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Abstract: The mean age of air (MAA) is one of the most useful parameters in evaluating indoor
air quality in natural ventilated buildings. Its evaluation is generally based on the CO2 monitoring
within the environment; however, other methods can be found in the literature, but they have
not always led to satisfactory results. In this context, the present paper is focused on two main
topics: the effect of the windows airtightness and of the environmental conditions on MAA and the
application of artificial neural network (ANN) for the CO2 prediction within the room. Two case
studies (case study 1 located in Terni and case study 2 located in Perugia) were investigated, which
differ in geometric dimensions (useful area, volume, window area) and in airtightness of windows.
The indoor and outdoor environmental conditions (air temperature, pressure, relative humidity,
air velocity, and indoor CO2 concentration) were monitored in 33 experimental campaigns, in four
room configurations: open door-open window (OD-OW); closed door-open window (CD-OW); open
door-closed window (OD-CW); closed door-closed window (CD-CW). Tracer decay methodology,
according to ISO 16000-8:2007 standard, was compiled during all the experimental campaigns. A
feedforward ANN, able to simulate the indoor CO2 concentration within the rooms, was then
implemented; the monitored environmental conditions (air temperature, pressure, relative humidity,
and air velocity), the geometric dimensions (useful area, volume, window area), and the airtightness of
windows were provided as input data, while the CO2 concentration was used as target. In particular,
data of 19 experimental campaigns were provided for the training process of the network, while 14
were only used for testing the reliability of ANN. The CO2 concentration predicted by ANN was then
used for the MAA calculation in the four room configurations. Experimental results show that MAA
of case study 2 is always higher, in all the examined configurations, due to the higher airtightness
characteristics of the window and to the higher volume of the room. When the difference between
indoor and outdoor temperature increases, the MAA increases too, in almost all the investigated
configurations. Finally, the CO2 concentration predicted by ANN was compared with experimental
data; results show a good accuracy of the network both in CO2 prediction and in the MAA calculation.
The predicted CO2 concentration at the beginning of experimental campaigns (time step 0) always
differs less than 2% from experimental data, while a mean percentage difference of −18.8% was found
considering the maximum CO2 concentration. The MAA calculated using the predicted CO2 of ANN
was greater than the one obtained from experimental data, with a difference in the 0.5–1.3 min range,
depending on the configuration. According to the results, the developed ANN can be considered an
alternative and valuable tool for a preliminary evaluation of MAA.

Keywords: mean age of air; environmental conditions effect; windows air tightness; artificial neural
network; CO2 prediction and MAA calculation
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1. Introduction

The building envelope plays a fundamental role in energy balance, in fact, more and more strict
limit values for the thermal performance parameters (such as thermal transmittance of transparent
and opaque components) are required for the heat loss reduction. Natural and mechanical ventilation
significantly influence the thermal loads and the thermal comfort; however, mechanical ventilation
could be more effective than the natural one for indoor air quality [1–3], but it is responsible for higher
energy demand. The contribution of natural ventilation is also significant, and airtight frames for glazing
systems are more and more adopted, in order to reduce energy consumption [4–8]. Almeida et al. [9]
showed that the windows’ permeability indices can have a very wide range of variability (from
4.8 to 96.4 m3/h m2), due to the year of construction, the frame material, and the opening system.
Nevertheless, if the airtightness performance is too high, it can contribute to deteriorating indoor air
quality (IAQ), due to the less air exchange [10]. Furthermore, the air replacement is very important,
especially in natural ventilated buildings, where it is almost exclusively granted by the infiltrations
and by opening the windows.

Several parameters have been proposed since the 1990s to characterize the air-flow patterns,
such as local mean age of air (MAA) [11], contaminant removal effectiveness, or relative contaminant
removal effectiveness [12], and air exchange efficiency [13], but the mean age of air (MAA) is widely
used in evaluating the indoor air quality of buildings. The age of air is the mean time that a particle
takes to travel from an inlet point (such as the outdoor air intake) to the measurement point; it can be
used to calculate the air-change effectiveness of a single-zone or a multi-zone system [11] and the air
distribution in buildings [14]. The amount can be measured by injecting tracer gases at the inlet and
recording their concentration at the position of interest. Van Buggenhout et al. [14] in 2006 proposed
a data-based mechanistic (DBM) modeling technique to assess ventilation performance in a forced
ventilation type of building. Several models and algorithms were also proposed, in order to create
real-time maps of chemical concentrations in air [15], but they were not always appropriate for building
applications, especially in naturally ventilated ones, where the control of air exchange in the room is
fuzzy and more difficult to be modeled [16]. In these cases, experimental campaigns are more suitable
for evaluating indoor air quality performance of buildings, and different measurement techniques are
available for air motion characterization in rooms [17]. The tracer gas technique, based on the decay
method and in compliance with ISO 16000-8:2007 [18], is a simple measurement methodology that
allows calculating MAA in several experimental configurations. Experimental data can be used to
validate CFD (Computational Fluid Dynamics) models, able to simulate the CO2 concentration inside
the room and then to calculate the MAA in different conditions. In the literature, CFD models are
most focused on mechanical ventilated buildings, because the modeling is easier and the solutions are
in general convergent. In natural ventilated buildings, the air movement is more difficult to follow
and in many cases, the solutions of the motion fields are not convergent. Aijun et al. [19] studied the
ventilation effectiveness in an aircraft cabin mockup by means of both experimental campaigns (using
the volumetric particle tracking velocimetry (VPTV) technique) and CFD model simulations, while
Chanteloup and Mirade [20] applied CFD simulations in forced ventilation food plants. The numerical
model was also used for studying the influence of the characteristics and the placement of a complex
low-velocity air diffuser on the thermal comfort and indoor air quality [21] and the characteristics of
incoming air, when it is supplied via individual or multiple inlets [22]. It was furthermore applied to
the air flow field investigation, MAA and CO2 distribution, and air-change efficiency when inside a
bedroom the heights of the supply air outlet is varied [23], or to particular building ventilation devices
such as wind towers and wind-catchers [24,25]. Different applications of similar CFD models, far from
the aim of the present paper, were proposed in the chemical and biopharmaceutical fields [26,27] or in
the evaluation of the MAA in the outside city ventilation [28].

In natural ventilated buildings, the experimental approach is necessary in order to evaluate the
indoor air quality performance; further useful information could be also obtained by questionnaire
surveys [29,30].
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In a previous study [31], the authors investigated the wind-forced natural ventilation rates of
an office both with an experimental and a numerical procedure, by using the CFD code Fluent, and
MAA was calculated. Experimental data were used to validate the numerical method. The simulation
results were in a good agreement with the experimental ones only for the lower values of the MAA, in
a configuration with both door and window opened; for higher values (especially in the configurations
with closed window), the numerical solution was not convergent, therefore an experimental approach
is necessary. In these cases, the environmental parameters could have an important role in determining
the air exchange performance of a room, such as reported in [32], where the influence of the supply air
temperature on the mean local age of air was investigated considering a stratum ventilated office.

In the literature, other different approaches are also studied and applied in the engineering field,
which can be useful for this kind of investigation. Artificial neural networks (ANN), are the most used
in prediction problems, i.e., when an output is calculated starting from known parameters [33–36].
The authors have also studied the ANN in different kinds of applications, such as energy demand [37],
thermal comfort [38], and indoor air temperature [39] prediction; in each one, the strengths and
weakness of ANN were highlighted. According to these works, artificial neural networks could be a
very useful tool for CO2 concentration prediction within the room, starting from a few input parameters.
It is worth noting that in all the papers, a feedforward network, and in particular, a fitting neural
network, was always used for predicting the energy demand, the PMV (Predicted Mean Vote) index,
or the air temperature. In these studies, the same pattern of ANN was used, i.e., one input, one hidden,
and one output layer. Only in [36,39], two hidden layers were needed for obtaining a good reliability
of the ANN.

According to the state of the art, in the present paper, two main topics are investigated: the effect
of the windows airtightness and of the environmental conditions (such as temperature and pressure)
on the ventilation rate and the application of ANN for the CO2 prediction within the room.

Both topics represent a significant novelty, because they are a first tentative to:

1. Establish a correlation of the mean age of air (MAA) with the environmental conditions. As far as
the authors’ awareness, only a few data are available in the scientific literature about this topic;

2. Simulate the CO2 concentration by using artificial neural network. No applications of ANNs
in this field were found in the literature, therefore, it can lead an innovative contribution to the
scientific literature.

Two offices located in two cities of the Umbria region—central Italy were chosen as case studies.
They mainly differ by geometric characteristics (volume differs for about 30%) and by the airtightness
class of the window (considered as Class 1–2 and Class 4, respectively). Thirty-three experimental
campaigns were overall carried out in different seasons, environmental conditions, and with different
room configurations.

The tracer decay measurement methodology was followed, in compliance with ISO 16000-8 [18,40],
by using CO2 as tracer gas. The CO2 concentration and all the environmental conditions were monitored
at established time intervals in each survey. The MAA was also calculated for all the experimental
campaigns by using a numerical integration technique (the trapezoid method), and the results of the
two case studies were compared and discussed with relation to the geometrical characteristics of the
rooms, the airtightness characteristics of the windows, and considering its variation with the mean
difference of environmental parameters.

An ANN was then implemented by using a methodology purposely developed for the intended
objectives. Specifically, data of only 19 experimental campaigns were provided for the trained process,
while the last 14 surveys were used for testing the generalization of the network, i.e., for checking the
reliability of ANN with data different from those used for the training process [33–39]. The paper is
structured as follows: Section 2 presents the case studies, the employed measurement methodology,
the instruments characteristic, and the developed methodology for ANN implementation. Section 3
is devoted to the discussion of results related to mean age of air correlated with the environmental
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conditions and CO2 concentration prediction, by using artificial neural network. Finally, conclusions
are drawn in Section 4.

2. Materials and Methods

2.1. Case Studies

Two offices located in two cities of the Umbria region, in central Italy (Terni and Perugia, about
80 km far from each other) were chosen as case studies. The first one, indicated as case study 1, is
located at the University of Engineering in Terni, while the second one, named case study 2, is located
at the Department of Engineering in Perugia. The two offices are shown in Figure 1 (case study 1) and
in Figure 2 (case study 2).
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Figure 2. Room in Perugia (case study 2) during the measurement campaigns.

The case study 1 is the same already investigated in [31] and it is located at the first floor of the
building with a volume of about 32 m3 and a window surface of about 2.5 m2. However, less than 1 m2

is the opening part of the window. The characteristics of airtightness of the window can be estimated
with reference to the standard EN 12207:2016 [41] as Class 1–2, corresponding to a flow rate per square
meter of surface area in the 50–27 m3/hm2 range.

The case study 2 is located in Perugia, at the ground floor, with a volume of about 44 m3 and a
window of about 2.2 m2 total surface; about 1.8 m2 is the opening part of the window. In this case,
the airtightness of the window was estimated as Class 4 [41], corresponding to about 3 m3/hm2.

Both the offices have similar bordering conditions; only one wall border toward the outside, two
sides border towards aisles, and one with another office. The main features of the investigated rooms
are reported in Table 1.
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Table 1. Main features of the two investigated rooms.

Main Features Case Study 1 Case Study 2

Location Terni Perugia
Room volume (m3) 32.36 44.20
Room surface (m2) 11.31 16.37

Window total surface (m2) 2.49 2.16
Window opening surface (m2) 0.97 1.84

Window frame total perimeter (m) 10.10 7.45
Window frame opening perimeter (m) 5.48 6.50

Window airtightness class (−) [37] 1/2 4
Reference air permeability at 100 Pa (m3/hm2) [37] 50/27 3

2.2. Measurement Methodology

The measurement methodology, already set up in a previous work [30], is in compliance with ISO
16000-8 [18] and it is based on the decay method with the use of a single tracer gas. Among the various
traces gases suggested by the standard (such as nitrogen, helium, argon, and carbon dioxide), CO2 was
chosen, due to its facility to be detected and to its suitable characteristics (chemically inert, non-toxic,
without risk for health in the concentration ranged used, stable, unable to be absorbed by walls and
furniture) [40].

The principle of decay method is based on marking the air in the ventilated room with the tracer
gas and to evaluate the time necessary to replace the marked air with unmarked air.

The tracer gas was supplied by a compressed tank of CO2, with a critical orifice and a gas flow
rate measurement device (Figure 3). The minimum flow rate and the duration of the CO2 introduction
were established in compliance with the standard [18] as a function of the volume of the room. In order
to create a uniform gas concentration in the investigated volume, fans were switched on before each
test; this procedure allowed to obtain a uniform concentration of the gas tracer in different points of
the room volume, such as verified in the previous work [31]. The presence of people in the test room
is a carbon dioxide source, so its concentration was recorded before the tracer gas introduction, in
order to have a reference value for the MAA calculation; operators stayed outside the room during
the measurements, but the limits of the European Agency for Safety and Health at Work (2010) were
anyway considered. As the maximum concentration was reached, the decay started. The acquisition
rate of the concentration of the gas tracer was generally 1 min; longer acquisition rates (2, 3, 5, and
10 min) were set when the decay was very long-lasting, especially in the configurations with the closed
window. The CO2 concentration was registered for a total time greater than the expected average age
of air.
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We clarified this point. All the instrumentations were placed in a central position of the room,
when possible, and in particular:
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1. A CO2 pressurized tank was placed in a central position of the room;
2. The instrumentation for recording CO2 concentration was placed at about 1.2 m of height;
3. The instrumentations for recording the indoor environmental conditions were placed next to the

CO2 pressurized tank and at 1.2–1.5 m of height;
4. The outdoor conditions were monitored by placing the instrumentations outdoor next to the

window of the investigated room.

After recording the gas concentration in a representative point during the decay time, the local
mean age of air is obtained as follows [16], by solving the integral in the numerator by means of the
trapezoid method:

MAA =

∫
∞

t0 ϕdt

ϕt=t0
= ∆t

[ϕt0

2
+ ϕt0+1∆t + . . . + ϕt0+(n−1)∆t +

ϕte

2

]
+
ϕt=te

λtail
, (1)

where:

1. MAA is the mean age of air;
2. ϕ is the tracer gas concentration;
3. ∆t is the time acquisition rate;
4. t0 is the initial time;
5. te is the time when an exponential decay has been ascertained (linear logarithmic plot);
6. λtail is the absolute value of the slope from a plot of the logarithm of concentration as a function

of time in the last exponential part of the decay.

In both the case studies and when possible, the following four room configurations were
also investigated:

1. OD_OW: open door-open window;
2. CD_OW: closed door-open window;
3. OD_CW: open door-closed window;
4. CD_CW: closed door-closed window.

The configurations and the monitored period of each experimental campaign are reported in
Table 2. The sequential number shown in Table 2 was set by considering the following criteria: firstly,
the four configurations of case study 1 (OD_OW, CD_OW, OD_CW, and CD_CW) and then the ones
related to case study 2 were considered.

2.3. Instruments

The CO2 was supplied by means of a pressurized tank, equipped with a pressure adaptor (DIM
200-15-25.S) in stainless steel 316 L and Hastelloy C (Figure 3 left) and a flux meter Kobot Instrument Kit
KDG-212-JNG600 for very low flow rates, with a spherical suspension floating probe (Figure 3 right).

Two different instrumentations were used for measuring and recording the CO2 concentration in
the two case studies: a micro-GC VARIAN Inc CP-4900 model, with a thermal conductivity detector
(TCD) (case study 1), and an infrared CO2 concentration probe (BSO103) equipped with an aspiration
pump and connected to a multi-acquisition system LSI BABUC (case study 1). The GC system is
available at the Terni site of the university (case study 1) and it is difficult to be transported, while the
BABUC system is very manageable and easy to be transported. Therefore, it was not possible to use
the GC system in the Perugia office (case study 2). Before starting the measurements in Perugia, some
spot CO2 concentrations were contemporary measured at the Terni site (case study 1) with both the
instrumentations. Results show a good agreement between data recorded by the two different systems,
therefore the BABUC system, simpler than the GC one, was used for case study 2.
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Table 2. Main features of the two investigated rooms.

Configuration and Case
Studies

Sequential Number and
Date of Experimental

Campaign

Configuration and Case
Studies

Sequential Number and
Date of Experimental

Campaign

OD_OW

Terni 1 1 10/07/2013

CD_OW

Terni 1 6 10/07/2013

Terni 1 2 12/12/2013 Terni 1 7 12/12/2013

Terni 1 3 22/01/2014 Terni 1 8 22/01/2014

Terni 1 4 26/02/2014 Terni 1 9 26/02/2014

Terni 1 5 13/03/2014 Terni 1 10 13/03/2014

Perugia 2 21 29/02/2016 Perugia 2 25 29/02/2016

Perugia 2 22 01/03/2016 Perugia 2 26 01/03/2016

Perugia 2 23 07/03/2016 Perugia 2 27 07/03/2016

Perugia 2 24 22/03/2016 Perugia 2 28 22/03/2016

OD_CW

Terni 1 11 10/07/2013

CD_CW

Terni 1 16 10/07/2013

Terni 1 12 12/12/2013 Terni 1 17 12/12/2013

Terni 1 13 22/01/2014 Terni 1 18 22/01/2014

Terni 1 14 26/02/2014 Terni 1 19 26/02/2014

Terni 1 15 13/03/2014 Terni 1 20 13/03/2014

Perugia 2 29 02/03/2016 Perugia 2 32 03/03/2016

Perugia 2 30 09/03/2016 Perugia 2 33 23/03/2016

Perugia 2 31 24/03/2016

The indoor conditions were monitored by means of a multi-acquisition system LSI BABUC, while
the outdoor conditions were monitored by means of a multi-acquisition system DeltaOHM, both
equipped with several probes. Temperature and relative humidity, both inside and outside, were also
monitored in other points by means of Tiny Tag probes.

The characteristics of the instruments and of the probes are reported in Table 3.

2.4. ANN Implementation

The literature analysis highlighted the peculiarity and the weakness of the available methodology
for the MAA calculation; as reported, the most common method consists in the use of the CFD code
which allows to simulate the motion field within a room considering several and different boundary
conditions. However, as highlighted in [31], the main critical issues of CFD simulation is the lack of
convergence of solution, which makes the result unreliable.

The convergence of solution is influenced by many parameters, such as the mesh size, time step,
the equation models, and so on, which can lead to high computational resources requirement and high
time consuming. For these reasons, in this paper, an alternative method for the CO2 simulation and
MAA calculation was tried; in particular, according to the literature analysis, the first application of the
ANN for the CO2 prediction was attempted.

Neural networks are mathematical models able to simulate the learning process of the biological
neural system and can be trained based on experimental data, so they are not programmed [42].
For the implementation of a network able to predict the CO2 concentration within the room, a similar
methodology developed in previous works [37–39] was adopted. A multi-layer perceptron (MLP)
network with only one hidden layer was trained by using Leverberg–Marquardt backpropagation
algorithm and by providing several inputs and one target for the training process: the CO2 concentration
was chosen as the target parameter and the following parameters were supplied as inputs:
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Table 3. Experimental facility and accuracy of equipment.

Measurement Equipment

Outdoor

Pressure (HD32.7)
Measurement range: 800–1100 hPa ± 0.5 hPa (20 ◦C)

Operating limit: −5–+ 50 ◦C

Air velocity (Hot wire
anemometer AP3203)

Measurement range: 0.05–5 m/s

−0.05–1 m/s: ± 0.05 m/s

−1–5 m/s: ± 0.15 m/s

Operating limit: 0–+80 ◦C

Air Temperature and Relative
Humidity (TinyTag)

Measurement range: −40/+85 ◦C ± 0.4 ◦C 0/100% ± 3.0%
Sensitivity: 0.01 ◦C

Indoor

Psychrometric probe (ESU102)

Measurement range: −5–+60 ◦C ± 0.10 ◦C (0 ◦C)

Measurement range: 0%–100% ± 2% (15–45 ◦C)

Operating limit: 0–+60 ◦C

Floor and ankle temperature
(EST130)

Measurement range: 0.01 ± 0.15 ◦C (0 ◦C)

Operating limit: −40–+80 ◦C

Pressure (BSP002)
Measurement range: 800–1100 hPa ± 1 hPa (20 ◦C)

Operating limit: −40–+85 ◦C

Air velocity (Hot wire
anemometer BSV105)

Measurement range: 0–20 m/s

−0–0.5 m/s: ± 0.05 m/s

−0.5–1.5 m/s: ± 0.10 m/s

−>1.5 m/s: 4% (10–30 ◦C)

Operating limit: −30–+200 ◦C

CO2 concentration (BSO103)
Measurement range: 0–3000 ppm ± (50 ppm +2%)

Operating limit: −20–+60 ◦C, 5–95 UR%

CO2 concentration (Varian Inc.
CP-4900 Micro-GC with 4 columns

and TCD)

Detection Limits

WCOT columns: 1 ppm

Micro-packed columns: 10 ppm

Operating Range

Concentration: 1 ppm to 100% level

Linear dynamic range: 106

Repeatability: <0.5% RSD for propane at 1 mol% level for
WCOT columns at constant temperature and pressure

Carrier Gas

He, H2, N2 or Ar: 550 ± 10 kPa (80 ± 1.5 psig) input

Inlet connection: 3.2 mm (1/8 in.) stainless steel
compression fitting

Sampling

Sample inlet: 1.6 mm (1/16 in.) stainless steel Valco® fitting
with replaceable 5 µm stainless steel filter

Sample conditions: noncondensing gas of 0 ◦C to 40 ◦C

Maximum sample input pressure: 200 kPa (29 psig)

Optional separate sample inlet in front or back

Environmental Requirements

Relative Humidity: 0% to 95% non-condensing

Temperature: 0 to 50 ◦C

1. Room configuration (OD_OW, OD_CW, CD_OW, CD_CW);
2. Acquisition time (t);
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3. Difference between indoor and outdoor air temperature (∆T);
4. Difference between indoor and outdoor air velocity (∆v);
5. Difference between indoor and outdoor air relative humidity (∆RH);
6. Difference between indoor and outdoor air pressure (∆P);
7. Usable floor area of the case studies (Afloor);
8. Net volume of the case studies (Vnet);
9. Opening area of the environment (window and door);
10. Perimeter of the opening surfaces (window and door);
11. Airtightness class of the window (Class);
12. CO2 gas injection step by step (CO2supply).

It is worth noting that time and CO2 gas injection are two key parameters to be supplied, being the
only ones closely related to the increase of CO2 within the room, but all the considered parameters affect
its decay over time. Furthermore, for the ANN implementation, the CO2 gas injection was set to the
established values only for the time steps the tank was open, and set to zero for all the other time steps.
As in [37–39], a sensitivity analysis was performed in order to establish the best number of neurons
to be used in the hidden layer and to minimize the error of the network. The procedure adopted for
the implementation of the artificial neural network able to predict the CO2 concentration within the
room is shown in Figure 4. In particular, the experimental campaigns used for the training and testing
processes are highlighted; they were chosen randomly; the only criterion adopted was to choose for
both processes at least one survey for each configuration and case study. It is important to point out
that in Figure 4 the algorithm developed after the training process was named ANNCO2concentration;
i.e., it is the name of the trained network which can be used for CO2 prediction. The accuracy of the
training process is checked by considering two control parameters: regression value (R) and the mean
square error (MSE). The first one allows to correlate the outputs of ANN with experimental values
(target) and when it is equal to 1, it means that a perfect correlation is found. MSE allows to evaluate
the most probable error returned by the network, therefore the more the MSE is close to 0, the more the
accuracy of ANN is high.
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3. Results and Discussion

3.1. MAA Correlation with the Environmental Conditions

According to Equation (1) [18], the MAA depends on the CO2 decay step by step within the
environment, so it also depends on the environmental conditions. Firstly, the correlation between CO2

concentration and environmental condition and then the one with MAA will be discussed. For the
clarity of discussion, the mean values calculated for each experimental campaign divided for case
studies and experimental configurations are reported in Table 4.

Table 4. Environmental parameters measured during the experimental campaigns for each investigated
configuration (OD_OW, CD_OW, OD_CW, and CD_CW).

Case Studies and Sequential
Number of Experimental

Campaign

Tai
[◦C]

Tae
[◦C]

vi
[m/s]

ve
[m/s]

RHi
[%]

RHe
[%]

Pi
[hPa]

Pe
[hPa]

OD_OW

1 1 28.3 24.9 0.075 0.361 50.6 63.1 1013.7 1013.7

1 2 11.3 7.4 1.157 0.111 58.9 80.8 1014.2 1014.3

1 3 21.1 11.2 0.247 0.194 47.8 80.3 1014.0 1014.2

1 4 20.7 13.3 0.007 0.167 45.7 79.4 1014.0 1013.5

1 5 23.1 11.7 0.012 0.278 27.9 53.2 1014.2 1012.9

Average Case Study 1 20.9 13.7 0.300 0.222 46.2 71.4 1014.0 1013.7

2 21 12.3 11.0 0.005 0.214 76.9 76.2 967.8 974.2

2 22 15.2 19.0 0.060 0.389 52.8 38.3 968.5 973.6

2 23 12.8 11.3 0.001 0.398 56.6 63.2 1013.8 966.0

2 24 12.2 10.4 0.019 0.219 71.5 78.5 967.6 973.9

Average Case Study 2 13.1 12.9 0.021 0.305 64.4 64.1 979.4 971.9

Average Case Studies 17.4 13.4 0.176 0.259 54.3 68.1 998.6 995.1

CD_OW

1 6 29.1 26.1 0.015 0.361 48.8 59.5 1013.7 1014.0

1 7 10.8 8.9 0.052 0.111 65.1 78.3 1012.6 1013.2

1 8 21.4 12.5 0.036 0.194 46.2 76.2 1015.2 1013.6

1 9 22.9 14.6 0.001 0.167 43.1 72.4 1013.7 1012.1

1 10 24.0 14.0 0.003 0.278 26.1 47.9 1014.0 1013.0

Average Case Study 1 21.6 15.2 0.021 0.2222 45.9 66.8 1013.8 1013.2

2 25 12.3 11.0 0.005 0.214 76.9 76.2 967.8 974.2

2 26 14.9 19.6 0.006 0.389 53.3 37.7 968.5 973.5

2 27 11.9 10.7 0.000 0.281 60.2 63.2 1013.1 966.0

2 28 12.3 10.8 0.005 0.215 69.9 75.2 967.8 959.4

Average Case Study 2 12.8 13.0 0.004 0.275 65.1 63.1 979.3 968.3

Average Case Studies 17.7 14.2 0.014 0.246 54.4 65.2 998.5 993.2

OD_CW

1 11 29.7 27.7 0.028 0.361 47.6 59.4 1013.9 1013.9

1 12 13.6 6.7 0.635 0.111 48.5 77.8 1011.7 1012.5

1 13 23.5 13.1 0.052 0.194 43.9 76.4 1013.4 1013.6

1 14 22.6 15.4 0.263 0.167 43.1 60.5 1014.0 1013.9

1 15 24.3 16.8 0.061 0.278 27.8 40.5 1015.0 1012.9

Average Case Study 1 22.8 15.9 0.208 0.222 42.2 62.9 1013.6 1013.4

2 29 16.0 17.4 0.001 0.391 40.7 37.2 970.4 975.9

2 30 16.2 13.6 0.001 0.490 43.5 53.3 965.3 971.7

2 31 14.1 8.9 0.015 0.282 57.3 80.2 964.9 971.7
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Table 4. Cont.

Case Studies and Sequential
Number of Experimental

Campaign

Tai
[◦C]

Tae
[◦C]

vi
[m/s]

ve
[m/s]

RHi
[%]

RHe
[%]

Pi
[hPa]

Pe
[hPa]

Average Case Study 2 15.4 13.3 0.006 0.388 47.2 56.9 966.9 973.1

Average Case Studies 19.2 14.6 0.126 0.280 47.4 63.7 994.0 995.8

CD_CW

1 16 30.4 29.5 0.005 0.361 46.4 50.2 1013.2 1013.3

1 17 14.6 10.2 0.700 0.111 50.5 74.1 1013.3 1014.1

1 18 23.7 12.6 0.086 0.194 45.1 79.5 1012.9 1013.7

1 19 24.5 16.7 0.004 0.167 39.4 52.2 1014.1 1012.9

1 20 25.1 19.0 0.003 0.278 26.4 32.5 1014.2 1013.7

Average Case Study 1 23.6 17.6 0.160 0.222 41.5 57.7 1013.6 1013.5

2 32 10.8 9.8 0.001 0.700 49.1 62.8 954.2 960.2

2 33 16.0 11.0 0.004 2.349 42.2 63.4 968.5 958.3

Average Case Study 2 13,4 10.4 0.002 1.524 45.7 63.1 961.4 959.3

Average Case Studies 20.7 15.5 0.115 0.594 42.7 59.2 998.6 998.0

Figure 5 shows the CO2 concentration within the room as a function of the difference of the
main environmental conditions (temperature, pressure, air velocity, and relative humidity). The CO2

concentration monitored step by step within the room does not seem to be significantly affected by
the environmental conditions (white dots with black edges); however, the maximum values reached
in each experimental campaign (red dots) seem to be. In fact, the higher maximum values of CO2

were found in the following range: ∆T in 7–9 ◦C, ∆P in −3–3 hPa, ∆v in −0.27–0 m/s, and ∆RH in
−34%–−10%.
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This analysis was studied in depth by considering the different configurations and each specific
case study. In particular, Figure 6 shows the maximum values of CO2 for the four room configurations
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and for the two investigated case studies (case study 1 in white and black edges, case study 2 in red).
As expected, the maximum value of concentration also depends on the room configuration, and it
varies significantly for the two investigated case studies. The highest values of CO2 were reached
in the case study 1, which also seems to be more affected by the environmental conditions, contrary
to the one monitored in the case study. CO2 values monitored in case study 2 are in fact very close
to each other, so they do not seem to be significantly affected by both environmental conditions and
room configurations.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 22 
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Figure 6. Correlation between CO2 concentration and environmental conditions divided for case
studies and experimental campaign configuration.

Based on these results, the MAA indicator was calculated for each experimental campaign.
Figure 7 shows all the MAA values and the average ones calculated for each configuration and case
study. As highlighted, the MAA increases exponentially varying the room configuration; in particular,
for both case studies the highest values were calculated for the last configuration (CD_CW), which
can be considered the worst room configuration. The average values calculated for OD_OW, CD_OW,
and OD_CW are very close for the two case studies and equal to 4.7–5.3 min, 17.2–22.1 min, and
31.1–33.1 min for Terni (1) and Perugia (2), respectively. Only for the CD_CW configuration, a higher
difference of the MAA mean value was focused (163 min vs. 143.6 min); according to the results, in
all the configurations, a higher MAA value was found for the case study 2, probably due to both the
higher window airtightness and bigger volume of the room.
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Figure 7. MAA (Mean Age of the Air) calculated for each experimental campaign and configuration,
and MAA average values obtained for the two case studies.

Once the MAA was calculated, the correlation with environmental conditions was investigated.
Firstly, the correlation of MAA with environmental parameters was investigated considering each
case study and each room configuration. Results are shown in Figures 8 and 9. In these figures,
the following criteria and legend were adopted:

1. The configurations related to open windows (OD_OW and CD_OW) are shown in Figure 8,
the ones related to closed windows (OD_CW and CD_CW) are shown in Figure 9;

2. Case study 1 is always drawn with white indicators and black edges, while case study 2 is drawn
in red;

3. The MAA values related to the open door configurations (OD_OW and OD_CW) are reported on
the left ordinate of Figures 8 and 9, the ones related to the closed door configurations (CD_OW
and CD_CW) are on the right ordinate.

Interesting correlations can be found when considering the mean difference of all the environmental
parameters. MAA increases when the difference between the indoor and outdoor mean temperature
increases, in all the studied configurations, except for OD_OW (case study 2) and OD_CW (case study
1): the dependence is emphasized for the configurations with the closed window, where a higher slope
of the regression lines is found. A specular trend was instead found considering the mean difference of
relative humidity. Furthermore, considering the mean difference of air velocity and of air pressure, an
opposite trend for the two case studies was also highlighted; in fact, when MAA indicator increases for
one case study, it decreases for the other one. For instance, considering the difference of the air pressure,
for case study 1, the MAA increases in CD_OW and OD_CW configurations and decreases in OD_OW
and CD_CW ones; the same indicator decreases in CD_OW and OD_CW and increases in OD_OW
and CD_CW for the case study 2. The same trend can be highlighted considering the difference of
the air velocity. This important divergence can be due to the different characteristics of environments
(volume), to the dimensions of the openings (opening surfaces), and to the window airtightness class.



Appl. Sci. 2020, 10, 1730 14 of 22

Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 22 

1. The configurations related to open windows (OD_OW and CD_OW) are shown in Figure 8, the 
ones related to closed windows (OD_CW and CD_CW) are shown in Figure 9; 

2. Case study 1 is always drawn with white indicators and black edges, while case study 2 is drawn 
in red; 

3. The MAA values related to the open door configurations (OD_OW and OD_CW) are reported 
on the left ordinate of Figures 8 and 9, the ones related to the closed door configurations 
(CD_OW and CD_CW) are on the right ordinate. 

 
Figure 8. Correlation between MAA and environmental conditions—OD_OW and CD_OW 
configurations. 
Figure 8. Correlation between MAA and environmental conditions—OD_OW and CD_OW configurations.Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 22 

 
Figure 9. Correlation between MAA and environmental conditions—CD_OW and CD_CW 
configurations. 

Interesting correlations can be found when considering the mean difference of all the 
environmental parameters. MAA increases when the difference between the indoor and outdoor 
mean temperature increases, in all the studied configurations, except for OD_OW (case study 2) and 
OD_CW (case study 1): the dependence is emphasized for the configurations with the closed window, 
where a higher slope of the regression lines is found. A specular trend was instead found considering 
the mean difference of relative humidity. Furthermore, considering the mean difference of air velocity 
and of air pressure, an opposite trend for the two case studies was also highlighted; in fact, when 
MAA indicator increases for one case study, it decreases for the other one. For instance, considering 
the difference of the air pressure, for case study 1, the MAA increases in CD_OW and OD_CW 
configurations and decreases in OD_OW and CD_CW ones; the same indicator decreases in CD_OW 
and OD_CW and increases in OD_OW and CD_CW for the case study 2. The same trend can be 
highlighted considering the difference of the air velocity. This important divergence can be due to 
the different characteristics of environments (volume), to the dimensions of the openings (opening 
surfaces), and to the window airtightness class. 

In order to study the results of the two different case studies in depth, MAA was also compared 
with the air change (G), calculated as shown in Equation (2) considering the monitored 
environmental conditions, the total opening area (window and door of rooms when they are open), 
and the room volume. All the data is reported in Table 1. G =   𝑣 ∙ 𝑂𝐴 +  𝜌 ∙  𝐿௢௣௘௡௜௡௚ି௣௘௥௜௠௜௧௘௥V  (2) 

where: 

1. v is the monitored indoor or outdoor air velocity (m/h); 
2. OA is the opening surface (window and door when they are open) of the room (m2); 
3. ρ is the permeability class of the window, according to [41] (m3/hm); 
4. L is the perimeter of the considered opening surface (m); 
5. V is the volume of the room (m3). 

Figure 9. Correlation between MAA and environmental conditions—CD_OW and CD_CW configurations.

In order to study the results of the two different case studies in depth, MAA was also compared
with the air change (G), calculated as shown in Equation (2) considering the monitored environmental
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conditions, the total opening area (window and door of rooms when they are open), and the room
volume. All the data is reported in Table 1.

G =
v·OA + ρ · Lopening−perimiter

V
(2)

where:

1. v is the monitored indoor or outdoor air velocity (m/h);
2. OA is the opening surface (window and door when they are open) of the room (m2);
3. ρ is the permeability class of the window, according to [41] (m3/hm);
4. L is the perimeter of the considered opening surface (m);
5. V is the volume of the room (m3).

According to Equation (2), G represents the air volume changed in one hour within the room.
In Figure 10, it is possible to notice a significant difference in behavior of the regression lines drawn for
the two case studies. The slope of the lines (case study 1 in black and case study 2 in the red) mainly
depends on the airtightness of the windows; in fact, G tends to increase with decreasing of the window
airtightness class (Class 1–2 for the case study 1), due to the higher air permeability. In particular, as
expected, it is worth noting that the opening surfaces influence the MAA indicator especially in a room
with windows with higher airtightness class; it means that in the case study 2, the opening surface area
is more effective than case study 1, despite the difference of total opening area of just 1 m2.
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3.2. Artificial Neural Network for CO2 Concentration Prediction

According to Section 2.4 and to the adopted implementation procedure (Figure 4), several ANNs
were trained by varying the number of neurons to be used in the hidden layers. For the sake of brevity,
only the results of the best trained ANN will be reported. The best ANN was obtained by using 173
neurons in the hidden layer which has the highest regression value (equal to 0.967 for all the training
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processes) and the smallest MSE (the most probably error is in −50–50 ppm range). The trained ANN
was then tested for the CO2 prediction with the other experimental campaigns, as shown in Figure 4.

Results related to the implementation of the network are shown in Figures 11 and 12. In particular,
Figure 11 shows the comparison between the CO2 values monitored during the experimental campaigns
(on the abscissa—target) and the one simulated by ANN (on the ordinate—ANN output) for both the
considered processes (training in black dots and testing in red box). In this figure, in order to highlight
the accuracy of the ANN, the regression line for each process was also drawn: R2 values equal to 0.98
and 0.99 were found for the training and testing processes, respectively.
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Figure 12 allows to confirm the reliability of the trained ANN; the MSE in the two processes
(training in blue bars and testing in red ones) is reported. Particularly, it shows that the most probably
error returned by the ANN is in the −50/50 ppm range (84.7% of cases) for the training process, and
−100–100 ppm range (84% of cases) for the testing one.

According to the results, the trained ANN can be considered reliable; so, the simulated CO2

concentration can be used for the MAA calculation. In Table 5 the comparison of the starting
concentration (C0—the one monitored or simulated at the time step equal to 0), the maximum CO2

concentration reached during each survey (Cmax), and MAA calculated by using ANN output and
experimental one are shown. Besides, surveys in red in Table 5 are related to the experimental
campaigns used for the testing process, the other ones for the training.

Table 5. C0, Cmax, and MAA comparison: experimental data vs. ANN outputs (surveys on rows in red
were used for the testing process, the other ones for the training).

Configuration Number of Survey
Experimental Data Simulated Data—ANN Relative Error [%]

C0
[ppm]

Cmax
[ppm]

MAA
[min]

C0
[ppm]

Cmax
[ppm]

MAA
[min] C0 Cmax MAA

OD_OW

1 307.0 1786.0 2.6 308.1 2075.8 4.8 −0.3% −16.2% −85.0%

2 409.0 2730.0 5.5 410.6 3322.5 8.0 −0.4% −21.7% −45.5%

3 387.0 1147.5 6.6 390.8 2189.0 8.6 −1.0% −90.8% −29.0%

4 372.0 1824.0 3.9 374.7 2065.8 7.1 −0.7% −13.3% −85.5%

5 353.0 2632.0 4.7 357.0 3417.9 7.0 −1.1% −29.9% −49.5%

21 523.5 1037.0 4.7 524.1 1508.2 3.8 −0.1% −45.4% 20.7%

22 527.0 1095.0 7.5 522.5 1638.9 7.4 0.8% −49.7% 1.3%

23 517.0 2290.0 3.8 521.0 2580.5 5.9 −0.8% −12.7% −54.5%

24 530.0 2153.0 5.1 531.0 1754.4 3.8 −0.2% 18.5% 26.4%

CD_OW

6 316.0 7977.0 15.1 316.9 1790.0 16.3 −0.3% 77.6% −8.3%

7 314.0 1337.0 15.9 314.6 1630.3 14.8 −0.2% −21.9% 7.2%

8 326.0 8427.0 16.7 328.9 3015.0 19.1 −0.9% 64.2% −14.4%

9 321.0 6046.0 20.5 323.7 3305.1 24.8 −0.8% 45.3% −21.2%

10 332.0 6394.0 17.8 335.3 2331.8 18.7 −1.0% 63.5% −5.1%

25 514.5 2462.0 22.4 515.2 3507.8 23.8 −0.1% −42.5% −6.3%

26 514.0 999.0 23.6 518.0 2313.3 21.1 −0.8% −131.6% 10.4%

27 513.0 808.0 22.3 517.8 1570.1 22.6 −0.9% −94.3% −1.5%

28 517.0 1264.0 20.2 517.8 877.3 22.8 −0.2% 30.6% −12.9%

OD_CW

11 358.0 4059.0 31.5 358.7 3448.6 32.5 −0.2% 15.0% −3.0%

12 417.0 2705.0 30.7 419.9 3626.5 35.3 −0.7% −34.1% −14.7%

13 394.0 4995.0 29.8 398.1 4195.8 29.7 −1.0% 16.0% 0.4%

14 417.0 4886.0 30.2 420.0 5214.5 29.5 −0.7% −6.7% 2.2%

15 448.0 6647.0 33.3 451.3 5731.1 36.8 −0.7% 13.8% −10.4%

29 510.0 2895.0 32.2 509.3 2931.2 30.7 0.1% −1.3% 4.7%

30 534.0 914.0 30.5 529.3 1411.9 31.5 0.9% −54.5% −3.3%

31 527.0 1072.0 36.4 524.8 2572.4 32.8 0.4% −140.0% 9.9%

CD_CW

16 428.0 1310.0 134.7 428.4 1720.6 133.9 −0.1% −31.3% 0.6%

17 464.0 3775.0 144.1 466.0 4299.7 149.4 −0.4% −13.9% −3.7%

18 457.0 6637.0 153.5 462.1 3951.9 152.9 −1.1% 40.5% 0.4%

19 489.0 17220.0 137.6 492.8 18741.6 144.7 −0.8% −8.8% −5.2%

20 515.0 7622.0 148.1 518.1 7409.1 152.6 −0.6% 2.8% −3.0%

32 522.0 2164.0 168.0 530.4 3520.3 167.7 −1.6% −62.7% 0.2%

33 545.0 1567.0 177.0 537.7 2919.9 166.7 1.3% −86.3% 5.8%

It is worth noting that the CO2 concentration simulated by ANN at time step 0 is always close to
the real values; i.e., the different between the two values is always lower than 10 ppm (always lower
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than 2%). It means that the ANN allows to correctly simulate the real concentration within the room,
starting from the environmental conditions. The maximum concentration simulated by ANN, on the
other hand, presents much higher error, with peaks of −140%. This means that the network is not
always able to correctly predict the maximum values of CO2 reached within the environment. In fact,
only in about 50% of surveys an error lower than ± 30% was found. However, despite the different
maximum value of CO2 concentration simulated by ANN, the MAA calculated starting from ANN
data is very close to the experimental one except for a very few cases (mainly in OD_OW configuration).
In this case, the mean error is about 1–2 min.

As shown in Table 5, the higher relative error was found in OD_OW configuration, which is the
one with the lowest values of MAA; in fact, as also reported in Table 6, the mean values of MAA derived
from ANN data differ for a maximum of 2–3 min for OD_OW. Furthermore, the higher errors were
found in only specific experimental campaigns; in particular, considering the ones used for the training
process, the relative error is always lower than 6% except for OD_OW configuration (equal to 45% and
17.5%), but in this case the absolute error is about 1–2 min, therefore it can be considered acceptable.

Table 6. MAA mean values comparison: experimental data vs. ANN outputs.

Process Configuration

MAA [Min]
Experimental Data

MAA [Min]
ANN

Relative Error
[%]

Case
Study 1

Case
Study 2

Case
Study 1

Case
Study 2

Case
Study 1

Case
Study 2

Training

OD_OW 4.92 5.65 7.14 6.64 −45.0 −17.5

CD_OW 15.91 21.91 16.75 21.98 −5.3 −0.3

OD_CW 31.54 31.37 32.97 31.12 −4.5 0.8

CD_CW 144.09 168.05 145.40 167.71 −0.9 0.2

Testing

OD_OW 4.26 4.92 7.06 3.76 −65.8 23.7

CD_OW 19.16 22.33 21.79 23.21 −13.7 −3.9

OD_CW 30.48 36.44 32.41 32.82 −6.3 9.9

CD_CW 142.85 177.00 148.63 166.67 −4.0 5.8

Total

OD_OW 4.66 5.28 7.11 5.20 −52.6 1.7

CD_OW 17.21 22.12 18.77 22.60 −9.0 −2.2

OD_CW 31.12 33.06 32.75 31.69 −5.2 4.2

CD_CW 143.59 172.52 146.69 167.19 −2.2 3.1

Considering the experimental campaign used for the testing process, the relative error has slightly
increased in all the room configurations: about 66% and 24% for OD_OW, and lower than 10% in all the
other configurations, except for CD_OW of case study 1 (13.7%). However, also in this case, the absolute
error related to OD_OW configuration is about 2–3 min, so it can be considered acceptable too.

Furthermore, all the results shown in Table 6 are in agreement with the trained ANN; in fact, as
also shown in Figure 12, the network tends to predict a CO2 concentration with a slightly higher error
in the testing process (most probably error in −100 + 100 ppm), so it can lead to less accuracy in the
MAA calculation.

4. Conclusions

Indoor air quality in natural ventilating buildings is strictly dependent on windows frame
airtightness. The more and more pressing norms aiming at energy saving in buildings played an
important role in making airtightness in buildings more effective: it contributes to energy saving but,
on the other hand, it can also cause indoor air quality deterioration.

In this context, in the present paper, two case studies were investigated: two natural ventilated
rooms with different airtightness class of the window frame. The first one, with a volume of about
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32 m3, is characterized by a window with airtightness Class 1/2 (corresponding to 50–27 m3/hm2 of air
of infiltration). The airtightness class of the second one, with a volume of about 44 m3, is 4 (3 m3/hm2

of air of infiltration).
The mean age of air (MAA) was experimentally evaluated in compliance with ISO 16000-8:2007 [16],

in thirty-three different experimental campaigns, twenty for case study 1 (situated in Terni) and thirteen
for case study 2 (situated in Perugia). During each experimental campaign, four different room
configurations were investigated: open door-open window (OD_OW), closed door-open window
(CD_OW), open door-closed window (OD_CW), and closed door-closed window (CD_CW). During the
experimental campaigns, the main indoor and outdoor environmental parameters were also monitored.

The CO2 concentration and the MAA values obtained for the two case studies were then correlated.
Results show that:

1. MAA values increase from the configuration OD_OW to the configuration CD_CW, with an
exponential trend and with a very significant gap between the configurations with open and
closed window, while the configuration of the door has a less influence;

2. MAA calculated for case study 2 is substantially higher with respect to the ones related to case
study 1. The difference found in the configurations with closed window is mainly due to the
airtightness of the frame, while the one in the configurations with open window is probably due
to the volume of the room;

3. A similar behaviour is observed when comparing the MAA with air flow rate per room volume
(G/V), where G represents the air change and V the volume of the room;

4. The difference between the two case studies is more emphasises when considering only the G
values, confirming that the opening surfaces have more influence on MAA indicator in a room
with windows with the higher airtightness class;

5. MAA increases when the difference between the indoor and outdoor mean temperature increases,
in almost all the studied configurations, with a more emphasized dependence for the configurations
with the closed window;

6. An opposite trend for the two case studies was observed when comparing the MAA with the
difference of air pressure and air velocity;

7. An influence on MAA indicator specular with respect to the one of the temperature was observed
for air relative humidity difference;

8. A more emphasized dependence is found for the configurations with the closed window.

Finally, an artificial neural network (ANN) was implemented, able to predict the CO2 concentration
within the room; 12 parameters related to geometric dimension of the room, permeability characteristics
of windows, and environmental conditions were provided as input data, while the CO2 concentration
was used as target. A multi-layer perceptron (MLP) neural network was trained by using data of
19 experimental campaigns, while the last 14 ones were used for testing and checking the reliability
of generalization of the network. Results show a good agreement between experimental CO2

concentration and the one predicted by the ANN in all the experimental campaigns; in particular,
the starting concentration (at time step 0) simulated by the ANN is always very close to the real one
(mean error lower than 1%). A higher mean error was found for the maximum CO2 concentration
reached in about 50% of the surveys. However, it does not involve a wrong evaluation of the MAA
indicator; according to the results, the MAA calculated starting from CO2 predicted by ANN differs
from the experimental one of about a few minutes (2–3 min for OD_OW, and maximum 10 min for
CD_CW). Therefore, the ability to use ANN for the evaluation of MAA has been demonstrated.

It can be also concluded that both window frame airtightness and environmental conditions,
especially indoor and outdoor air temperatures, play an important role in air replacement in natural
ventilated buildings and in indoor air quality. Therefore, it has to be carefully taken into account when
solutions aiming at reducing air infiltration for energy savings are adopted.
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