convolutional neural networks (CNN) to classify
tuberculosis in chest X-rays with a dataset size of 1007 images [20]. Anavi et al. used age and gender to
visualize patients and improve deep learning frameworks for chest X-ray image retrieval [21]. However,
some deep neural network models are trained based on relatively very small-scale dataset from scratch,
which may cause over-fitting. In December 2017, NIH announced one of the world’s largest public
chest X-ray datasets, called ChestX-ray14. ChestX-ray14 contains 14 type of lesions, 30,805 patients, and
112,120 labeled chest X-ray images [6]. Then, Wang X et al. fine-tuned four standard CNN architectures
(AlexNet, VGGNet, GoogLeNet, and ResNet) and ResNet achieved the best result [6,13–15,22].
Z. Li et al. presented a model for ChestX-ray14 that simultaneously performed disease classification
and localization based on Resnet and a recognition network [23]. P. Rajpurkar et al. utilized a 121-layer
DenseNet architecture with little modification to detect pneumonia using ChestX-ray14 [16,24]. Despite
good results, they mixed multi-lesion images and single-lesion images together when training and
testing. However, multi-lesion detection should be focused on specially because it is irresponsible for
the health of a patient to detect a single lesion in a multi-lesion image. Detecting multiple lesions on
a chest radiograph can be regarded as a multi-label classification problem. Multi-label classification
has been investigated by many scholars in recent years (e.g.,[25–27],. Among them, Shang-Fu et al.
performed multi-label classification of images based on CNN and RNN model. The results illustrate
the effectiveness of this model in the multi-label classification problem, and our method is designed
for chest radiographs based on similar model structure.
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In this study, an improved model for the detection of multiple lesions in single chest X-ray image
is proposed. The major model contains a convolutional neural network (CNN) for feature extraction,
a long short-term memory network (LSTM) for generating lesions words, and an attention mechanism
for aligning visual features with the prediction of lesions. In addition, algorithms are designed for the
mining of clinical dependencies between lesions to guide the training process of above-mentioned
classification model for further improvement. In this paper, the architecture of our model is described
and the detection performance as evaluated with chest X-ray images from ChestX-ray14 dataset is
also discussed.

2. Methodology

2.1. Overview

The outline of our overall model for the detection of multiple lesions is shown in Figure 1,
containing an input layer, a CNN encoder, an attention-based LSTM decoder, a CLA network,
and an output layer. In the CAL network, pre-trained CNN extracts visual feature representations
and attention-based LSTM models the attention dynamics of focusing on those lesion regions and
generating sequentially words (the name of lesions), as shown in 2© and 4©. In the CLA network,
the strength of associations between lesions are detected and the information are used to adjust the
label order adaptively, as shown in 3©. It makes the LSTM in the CAL network learn a more accurate
prediction pattern by taking the interdependency of lesions into consider. In this section, we illustrate
the details of the construction of each network.

Figure 1. The outline of our overall model, where CAL network consists of 2© and 4©, 3© shows the
process of CLA network, and 5© is the final result.

2.2. CAL Network

2.2.1. CNN Encoder

Convolutional neural networks have been popular in recent years because of their ability to learn
representative image feature vectors. As shown in related works, many robust frameworks have been
designed including VGGnet, Resnet, Inception-Resnet, and Densenet. They have been trained on
ImageNet, a dataset containing 1.3 million natural images, and yield good results. It is a popular
way to fine tune these existing deep networks when the scale of the dataset, labeling, and computer
hardware are limited. However, more modifications are needed for medical images to guarantee
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transfer efficiency, as well as overcome over-fitting and some other problems. The first problem is
which pre-trained model we should use. Deep CNNs are designed to capture more complicated
and advanced features without gradient problems. For chest X-ray images, both the scale of training
dataset and the features of a single image are not very complicated, and the structure of the image
encoder should not be very deep. Otherwise, it is possible to cause over-fitting problem. VGGnet is
therefore chosen as the basic CNN encoder in our model and further modifications are made on it.

The second problem is whether parameters of the encoder should be the same as those pre-trained
on ImageNet. There is ample evidence suggesting the transfer learning from natural images to chest
X-ray images without training again is not a good choice [6,28]. The difference between medical images
and natural images may cause low transfer efficiency and the CNN encoder based on VGGNet or
Resnet is therefore trained again using all labeled images with lesions on ChestX-ray14 in our task.
The last layer of CNN encoder is changed into 14 output ports, as shown in Figure 1 2©. Then, features
of multi-label chest X-ray images are extracted from low-level layers, as shown in Figure 1 2©.

2.2.2. Attention-Based LSTM Decoder

Recurrent Neural Networks (RNN) is a kind of neural network that models the dynamic temporal
behavior of sequences through connections between the units. LSTM extends RNN by adding three
gates to a RNN unit: a forget gate f to control whether to forget some current states, an input gate
i to indicate if it should read the input, and an output gate o to control whether to output the state.
Figure 1 4© shows the LSTM cells we used and our implementation of LSTM closely follows the one
used by Fu et al., as shown in Equation (1) [29]. At time step t, it, ft, ot, and gt represent the outputs of
the input, forget, and output gates and possible information that can be input into memory cell ct of
the LSTM, respectively. All of them are calculated under the information of previous hidden state ht−1,
previous generation wt−1, and current visual context vt. T is a properly defined affine transformation,
σ is the logistic sigmoid function, and tanh is the hyperbolic tangent function. Then, the element-wise
multiplication between previous memory cell ct−1 and forget gate ft is performed to forget some
information from previous memory cell ct−1 and remember the rest. As shown in Equation (2), the
result is added to the information selected from the candidate state gt and the current memory cell ct

is formed. This is an important step for LSTM to keep a long memory. The current hidden state ht is
obtained through the element-wise multiplication between the output of output gate and tanh(c1

t ), as
shown in Equation (3). Then, the current word wt is generated according to the current hidden state ht

and visual context vt, as shown in Equation (4).
it

ft

ot

gt

 =


σ

σ

σ

tanh

 T

 wt−1
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 (1)

ct = ft � ct−1 + it � gt (2)

ht = ot � tanh(ct) (3)

wt = fc( frelu(ht, vt)) (4)

The visual context vector vt is obtained by attention mechanism and input LSTM cell at time step t.
Visual attention was first used in natural image captioning, where the learned alignments correspond
very well to human intuition [30]. Similar to natural images, lesion regions in chest X-ray images also
need to be focused using attention mechanism, as shown in Figure 1 4©.

To use visual contexts, L D-dimensional feature vectors are first extracted from the trained CNN
encoder, as shown in Equation (5). Then, the probability αi of focusing on the ith location ai is computed
by an attention model fatt, as shown in Equation (6). The inputs to the attention model is the extracted
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features, the hidden state ht−1, and the previously generated word wt−1. After that, weighted sum is
used to update the visual context vector vt, as shown in Equation (7).

A = {a1, . . . , aL}, ai ∈ RD (5)

αit =
exp( fatt(ai, ht−1, wt−1))

∑L
j=1 exp( fatt(aj, ht−1, wt−1))

(6)

vt = ∑
i

αitai (7)

2.3. CLA Network

Studies have suggested that there are either strong or implicit associations between diseases [31,32].
For chest lesions, a chest X-ray image containing cardiomegaly is more likely to contain pulmonary
edema because of the left ventricular failure and chronic nasopharyngeal obstruction [33,34]. Studies
also show both fibrosis and emphysema are associated with respiratory disease [35,36]. The association
information between chest lesions provide possibilities of appearing in the same image and it gives
the CAL network a direction to seek for possible lesions.

Algorithms are proposed to build CLA network and adjust the label orders (Algorithms 1 and 2).
To estimate the correlation strength between lesions, the number of lesion i in ChestX-ray14 database,
the number of lesion j in ChestX-ray14 database and the times when both lesion i and lesion j are in
an image are counted. Then, they are used to calculate Jaccard distances between lesions [37]. After
building the association graph, a subgraph from graph <L,E >is selected for each image i, where
multiple lesions (labels) are vertexes and edges connect the selected vertexes in graph <L,E >. If there
are two lesions shown in an image, the orders of these two lesions are adjusted according to the degree
of vertexes in each subgraph <Li,Ei >. If there are more than two lesions shown in an image, ant colony
algorithm is used to find the shortest path among these lesions according to the subgraph [38]. The
number of ants NA is set as one fewer than the number of lesions. Pheromone importance factor α is
set as 1. Heuristic function importance factor β is set as 5. Pheromone evaporation rate γ is set as 0.1.
Ants start from random nodes and climb to other nodes iteratively. If there are three lesions shown in
an image, the shortest path is calculated without the last sub-path. If there are more than three lesions
shown in an image, the shortest path is calculated with the last sub-path. After reaching the terminal
condition, the shortest path is obtained where vertexes (lesions) are tightly connected to each other.
The lesion with the highest degree is set as the first position of the adjusted labels because the high
degree indicates the strong correlation with other lesions. The order of vertexes in the shortest path
is the updated label order of an image to train LSTM in CAL network. Table 1 shows some symbols,
definitions, and their descriptions.

Figure 1 3© shows an example of adjusting the label order for a four-lesion image. A subgraph
containing the four lesions is first selected from the built CLA network and then a start lesion and a
shortest path are chosen according to our algorithm. The final path is exactly the new order of our
training label for a single image.
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Algorithm 1 Building association graph.
Input: N,M,C,L,CXNL,CXNLA,E

Output: association graph <L,E>

1: E=[]

2: for 0 ≤ i < N − 1 do

3: for i < j < N do

4: cxnli ∪ cxnlj = cxnli + cxnlj − cxnlaj
i

5: Cor(li,lj)=
cxnlaj

i
cxnli∪cxnlj+1

6: append Cor(li,lj) to E
7: return graph <L,E >

Algorithm 2 Adjusting label orders.
Input: graph <L,E >, LABP

Output: LABO

1: for 0 ≤ i < M− 1 do

2: tmp=sorted (LABP[i].values())

3: build subgraph <Li,Ei >, where Li={ start, success }

4: if length(LABP[i]) == 2 then

5: start = tmp[1]

6: end = tmp[0]

7: put start and end into LABO[i] in order

8: if length(LABP[i]) >2 then

9: Number of ants NA = length(LABP[i])− 1; Pheromone importance factor α = 1;

10: Heuristic function importance factor β = 5; Pheromone evaporation rate γ = 0.1;

11: for e in E do

12: dis = 100 ∗ (1/e)

13: Constructing a distance matrix by dis

14: perform ant colony algorithm [38]

15: if length(LABP[i]) == 3 then

16: find the shortest path except for the last sub-path between nodes in Li

17: put nodes along the path into LABO[i] in order

18: if length(LABP[i]) >3 then

19: find the shortest path between nodes in Li

20: start = tmp[C− 1]

21: put nodes along the path into LABO[i] in order, started by start

22: return LABO
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Table 1. Symbols, definitions, and their descriptions.

Symbols and Definitions Descriptions

N the number of lesion types
M the number of images (labels)
C the number of labels of an image

L = {l1,. . . li,. . . , lN} the set of lesions in chest X-ray images
D = { d1,. . . di,. . . dN } the set of degree of vertexes(lesions)

E = {e12,. . . eij,. . . , eNN−1} the edges of the graph built by algorithm 1
CXNL = {cxnl1,. . . cxnli,. . . cxnlN} the set of numbers of lesions

CXNLAi = { cxnlai
1,. . . cxnlai

j,. . . cxnlai
N−1 } the set of times when both lesion i

and other lesions are in an image
LABO = [[li,. . . , lj],. . . ,[li,. . . , lj]] the list of M lists where the order of labels

of each image are adjusted
LABP = [{ ‘l′i :di,. . . ,‘l′j :dj },. . . ,{ ‘l′j :dj,. . . ,‘l′i :di }] the list of M dictionaries where the key is li

and the value is di. C key-value pairs in each dictionary

3. Experiments

3.1. Dataset

ChestX-ray14 dataset is one of the largest accessible chest X-ray image datasets in the world. In the
ChestX-ray14 dataset, there are 112,120 labeled chest X-ray images, of which 60,361 chest X-ray images
are lesion-free and 51,759 chest X-ray images are labeled with lesion information. These 51,759 chest
X-ray images involve 14 types of lesions: infiltration, effusion, atelectasis, nodule, mass, pneumothorax,
consolidation, pleural thickening (PT), cardiomegaly, emphysema, edema, fibrosis, pneumonia,
and hernia. Table 2 shows image numbers labeled by each lesion type in the ChestX-ray14 dataset.
The image number of infiltration, effusion, atelectasis, nodule, mass, pneumothorax, consolidation, PT,
cardiomegaly, emphysema, edema, fibrosis, pneumonia, and hernia is 19,894, 13,317, 11,559, 6331, 5782,
5302, 4667, 3385, 2776, 2516, 2303, 1686, 1431, and 227, respectively. In total, 20,795 chest X-ray images
are labeled by two or more lesions, called multi-lesion images. Among them, the image number labeled
by infiltration, effusion, atelectasis, nodule, mass, pneumothorax, consolidation, PT, cardiomegaly,
emphysema, edema, fibrosis, pneumonia, and hernia is 10,345, 9360, 7243, 3626, 3643, 3108, 3344,
2259, 1582, 1624, 1672, 959, 1109, and 117, respectively, as shown in the third row of Table 2. These
20,795 multi-lesion images involved 820 types of lesion combinations. The image number of each type
varies, ranging from a few thousand to a few. For example, there are 3865 images labeled by both
infiltration and effusion; 2528 images labeled by both effusion and atelectasis; 1667 images labeled
by both infiltration and atelectasis; 737 images labeled by atelectasis, effusion, and infiltration; and
81 images labeled by atelectasis, consolidation, effusion and infiltration. The sole goal of this study
was to detect all lesions from single chest radiograph by classifying 14 lesion types. Therefore, 20,795
multi-lesion chest X-ray images were mainly used for model training and testing. Single-lesion chest
radiographs were only used to pre-train image feature extractor, which is a part of our model.

Table 2. Image numbers labeled by lesion type in the ChestX-ray14 dataset.

Lesion Infiltration Effusion Atelectasis Nodule Mass Pneumothorax Consolidation

Image Number 19,894 13,317 11,559 6331 5782 5302 4667
Multi-lesion Image Number 10,345 9360 7243 3626 3643 3108 3344
Single-lesion Image Number 9549 3957 4316 2711 2139 2194 1323

Lesion Pleural Thickening Cardiomegaly Emphysema Edema Fibrosis Pneumonia Hernia

Image Number 3385 2776 2516 2303 1686 1431 227
Multi-lesion Image Number 2259 1582 1624 1672 959 1109 117
Single-lesion Image Number 1126 1194 892 631 727 322 110
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3.2. Pre-Processing and Training

Image data and label data need to be pre-processed before training. For image data, all chest X-ray
images were first scaled from a size of 1024 × 1024 to 224 × 224 and converted into RGB channels.
To reduce the risk of overfitting, chest X-ray images were then rotated at 45 and 90 degree angles
for data augmentation. Fourteen lesion types were converted into 14 integers ranging from 0 to 13
when the image extractors were trained and tested. For the detection task of multiple lesions on
single images, lesion types were converted into 14 integers, ranging from 3 to 16, while ‘0’ represents
the null character ‘<NULL>’, ‘1’ represents the start indicator ‘<START>’, and ‘2’ represents the end
indicator ‘<END>’. For example, infiltration, effusion, and atelectasis qwew represented by 3, 4, and 5,
respectively. After preprocessing, the label of a multi-lesion chest X-ray image containing infiltration,
effusion, and atelectasis is [1 3 4 5 2]. The image data and the label data were saved in two .pkl files
and connected by the corresponding image ID during training.

There are three steps to train our whole model. The CNN part of CAL network was first trained as
a simple 14-class classification task using images with lesions on ChestX-ray14, as shown in Figure 1 2©.
The purpose of this step is to increase the transfer efficiency between medical images and natural
images, acquiring more discriminative features. Then, image features extracted from low-level layer of
CNN encoder were input into the attention-based LSTM decoder and trained iteratively, as shown in
Figure 1 2© 4©. After that, reordered labels obtained from CLA network were utilized to train a new
attention-based LSTM decoder using original image features and updated ground truth, as shown in
Figure 1 2©– 4©.

When training the image feature extractor in the first step, both single-lesion images and
multi-lesion images were used. Wang et al. [6] first built the ChestX-ray14 dataset and classified
ChestX-ray14 dataset into different lesion types. Similar to Wang et al. [6], the images were divided into
a training set, validation set, and test set at a ratio of 7:1:2 in our experiments. Further, cross-validation
was used to get a credible evaluation of the model.

Multi-lesion images were used in the second and third steps because the final outputs of our
method were multiple lesion types. The 20,795 multi-lesion images were divided into a training set,
validation set, and test set at a ratio of 8:1:1 and a ten-fold cross validation procedure was also applied.
The images were first shuffled and then divided into 10 folds. In each type of lesion combination,
images should be shuffled by patient ID rather than image ID to reduce the overlap of both patient ID
and lesion combination type between three subsets. We only adopted this "shuffle" strategy for lesion
combinations with large scale samples in the experiment because there are hundreds of types of lesion
combinations and most of them only hold a few samples. Each time, eight folds were used as the
training set, one fold was used as the validation set, and one fold was used as the test set. The above
process was repeated 10 times and each image was only used once for the validation or test.

The experimental environment was an ubuntu linux server with 2 GeForce GTX 1080 Ti GPUs
and the models were developed with Python and Tensorflow 1.2 (GPU and ubuntu version), a deep
learning framework. The neural network was trained by stochastic gradient descent (SGD), with a
batch size of 32 and a learning rate of 0.001. According to the distribution of label length, the length of
LSTM C was set as 2, 3, and 4 (except for the start indicator and end indicator), respectively.

3.3. Results

Extracting discriminative features from images is a crucial step in this study. Therefore, we first
verified the performance of our approach without considering the dependency between lesions. Table 3
compares our CNN encoders based on VGGNet (ours-vgg) and Resnet (ours-res) with the methods
proposed in the last three years by Wang et al. [6], Aviles-Rivero et al. [39] and Yao et al. [40] under
AUC value for multi-classification problem of ChestX-ray14 dataset, where bold numbers indicate the
best AUC value in each row. Among them, Yao et al. [40] claimed that their dataset is assigned in the
same way as Wang et al. [6]. Table 3 shows that our best average AUC value is 0.791. In addition, our
method achieves better results in detecting lesions such as atelectasis, effusion, infiltration, etc.
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Table 3. Result evaluation and comparison by AUC.

Abnormality Wang et al. [6] Aviles-Rivero et al. [39] Yao et al. [40] ours-vgg ours-res

atelectasis 0.716 0.719 0.733 0.734 0.788
cardiomegaly 0.807 0.880 0.858 0.848 0.828

effusion 0.784 0.792 0.806 0.797 0.865
infiltration 0.609 - 0.673 0.675 0.682

mass 0.706 0.809 0.777 0.793 0.766
nodule 0.671 0.711 0.718 0.708 0.732

pneumonia 0.633 0.766 0.684 0.702 0.719
pneumothorax 0.806 0.837 0.805 0.861 0.827
consolidation 0.708 0.734 0.711 0.792 0.724

edema 0.835 0.802 0.806 0.803 0.869
emphysema 0.815 0.841 0.842 0.839 0.853

fibrosis 0.769 0.803 0.743 0.781 0.766
PT 0.708 0.757 0.724 0.724 0.774

hernia 0.767 0.872 0.775 0.781 0.853
A.V.G 0.738 0.789 0.761 0.772 0.791

As the research objective of this work, the whole model’s ability of detecting lesion sequences was
the focus of our validation. Table 4 compares the recall, precision, and F-score value of the proposed
approaches to other methods, where bold numbers indicate the best AUC value in each column.
CXNet-m2-b [41] is a model for image-based detection of multiple chest lesions proposed in this year.
Vinyals, O. et al. [42] proposed a classical CNN-RNN model which we call SAT here and trained again
using our dataset. Vggc4-CAL, Vggc5-CAL, Resb3-CAL, and Resb4-CAL mean the visual features
are trained from conv4 layer of Vggnet, conv5 layer of Vggnet, block3 layer, and block4 layer of
Resnet, respectively. ‘Improvements-1’ shows the improvements of our best model from CXNet-m2-b.
‘Improvements-2’ shows the improvements of our best model from SAT. CLA means the CLA network
is used to take advantage of the interdependencies between lesions.

Table 4. Evaluation and comparison of models on precision, recall, and F-score value.

Setting Precision Recall F-Score

C=2 C=3 C=4 C=2 C=3 C=4 C=2 C=3 C=4

CXNet-m2-b [41] – – 0.724 – – 0.713 – – 0.718
SAT [42] 0.666 0.657 0.632 0.666 0.657 0.636 0.666 0.657 0.634

Resb3-CAL-wopt 0.684 0.676 0.653 0.684 0.676 0.653 0.684 0.676 0.653
Resb3-CAL 0.730 0.726 0.717 0.728 0.726 0.717 0.729 0.726 0.717
Resb4-CAL 0.707 0.694 0.686 0.707 0.694 0.686 0.707 0.694 0.686

Resb3-CAL-CLA 0.733 0.730 0.728 0.733 0.730 0.728 0.733 0.730 0.728
Vggc4-CAL 0.719 0.708 0.691 0.719 0.708 0.691 0.719 0.708 0.691
Vggc5-CAL 0.739 0.734 0.729 0.739 0.734 0.729 0.739 0.734 0.729

Vggc5-CAL-CLA 0.739 0.739 0.741 0.739 0.737 0.741 0.739 0.738 0.741
Improvements-1 – – 0.017 – – 0.028 – – 0.023
Improvements-2 0.073 0.082 0.109 0.073 0.080 0.105 0.073 0.081 0.107

Figure 2, generated using gephi software, shows the CLA network built by Algorithm 1 and
correlation intension between two lesions are labeled as edge weights. The thickness of the edges rather
than the length also reflects the strength of the association between the two lesions. The thicker is the
edge, the stronger is the association. According to different combination of lesions in ChestX-ray14
dataset, different subgraphs are detected, as shown in Figure 2. Algorithm 2 was used to process these
subgraphs and output updated label orders.

Table 5 shows the label sequence of some lesion combinations before and after the updates, whose
lengths are C = 3 and C = 4. “Original order” refers to the order of lesion labels for single chest
X-ray image in ChestX-ray14 dataset. “Updated order” refers to the order of lesion labels for single
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chest X-ray image after updates. “Update order” is the output of Algorithm 2, which was obtained by
mining the subgraphs detected from the association graph Figure 2. A, CA, CO, ED, E, EM, I, M, P,
and PX mean atelectasis, cardiomegaly, consolidation, edema, effusion, empysema, infiltration, mass,
pneumonia, and pneumothorax, respectively.

1 
 

 
Figure 2. The CLA network built by Algorithm 1. The thickness of an edge implies the correlation
intension between two lesions.

Table 5. Some examples of the original label order and updated label order detected as shown in
Figure 2 by Algorithm 2.

Original Order A-E-I A-CO-E ED-I-P CO-E-I ED-E-I CA-E-I E-I-M A-CO-I

Updated Order I-E-A CO-A-E I-ED-P CO-E-I ED-I-E I-E-CA M-E-I I-A-CO

Original Order A-E-I-PX A-CO-E-I A-CA-E-I A-E-I-M A-CO-E-M A-EM-M-PX

Updated Order I-E-PX-A I-A-CO-E I-A-E-CA M-E-I-A A-E-CO-M A-M-PX-EM

Figure 3 shows that the ant colony algorithm in Algorithm 2 gradually converges to the shortest
path as the number of iterations increases. It can be seen that the shortest path in each subgraph can be
found after around 10 iterations. According to the number of nodes in the subgraph, the number of
iterations in our experiments were set as 8, 14, and 20, respectively.
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Figure 3. Convergence process of ant colony algorithm in Algorithm 2.

Figure 4 shows visualization results of eight examples by highlighting the class-specific
discriminative regions. In each example, the first image is a chest X-ray image, the text on the top
of rest images represents the corresponding predictions of the model. The number below the text
represents the confidence level of the model prediction. Most predictions have high confidence,
but some predictions have low confidence. For example, although all lesions on the chest radiograph
in 7© group are correctly identified, the confidence level for “effusion” is only 0.21. Except for the
first image, images are superpositions of the gray-scale image and the corresponding chest X-ray
image (the first image). The brighter is the gray-scale image, the greater is the contribution of the
corresponding area of the chest X-ray image to the prediction result. However, the corresponding
active area cannot be clearly seen because the gray-scale images obscure the chest X-ray image under
it. Therefore, colored boxes are used to indicate the active location of the predicted lesion. For example,
the red box of the second image in 1© group outlines the brightest part of the gray-scale image, which
corresponds to the area surrounded by the red box of the first image in 1© group. This area of the chest
X-ray image contributes the most to the “cardiomegaly” prediction. The pink box of the third image in
1© group outlines the brightest part of the gray-scale image, which corresponds to the area surrounded

by the pink box of the first image in 1© group. This area of the chest X-ray image contributes the most
to the “emphysema” prediction.

It can be seen in Table 4 that Vggc5-CAL-CLA obtains the best precision, recall, and F-score value
among these algorithms, peaking at 74.1% when C = 4, while SAT obtains the worst results when C = 2,
3, and 4. The improvements of Vggc5-CAL-CLA on precision, recall, and F-score from SAT are up to
10.9%, 10.5%, and 10.7%, respectively. Vggc5-CAL obtains the second highest values and peaks at both
73.9% when C =2. Vggc5-CAL shows higher values than Vggc4-CAL, Resb3-CAL, and Resb4-CAL. It
is also clear that most methods show a downward trend of precision, recall, and F-score from C = 2 to
4 except for Vggc5-CAL-CLA.
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Figure 4. Visualization results of Vggc5-CAL-CLA model.

In Table 6, precision, recall, and F-score value of some categories are shown, where A, CO, E,
and I mean atelectasis, consolidation, effusion, and infiltration, respectively. It can be seen that the
images with effusion and infiltration, atelectasis and infiltration, and atelectasis and effusion can be
recognized correctly with more than 75% precision, recall, and F-score value, with atelectasis and
infiltration achieving up to 85.4%.

Table 6. Evaluation of Vggc5-CAL-CLA on precision, recall, and F-score value for the detection of
some lesion combinations.

E|I A|I A|E A|E|I A|C|E|I

Precision 0.798 0.854 0.775 0.771 0.763
Recall 0.798 0.854 0.775 0.848 0.817
F-score 0.798 0.854 0.775 0.808 0.789
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4. Discussion

Most of the current studies have proposed advanced classification methods for single-lesion
chest radiographs and achieved good results. However, many diseases have complications that can
be shown on one chest radiograph. This paper commits to diagnosing all possible lesions from a
single image.

The performance of our image feature extractor in Table 3 was first verified by ChestX-ray14
dataset. AUC was used as the metric for two reasons. Firstly, AUC is recommended as a single number
measure to over accuracy when there is a skewed sample distribution, and ChestX-ray14 is extremely
imbalanced [41,43]. Secondly, it is widely used as the only measure in many studies which proposed
multi-class methods for ChestX-ray14. Our methods were compared with three methods proposed
in the last three years for multi-classification problem of ChestX-ray14 dataset. The purpose of Table
3 is to verify whether the image feature extractor we trained is useful rather than showing higher
AUC values. If the AUC values are very low, the training of our image feature extractor fails. If AUC
values of our image feature extractor are similar to AUC values in most other research work, the image
feature extractor we trained is available. It was found that the 30 AUC scores of our image feature
extractors are not low and some are even higher than those of other methods listed in Table 3, which is
satisfactory. Note that slightly higher AUC values do not mean that the corresponding image feature
extractor contributes more to our research goal. For example, the average AUC value of “ours-res” is
higher than “ours-vgg”. However, the model extracting image features from “ours-vgg” obtains the
best results, as shown in Tables 4 and 6.

As the goal of our work is to solve a multi-lesion classification problem; the whole model’s
performance of detecting multiple lesions simultaneously was then verified under precision, recall,
and F-score. The whole multi-label classification model is similar to a language model where outputs of
each image are continuous lesion names, as with the simplest sentence. Therefore, precision, recall, and
F-score, measurement indicators in both natural language processing and classification problems, were
used. As shown in Table 4, 24 experiments were conducted to determine which feature extractor is
better and weather CLA network is useful. Results on precision, recall, and F-score were also compared
with two other methods. It was found that all of our methods are better than SAT. However, only when
CLA network is added or image features are extracted from an appropriate layer is our method better
than cxnet-m2-b. It illustrates that the quality of image features has a great influence on the results
and the dependency between lesions provided by CLA network improves the model’s performance.
The results in Table 5 also show that the original order of the lesions is not optimal for most lesion
combinations. Of the 14 lesion combinations in Table 5, only one kind of lesion combination remains
the same before and after the update. CLA network method makes the relationship between the
lesions in each lesion combination closer by considering association information. From the results in
Table 4, it is clear that conv5 layer of Vggnet extracts more discriminative features than conv4 layer
of Vggnet, and block4 layer and block3 layer of Resnet. The performances of Vggc5-CAL-CLA and
Resb3-CAL-CLA are better than Vggc5-CAL and Resb4-CAL, respectively. It implies that CLA network
helps CAL network get better predictions by providing possible clinical dependencies between lesions.

As shown in Table 6, as the best model in our work, the performance of Vggc5-CAL-CLA was
verified by categories of effusion and infiltration; atelectasis and infiltration; atelectasis and effusion;
atelectasis, effusion, and infiltration; and atelectasis, consolidation, effusion, and infiltration. Data in
Table 4 were obtained based on all types of lesion combinations in ChestX-ray14, while Table 6 shows
lesion combinations whose sample scales are relatively large. The values of Vggc5-CAL-CLA in Table
6 are much higher than those in Table 4. The difference implies that the performance of our model is
better for some categories with large scale. For some multi-lesion images with few training samples,
the detection result cannot be good. For example, it is difficult to recognize images with both mass and
pneumonia (only 11 images in total) because of the difficulty of learning a solid pattern from such a
small training set. The poor results of these images make the values in Table 4 much lower than the
values in Table 6. In the future, models should be improved to take measures against imbalance.
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5. Conclusions

In this paper, an improved classification model is proposed using CNN, LSTM, attention
mechanism, and association mining. Evaluation results using AUC, precision, recall, and F-score values
show that our methods are better than some state-of-the-art methods and CLA network improves
the performance of CAL networks. Our model achieves up to 85.4% on precision, recall, and F-score
value in the case of atelectasis and infiltration, where image features are extracted from conv-5 layer of
Vggnet and CLA network are made used. It can be seen from the experimental results that our method
has better classification performance and detection effect for disease types with larger sample sizes.
In future work, we will take measures against imbalance problem to make further improvements.
More reasonable data collection strategies should be adopted to reduce the gap in the number of
samples for each lesion type. The loss function specifically for the imbalance problem should also
be designed to make the model pay more attention to lesion types with fewer samples during the
learning process.
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