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Abstract: In frequency-hopping spread-spectrum (FHSS) systems, jammer detection and mitigation
are important but difficult. Each slot of the FHSS experiences frequency-selective fading and unequal
transceiver-frequency gains that hinder the detection of jammed slots and result in a poor bit-error rate
(BER). To increase BER performance, we first propose a noise-jammer power estimator (NJPE) that
estimates noise and jammer powers regardless of different channel gains, and derived its normalized
Cramér—Rao bound (NCRB). Second, we developed a jammer detector based on gamma distribution,
and designed a restoration method combining all nonjammed slots. Computer simulations verified
the derived NCRB of the proposed NJPE by normalized mean squared error (NMSE), and showed that
the jammer-detection probability of the proposed jammer detector was better than that of conventional
detectors. The BER performance of the proposed method was also shown to be better than that of
conventional methods.

Keywords: jammer; military communication; jammer detection; jammer mitigation; frequency-hopping
spread spectrum; Cramér—Rao bound

1. Introduction

In military wireless communication systems, the bit-error rate (BER) in a receiver is degraded
when a transmitted signal is jammed [1,2]. Military wireless communications need to mitigate jammers
to attain reliability. To reduce jamming, several antijam techniques, such as frequency-hopping spread
spectrum (FHSS) and direct-sequence spread spectrum (DSSS), were researched [3-15]. When jammer
power is large, the FHSS is known to be more effective [16], but BER degradation remains.

FHSS randomly changes carrier frequency according to time within a transmission-frequency
band, which reduces jammer probability for a slot. As a jammer to FHSS, a partial-band noise jammer
(PBNJ) was considered in this study [17,18]. When jamming occurs, the BER of jammed slots is so
large that the receiver may not be able to decode the transmitted information. To overcome the jammer
problem, a duplication method was studied where several slots with the same data are transmitted
and combined to increase signal-to-jammer-plus-noise ratio (SJNR) [19]. However, when the jammer
was strong, the SJNR was still small. A selective combining method was developed [19], and the
detection of jammed slot methods was also researched [20,21]. In FHSS systems, however, multipath
channels cause frequency-selective fading, and nonlinear devices at the transmitter also generate an
unequal frequency response. Since the unequal frequency response makes the detection of jammed
slots difficult, a solution for measuring jammer power on all empty slots and detecting jammed slots
was developed [21]. This full search of all empty slots requires large computational complexity.

To overcome jammer-detection and -mitigation problems, we developed a proposal for a
noise-jammer power estimator (NJPE), a jammer detector based on gamma distribution, and a
slot combiner for nonjammed slots. The proposed NJPE estimates the pure power of the noise and
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jammer of each slot regardless of transmitted-symbol existence and unequal frequency response.
The probability distribution of the NJPE output was approximated as gamma distribution on the basis
of simulations, and the jammer detector based on gamma distribution was developed to precisely detect
the jammer. The normalized Cramér—-Rao bound (NCRB) of the proposed NJPE was also derived to
theoretically prove estimation performance. Computer simulations demonstrated that the normalized
mean squared error (NMSE) of the proposed NJPE was well-matched with the derived NCRB, and the
detection performance of the jammer detector based on gamma distribution was better than those of
conventional jammer detectors. The BER of the proposed method indicated better performance than
that of conventional methods.

This paper consists of five sections: Section 2 discusses how the proposed NJPE works; Section 3
analyzes how to assess the performance of the proposed NJPE; Section 4 compares the NCRB of
the proposed scheme with NMSE and BER performance using computer simulations; and Section 5
concludes the paper.

2. Proposed Estimator and Detector

In FHSS systems for military communications, the same data are repeatedly transmitted over
several slots and combined in the receiver to mitigate jammers. When jammer power is strong,
and jammed slots are not discarded, BER performance degrades. Thus, the detection of jammed slots
is important. In FHSS systems, however, frequency-selective fading and unequal frequency responses
cause different slot powers and make the detection of jammed slots difficult. In this section, we show
the developed NJPE and the jammer detector based on gamma distribution of NJPE. The proposed
detector can detect both narrowband and wideband jammers. Figure 1 demonstrates the proposed
method that detects and discards jammed slots, and combines the remaining slots.

Frequency
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O
Time
[NipE | [ NoPE | [~opE | | NyPE |

I Jammer Detector I

I Selective Combiner I

!

Restored signal

Figure 1. Block diagram of proposed method.
2.1. Noise-Jammer Power Estimator

In order to estimate pure noise-jammer power regardless of transmitted-symbol power, the received
symbol was multiplied by its conjugation, and its mean and variance were calculated. With a simple
manipulation of mean and variance, the pure noise-jammer power was easily estimated.
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Assume that the data of a slot are copied and repeatedly transmitted to L slots, the received symbol
of the I-th slot is #;, and X] is the multiplication of 7; and its conjugation ;*. Then, X; can be written as

X =nr’
= (lys; +ny) (hys; +mp)" ) 1)
= [Plsi® + sy by + sy + [,

where I denotes a channel coefficient of the I-th slot, s; denotes a transmitted symbol of the I-th slot, and
* denotes a complex conjugate. k; is uncorrelated to other channel coefficients by frequency-selective
fading. 7; denotes noise with or without jammer on the [-th slot, which is defined by

@

= = ] m, wo. jammer
o+, w. jammer

where 1; and j; denote pure noise and the jammer on the [-th slot, respectively.

To develop the proposed NJPE, the mean and variance of X; in Equation (1) were calculated.
Assume that noise, transmitted symbol, and channel gain are independent. The PBN] was modeled as
zero-mean Gaussian noise [22,23]. Therefore, the mean of X; was obtained as

— 2
E[X)] = E[InPlsiP] + E[fs "] + Ellysi] + E[(”z( ]
B ESE[lhllz] + 012, w.0. jammer ®3)
B ESE[Ihl|2] + 01N + 017, w. jammer

where o;y% and 072 denote the pure noise power and jammer power on the I-th slot, respectively, and
E; denotes a symbol power. Next, the variance of X; was obtained as

— — 2 —
Var[X;] = Var[|h1|2|51|2] + Var[ns;*hy*| + Var[lysjn*| + Var[|nl| ] + 2Cov(|hl|2|sl|2,nlsl*hl*>

~ ~ 12 _ —_
+2Cov(|iPlsi?, hysiny”) + 2Cov(|h1|2|sl|2, | ) +2Cov (s hy*, ysny*) )
~ 12
1’11| )

Equation (4) was classified as with- or without-jammer since 7; had with- or without-jammer
cases in Equation (2). In FHSS, the length of each slot was designed to be shorter than coherence time,
and channel gain was assumed as constant in a slot. Then, Equation (4) was simplified as

+2COV(ﬁlSl*hl*,

11 )2) + ZCOV(hlSl;lJl*,

01,1\14 + 2ESE[|h,|2]ol,N2, w.o0. jammer

Var[X;] = { (01,N2 N 01,]2)2 n 2ESE[Ihzl2](Ul,N2 + g,/]2), w. jammer : ®)

Equations (3) and (5) both have noise, symbol, jammer powers, and channel gain. To estimate the
pure noise-jammer power regardless of channel gain, ESE[thIZJ in Equation (3) needed to be removed.

2
ESE[lhllz] was calculated by taking the square root of (ESE[|h1|2]> , which was obtained by subtracting
the squared Equation (3) from Equation (5). Then, the proposed NJPE could be derived as

2
Z; = E[X)] - yE[X)]" - Var[X]]
B o1N?, Ww.0. jammer (6)
| on® + oy w. jammer

In Equation (6), if a jammer existed, NJPE estimated the sum of pure noise and jammer power;
if not, NJPE only estimated pure noise power. Because the noise was generated from a low-noise
amplifier (LNA) at the receiver, the noise powers of all slots were similar. Therefore, jammed slots
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were easily detected by comparing with other slots. The estimation performance of the proposed NJPE
is explained in Section 3.

2.2. Jammer Detector wirh Gamma Distribution

Jammer detectors determine a jammed slot when an estimated noise power of a slot is greater
than those of the other slots. A robust jammer-detection method is the constant false-alarm-rate (CFAR)
detector, which calculates a threshold obtained from a given false-alarm-rate probability (P,) and
compares the threshold with a test sample. The conventional CFAR detector of radar systems assumes
that background noise follows Gaussian distribution. However, the output distribution of the proposed
NJPE was not Gaussian because of the square and square-root terms in Equation (6).

In this study, we approximated that the NJPE output followed gamma distribution on the basis
of simulations, and derived the jammer detector based on gamma distribution. In the experiment
section, we demonstrate that the detection performance of the derived jammer detector attained better
detection probability than those of conventional Gaussian-distribution-based detectors.

To calculate a relationship between threshold and false-alarm rate Py, let an actual and an
estimated noise-jammer power be 0 and z, respectively. The conditional probability-density function
(PDF) of z given 0 (fz(z]0)), follows gamma distribution and is given as (see Appendix A)

1

f2(20) = ——————2* L exp(-z/B(0)), @)
T(a(0))p(0)"?
where a(6) and B(6) denote
0) = NP 8
“0) = g 4P, 10 + 2P, 2 ®
0(62 + 4P, 10 + 2P, 2)
B(O) = , )

I\]Pr,l2

where N denotes the number of samples, and P,; denotes a received symbol power of the I-th slot
(ESE[Ihllz]) from Equation (3). Then, a relationship between Py, and threshold V7 of the proposed
jammer detector is obtained as

« 1 Vr
Pp = 7(210)dz = F(a(@), —), (10)
L @) \"" 5o
where I'(s, x) denotes an upper incomplete gamma function by
I'(s,x) = f 1o dt. (11)
X

Thus, for a given Py, V7 is calculated by Equation (10), and a jammed slot can be determined.
After detecting all jammed slots, the index set (S¢,,) of the combining slots is obtained as

Scomh = {l | Zl < VT/ le {1/2/‘ . '/L}}/ (12)

where Z; denotes the estimated power of the noise and jammer in the /-th slot from Equation (6). If the
only nonjammed slots based on S, were combined, a larger signal-to-noise ratio (SNR) and a better
BER could be attained.
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3. Proposed-Method Analysis

For NJPE, the limited number of symbols in a slot is utilized for calculation, which causes an
estimation error. In this section, we derived the NCRB of the proposed NJPE, analyzed the detection
performance of the proposed jammer detector, and calculated the detection probability.

The characteristic of the NCRB of the proposed NJPE is described in Lemma 1.

Lemma 1. The estimation error of NJPE is inversely proportional to the number of symbols in a slot. When the
SNR is large, the estimation error only depends on the number of symbols.

Proof. Let the estimated noise power of the proposed NJPE be 0 for actual power 0. The variance of 0
is bounded by Fisher information (I(6)), which is given as [24]

Var[é] > I(L)' (13)

where I(0) is calculated as (see Appendix B for detail derivation)

902 - (14)

d*1n f7(z|0) NP,?
02(62 + 4P,0 +2P,2)’

1(6) = —E[

where N denotes the number of symbols, and P, denotes the received symbol power. Thus, the
Cramér-Rao bound (CRB) is obtained as

i 0%(02 +4P,0 + 2P,2)
Var[0] > CRB(0) = N . (15)
T

NCRB is defined as NCRB(0) % CRB(0)/6? [25]. NCRB is written as

_ 02+4P,0+2P2  1+4Q+207
- NP,2 N2

NCRB(6) (16)
where Q) = P, /0, which is SNR. In Equation (16), NCRB is inversely proportional to N and is functional
of (0. When () is large, NCRB becomes 2/N. O

The detection probability (Pp) of the proposed jammer detector was calculated from threshold V7,
which was obtained from Py,. Because the proposed NJPE followed gamma distribution, Pp needed
to be calculated on the basis of the conditional probability of the gamma function in Equation (7).
If the jammer existed in the observation slot, 0 in Equation (7) became the sum of the noise power
and jammer power (on%2+ 0 ]2). Then, Pp with threshold V1 was obtained by an integration over the
region greater than Vr, which was given as

F(a(oNz + 012))

Vr

r 0((0']\]2 + 0]2), m

Pp = f:o fz(Z)ONZ +012)dz = / 17)

where a(aN2 + 012) and ‘B(ONZ + 012) were defined as in Equations (8) and (9), respectively. Thus,
in Equation (17), as a(oNz + 6]2) increased and ﬂ(GNZ +a]2) decreased, Pp increased. In other
words, a larger SNR provided better detection probability. In the next section, we outline the
computer simulations that were executed to show the detection performance of the proposed and
conventional schemes.
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4. Computer Simulations

The validation of gamma approximation and the derived NCRB were verified through computer
simulations. The detection probability and the BER of the proposed methods were evaluated alongside
conventional schemes. For the validation of gamma approximation, the distribution of the NJPE output
was fitted to gamma, normal, and Weibull, and the root mean squared errors (RMSEs) of moments for
the three fitted distributions were compared to select best-fit distribution. The derived NCRB was
compared with the NMSE of the proposed NJPE. The detection probability of the proposed jammer
detector based on gamma distribution was compared with those of the conventional cell average
(CA)-CFAR, smallest of (50)-CFAR, and differential jammer rejection (DJR) [20,21]. The BERs of the
combining slots without jammed slots were tested alongside conventional methods.

Experiment parameters are shown in Table 1, where p denotes the ratio of the bandwidths of FHSS
system and jammer. A small p indicates a strong and narrowband jammer for the same jammer power.

Table 1. Experiment parameters.

Parameters Values
Bandwidth 1 MHz
Modulation scheme 1t/ 4 differential QPSK

Repetition (the number of slots) 4

E, /Ny 12dB

0.0005, 0.005, 0.05
Channel model Rician channel
Py, 10710

Number of symbols in a slot 50

In order to verify gamma approximation, maximum-likelihood estimation was utilized to fit the
distribution of the NJPE output to gamma, normal, and Weibull distributions [26], and the RMSEs of
the n-th moment from 1 to 4 were compared to select the best-fit distribution.

The PDFs of the three fitted distributions and the RMSEs are shown in Figure 2 and Table 2,
respectively. In Figure 2, the black solid line denotes the PDF of the output of NJPE. Red-triangle,
green-square, and blue-circle lines denote the PDFs of the fitted distributions with gamma, normal,
and Weibull, respectively. Gamma distribution was well-matched with the distribution of the NJPE
output. In Table 2, y;, denotes the n-th moment, and the gamma distribution displayed the smallest
RMSEs from the three fitted distributions.

70

T T
MJPE output distribution
—&— Gamma approximation

Mormal approximation
—E&— Weibull approximation

=]

=
T

.

o s 2]
= =] =
T T T

Probability density function

]
=]

H Al = i, ey avats
] 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Estimator output (Z)

Figure 2. Probability-density functions of fitted distributions.
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Table 2. Root mean squared errors (RMSEs) of moments of fitted distributions.

Distribution RMSE (u7) RMSE (y) RMSE (u3) RMSE (y4)
Gamma 6.03 x 1077 2.03 x 1077 3.23 x 1078 3.60 x 1077
Normal 371 x 107 2.62 x 1077 1.44 x 1077 1.89 x 1078
Weibull 152 x 1073 7.63 x 1077 241 x 1077 940 x 107?

In Figure 3, the NCRB of the proposed NJPE was compared with the NMSE of the simulated NJPE
according to bit-energy-to-noise-power spectral-density ratio (E, /Np) with N = 50, and according to N
with E, /Ny = 12 dB. In Figure 3a, for a large SNR region, NMSE and NCRB converged to 0.04, which
was also calculated by 2/N. In Figure 3b, NMSE and NCRB were inversely proportional to the number
of symbols. These results were well-matched with Lemma 1.

— & —NMSE — & —NMSE
—+#—NCRB \ —+—NCRB

02y

NMSE, NCRB
NMSE, NCRB

DDSM
Py

4 6 8 10 12 14 16 18 20 10 20 30 40 50 60 70 80 %0 100
Bit energy to noise power spectral density ratio (dB) The number of symbols in a slot

(a) (b)

Figure 3. Cramér-Rao bound according to (a) bit-energy-to-noise-power spectral-density ratio and
(b) number of symbols in a slot.

In Figure 4, the detection probabilities of the proposed jammer detector based on NJPE versus
bit-energy-to-jammer-power spectral-density ratio (E,/Jo) at Py, = 10719 are shown for p = 0.0005,
0.005, and 0.05. The jammer with p = 0.0005 was a strong and narrowband signal. The red-triangle
line denotes CA-CFAR, the green-asterisk line denotes SO-CFAR, the blue-hexagram line denotes
DJR, and the magenta-diamond line denotes the proposed detector. The Gaussian-distribution-based
detector is also depicted as a dotted-magenta-diamond line for comparison with the proposed
gamma-distribution-based detector. When E; / Jp was small, i.e., large jammer power, the jammer was
easily detected, and the detection probability of jammer was close to 1; the inverse was also true. For the
same Ej/ Jo, a small p in Figure 4a demonstrates larger detection probability than a large p in Figure 4c.
The proposed method had about 15, 13, and 5 dB detection-probability gain, respectively, compared to
the conventional CA-CFAR, SO-CFAR, and DJR. In addition, the proposed gamma-distribution-based
detector had about 3 dB better gain than the Gaussian-distribution-based detector.
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Figure 4. Detection probability: (a) p = 0.0005, (b) p = 0.005, (c) p = 0.05.

In Figure 5, the receiver-operating-characteristic (ROC) curves of the proposed method and
the conventional methods were evaluated to show detection probability according to various Pg,.
In Figure 5, the proposed method exhibited greater detection probability than conventional methods at
small P, regions, and required a smaller Py, for specific detection probability. As seen in Figures 4
and 5, the proposed detector demonstrated the best detection performance.
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Figure 5. Receiver-operating-characteristic (ROC) curve for p = 0.05.
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Figure 6 illustrates the BER performance of the combining slots without jammed slots versus
Ey/JoatPsy = 10710 for p = 0.0005, 0.005, and 0.05. The tested detection methods were the same as in
Figure 4. For reference comparison, the BER from combining without- and with-discard of known
jammed slots is also plotted with a black solid line and a dashed line, respectively. If perfectly jammed
slots were discarded, the BER was about 2 x 1074 regardless of E,/ Jo. If not, when E; / Jo was less than
5 dB, and p was 0.0005, 0.005, and 0.05, the BER from combining all slots increased up to 0.001, 0.009,
and 0.07, respectively. These results demonstrated that rejecting jammed slots by the jammer detector
was important in increasing BER performance in FHSS systems.

107" - . . . - - . 101 T - -
Al slots combining All slots combining
e o — — —Non-jammed slols combining (ideal)
Non-jammed slots combining (ideal) P
—£&— CACFAR ——
SO-CFAR SO-CFAR
e PR —s—DIR
2 — & —Gaussian-based-detector ] 2 — & —Gaussian-based-detector
e 10 —%— Proposed method o 10 —%— Proposed method
i W
@ @
o g
® @
5 5
@ 5 |53 s
10 ﬂ 5o
A,
e
10 Sttt gl e = 104 y
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Bit energy to jammer power spectral density ratio (dB) Bit energy to jammer power spectral density ratio (dB)
(@ (b)

All slols combining
— — —Non-jammed slots combining fideal)
—&— CACFAR
SO-CFAR
\ —=—DJR
— & —Gausslan-based-detector

o \ —%— Proposed method

Bit error rate, BER

0 5 10 15 20 25 30 35 40
Bit energy to jammer power spectral density ratio (dB)
(c)

Figure 6. Bit-error-rate (BER) performance: (a) p = 0.0005, (b) p = 0.005, (c) p = 0.05.

In Figure 6, the methods ranked by increasing BER performance are CA-CFAR, SO-CFAR, DJR,
and the proposed method. This result matched with detection performance in Figure 4. In Figure 6b,
when p was 0.005 and E; / ]y varied from 10 to 30 dB, the BER performance of the proposed method was
similar to that of perfect jammer detection, while the BER performance of other detectors decreased at
the Ej, / Jo region. When E,/ Jo was larger than 30 dB, the BER of all schemes encountered an error floor.
In this case, even though jammer power was small, BER performance did not increase at all for all
cases. As seen in BER comparisons, the proposed method demonstrated the best BER performance.

5. Conclusions

We proposed a NJPE and jammer detector based on gamma distribution for detecting jammed
slots and combining nonjammed slots in FHSS systems. We theoretically derived the NCRB of the
proposed estimator, and developed the jammer detector based on gamma distribution. By computer
simulations, the derived NCRB was tested using NMSE, and BER performance for the proposed and
the conventional methods was evaluated. The detection performance of the proposed method had a
15,13, and 5 dB E},/ ]y gain compared to the conventional jammer detectors. The proposed scheme
showed the best detection and BER performance for all scenarios.
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Appendix A

In this appendix, we calculate the parameters of the probability distribution for the proposed
NJPE. Let the NJPE output be a random variable Z, and its sample mean and variance be M and S?,
respectively. NJPE (Z) is expressed as Equation (6). We rewrite the equation as

Z=M-VM2-32 (A1)

The multiplication of the received symbol and its complex conjugate is set as a random variable
X. When the number of observation samples is N, X1, X, ..., Xy are assumed as independent and
identically distributed (i.i.d.) random variables. Then, sample mean M and sample variance S? are
defined as

Z|

1 N
M=) X (A2)
i=1

§? = (X; — E[X])*. (A3)

-

I
—

b
N-1

The mean and variance of M and S? are obtained as follows [27].

E[M] = g, (A4)
Var[M] = %, (A5)
E[s?] = i, (A6)

] Ma o’ 2w
Var[S ] = W_W+m’ (A7)

where 1 and p; denote the mean and variance of X, respectively; u3 and ji4 are the third and fourth
central moment of X, respectively.

In FHSS, if the length of each slot was designed to be shorter than coherence time, and the channel
gain was assumed to be constant in a slot. Then, random variable X follows gamma distribution [28].
When the number of samples is sufficiently large, M follows Gaussian distribution by the central limit
theorem (CLT). Without loss of generality, the distribution of the sample variance was assumed to
be Gaussian distribution [29]. As in Equation (Al), i.e.,, Z = M — VM? - 82, since M and S2 follow
Gaussian distributions, the distribution of Z cannot be obtained in a closed form because of the square
and square-root terms. This paper approximated the distribution of Z as gamma distribution on the
basis of simulations.

The parameters of gamma distribution were determined by the mean and variance of random
variable Z. The mean of Z could be calculated by second-order Taylor’s approximation. Let g(-) be
v/ . Then, the mean of Z is

E[Z] = E[M] - E[g(M? - 8?)]

~E[M] - g(E[M? - 82]) - Z g (B2 - 7)) (A9
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In Equation (A4), E[M2 - 52] and Var[M2 - SZ] are calculated as

E[M? - 2| =E[M?]-E[s?]

= Var[M] + E[M]* - E[$? (49)
Var[M2 - 52] = Var[Mz] + Var[Sz] —2Cov(M?,5?), (A10)
where )
Var[MZ] = E[ (m2) ] E[M2] ATD
u4 4 GN=3)u” 3 4 A 4#3# + 4#2#
Cov(M?,8?) = E[MZSZ] - E[MZ]E[SZ] A12)

_ b4 2u3pt 2,2
= N(N-1) T N-T T Hop” +

From Equations (A9) and (A10), the mean of Z can be rewritten as

E[Z] = pu— \Ju? - 2. (A13)

The variance of Z can be calculated by linearizing the square root of Equation (A1). The linearized
Z can be expressed as

Z=M- ! M?+ ! 52 VEIM?] B[S (A14)
2+/E[M2] —E[$?] 2+E[M2] —E[$?] 2

The variance of Z can be calculated using [27] and [30], and is written as

2
Var[Z] = Var[M] + (m) x (Var[M2] + Var[$2] - Cov(M?, $2))

——E[le] e (COV(M, Mz) - Cov(M, Sz)) (A15)
_ Ao s pp®~dusp 1 (ZH_ZH _ #_3) 42
4(u2 +Ny? =Ny m N N g
where )
Cov(M,M2) = ;32 v % (Al6)
Cov(M, $?) = % (A17)

Let the output of NJPE be 0. To define mean and variance in Equations (A13) and (A15) using 0,
the moments of X are first defined as

=P, +6, (A18)
up = 2P,6 + 62, (A19)

i3 = 6P,6% +26°, (A20)

g = 12P,%62 + 36P,6° 4 96%, (A21)

where P, denotes ESE[lhlz]. After substituting these moments of Equations (A18)—(A21) into Equations
(A13) and (A15), the mean and variance are calculated as

E[Z] =0, (A22)
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0{(6+P,)* +P,(0-P,)?
Var(Z] — {(0+P)° + Py )}+6(0+2P,)_ 4P,20 C am

(N-1)P2 + (0 +P,)? N JN(N=1)P2 4+ N(6 + P,)?

When the number of samples is sufficiently large, Equation (A23) can be simplified as

0%(0 +4P,0 + 2P,2)
Var[Z] = . (A24)
NP,2
Therefore, the conditional PDF of z, given 0, fz(z|0), is given as
1
f2(210) = 20 exp(-2/B(0)), (A25)
I ((0))p(0)"
where )
E[Z] NP,?
0) = = , A26
“O) = izl ~ o7 1 ap0 122 (A26)
Var[z]l  0(6%+4P,0 4 2P,>
p(0) = 4 _ ( 5 ) (A27)
E[Z] NP,
Appendix B

In this appendix, the CRB of the proposed NJPE using Fisher information is derived. CRB is
defined as Var[é] > 1/1(0) [24], and I(0) is defined as

(21 fz(219) 2 B d*1n f7(z|0)
1(6) = E[(T =B ——5—| (A28)
where In f7(z]6) can be written as
_ 1 a(0)-1 _
0 fo(210) = 1n{ s b O exp(-2/(0) )
=—-InT(a(0)) —a(6)Inp(O0) + (a(6) —=1) Inz — ﬁ#f))'
From [31], Equation (A29) can be rewritten as
Inf7(z10) = -a(0)Ina(0)+ Fna(0) +a(0) - iIn2n A30
~a(0)InB(0) + (2(6) = 1) Inz - 7. (A30)
The second derivative of 0 in Equation (A30) is given as
PlInfs(z10) _ %a(6) da(0) da(0)
767 = 02 (lnz—ln6+ 2&%9))_ 36 (% T =0 za(lg)z)
ZH0 1 (@0 2\ g %0 (A3
90t po) \ 99 ) po) 9 p(o)*
From Equations (A28) and (A31), I(0) can be calculated as
0 = s
P a0 da(6 da(6
= - 3“9(2 )(E[an] —In6+ 20(%6))—% [;(9)(% + Oé(e ) 2a(19)2) (A32)

NEZCO _(a/sw)z 2 B PBO) 1
( 90 po)> \ 90 )ﬁ<e>3)(E[Z] 0)+ By’
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where E[Z] is equal to 0 by Equation (A22), and E[InZ] is calculated using second-order Taylor’s
approximation, and calculated as

Var[Z] 1
2E[7]2 =0 ey

E(InZ] = InE[Z] - (A33)

Using Equation (A33), Equation (A32) can be rewritten as

da(0)(1 da(0) 1 apo) 1
0 =515+ 56 ) 5 o

(A34)

Fisher information I(6) is calculated as

NP,%(0% + 4P,0 + 2P,?) + 20%(6 + P;)?

1(0) 5
62(62 + 4P,6 + 2P,2)

(A35)

When the number of samples is sufficiently large, Equation (A35) is simplified as

NP,2
1(0) = . A36
(6) 02(62 + 4P,0 + 2P,2) (A36)

Therefore, CRB is obtained as

X 0%(62 + 4P,0 + 2P%)
Var[0] = CRB(0) = N . (A37)
r
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